mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2025-01-15 00:36:08 +01:00
1035 lines
40 KiB
Java
1035 lines
40 KiB
Java
|
/*
|
||
|
* The MIT License
|
||
|
*
|
||
|
* Copyright (c) 2016-2021 JOML
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to deal
|
||
|
* in the Software without restriction, including without limitation the rights
|
||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
* copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in
|
||
|
* all copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
* THE SOFTWARE.
|
||
|
*/
|
||
|
package com.jozufozu.flywheel.repack.joml.sampling;
|
||
|
|
||
|
import java.nio.FloatBuffer;
|
||
|
import java.util.ArrayList;
|
||
|
|
||
|
import com.jozufozu.flywheel.repack.joml.Random;
|
||
|
import com.jozufozu.flywheel.repack.joml.Vector2f;
|
||
|
import com.jozufozu.flywheel.repack.joml.Vector3f;
|
||
|
|
||
|
/**
|
||
|
* Creates samples using the "Best Candidate" algorithm.
|
||
|
*
|
||
|
* @author Kai Burjack
|
||
|
*/
|
||
|
public class BestCandidateSampling {
|
||
|
|
||
|
private static final class IntHolder {
|
||
|
int value;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generates Best Candidate samples on a unit sphere.
|
||
|
* <p>
|
||
|
* References:
|
||
|
* <ul>
|
||
|
* <li><a href="https://arxiv.org/ftp/cs/papers/0701/0701164.pdf">Indexing the Sphere with the Hierarchical Triangular Mesh</a>
|
||
|
* <li><a href="http://math.stackexchange.com/questions/1244512/point-in-a-spherical-triangle-test">Point in a spherical triangle test</a>
|
||
|
* </ul>
|
||
|
*
|
||
|
* @author Kai Burjack
|
||
|
*/
|
||
|
public static class Sphere {
|
||
|
/**
|
||
|
* Implementation of a Hierarchical Triangular Mesh structure to index the sample points on the unit sphere for accelerating 1-nearest neighbor searches.
|
||
|
*
|
||
|
* @author Kai Burjack
|
||
|
*/
|
||
|
private static final class Node {
|
||
|
private static final int MAX_OBJECTS_PER_NODE = 32;
|
||
|
|
||
|
private float v0x, v0y, v0z;
|
||
|
private float v1x, v1y, v1z;
|
||
|
private float v2x, v2y, v2z;
|
||
|
private float cx, cy, cz;
|
||
|
private float arc;
|
||
|
|
||
|
private ArrayList objects;
|
||
|
private Node[] children;
|
||
|
|
||
|
Node() {
|
||
|
this.children = new Node[8];
|
||
|
float s = 1f;
|
||
|
this.arc = 2.0f * (float) Math.PI;
|
||
|
/*
|
||
|
* See: https://arxiv.org/ftp/cs/papers/0701/0701164.pdf
|
||
|
*/
|
||
|
this.children[0] = new Node(-s, 0, 0, 0, 0, s, 0, s, 0);
|
||
|
this.children[1] = new Node(0, 0, s, s, 0, 0, 0, s, 0);
|
||
|
this.children[2] = new Node(s, 0, 0, 0, 0, -s, 0, s, 0);
|
||
|
this.children[3] = new Node(0, 0, -s, -s, 0, 0, 0, s, 0);
|
||
|
this.children[4] = new Node(-s, 0, 0, 0, -s, 0, 0, 0, s);
|
||
|
this.children[5] = new Node(0, 0, s, 0, -s, 0, s, 0, 0);
|
||
|
this.children[6] = new Node(s, 0, 0, 0, -s, 0, 0, 0, -s);
|
||
|
this.children[7] = new Node(0, 0, -s, 0, -s, 0, -s, 0, 0);
|
||
|
}
|
||
|
|
||
|
private Node(float x0, float y0, float z0, float x1, float y1, float z1, float x2, float y2, float z2) {
|
||
|
this.v0x = x0;
|
||
|
this.v0y = y0;
|
||
|
this.v0z = z0;
|
||
|
this.v1x = x1;
|
||
|
this.v1y = y1;
|
||
|
this.v1z = z1;
|
||
|
this.v2x = x2;
|
||
|
this.v2y = y2;
|
||
|
this.v2z = z2;
|
||
|
cx = (v0x + v1x + v2x) / 3.0f;
|
||
|
cy = (v0y + v1y + v2y) / 3.0f;
|
||
|
cz = (v0z + v1z + v2z) / 3.0f;
|
||
|
float invCLen = Math.invsqrt(cx * cx + cy * cy + cz * cz);
|
||
|
cx *= invCLen;
|
||
|
cy *= invCLen;
|
||
|
cz *= invCLen;
|
||
|
// Compute maximum radius around triangle centroid
|
||
|
float arc1 = greatCircleDist(cx, cy, cz, v0x, v0y, v0z);
|
||
|
float arc2 = greatCircleDist(cx, cy, cz, v1x, v1y, v1z);
|
||
|
float arc3 = greatCircleDist(cx, cy, cz, v2x, v2y, v2z);
|
||
|
float dist = Math.max(Math.max(arc1, arc2), arc3);
|
||
|
/*
|
||
|
* Convert radius into diameter, but also take into account the linear
|
||
|
* arccos approximation we use.
|
||
|
* This value was obtained empirically!
|
||
|
*/
|
||
|
dist *= 1.7f;
|
||
|
this.arc = dist;
|
||
|
}
|
||
|
|
||
|
private void split() {
|
||
|
float w0x = v1x + v2x;
|
||
|
float w0y = v1y + v2y;
|
||
|
float w0z = v1z + v2z;
|
||
|
float len0 = Math.invsqrt(w0x * w0x + w0y * w0y + w0z * w0z);
|
||
|
w0x *= len0;
|
||
|
w0y *= len0;
|
||
|
w0z *= len0;
|
||
|
float w1x = v0x + v2x;
|
||
|
float w1y = v0y + v2y;
|
||
|
float w1z = v0z + v2z;
|
||
|
float len1 = Math.invsqrt(w1x * w1x + w1y * w1y + w1z * w1z);
|
||
|
w1x *= len1;
|
||
|
w1y *= len1;
|
||
|
w1z *= len1;
|
||
|
float w2x = v0x + v1x;
|
||
|
float w2y = v0y + v1y;
|
||
|
float w2z = v0z + v1z;
|
||
|
float len2 = Math.invsqrt(w2x * w2x + w2y * w2y + w2z * w2z);
|
||
|
w2x *= len2;
|
||
|
w2y *= len2;
|
||
|
w2z *= len2;
|
||
|
children = new Node[4];
|
||
|
/*
|
||
|
* See: https://arxiv.org/ftp/cs/papers/0701/0701164.pdf
|
||
|
*/
|
||
|
children[0] = new Node(v0x, v0y, v0z, w2x, w2y, w2z, w1x, w1y, w1z);
|
||
|
children[1] = new Node(v1x, v1y, v1z, w0x, w0y, w0z, w2x, w2y, w2z);
|
||
|
children[2] = new Node(v2x, v2y, v2z, w1x, w1y, w1z, w0x, w0y, w0z);
|
||
|
children[3] = new Node(w0x, w0y, w0z, w1x, w1y, w1z, w2x, w2y, w2z);
|
||
|
}
|
||
|
|
||
|
private void insertIntoChild(Vector3f o) {
|
||
|
for (int i = 0; i < children.length; i++) {
|
||
|
Node c = children[i];
|
||
|
/*
|
||
|
* Idea: Test whether ray from origin towards point cuts triangle
|
||
|
*
|
||
|
* See: http://math.stackexchange.com/questions/1244512/point-in-a-spherical-triangle-test
|
||
|
*/
|
||
|
if (isPointOnSphericalTriangle(o.x, o.y, o.z, c.v0x, c.v0y, c.v0z, c.v1x, c.v1y, c.v1z, c.v2x, c.v2y, c.v2z, 1E-6f)) {
|
||
|
c.insert(o);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void insert(Vector3f object) {
|
||
|
if (children != null) {
|
||
|
insertIntoChild(object);
|
||
|
return;
|
||
|
}
|
||
|
if (objects != null && objects.size() == MAX_OBJECTS_PER_NODE) {
|
||
|
split();
|
||
|
for (int i = 0; i < MAX_OBJECTS_PER_NODE; i++)
|
||
|
insertIntoChild((Vector3f) objects.get(i));
|
||
|
objects = null;
|
||
|
insertIntoChild(object);
|
||
|
} else {
|
||
|
if (objects == null)
|
||
|
objects = new ArrayList(MAX_OBJECTS_PER_NODE);
|
||
|
objects.add(object);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This is essentially a ray cast from the origin of the sphere to the point to test and then checking whether that ray goes through the triangle.
|
||
|
* <p>
|
||
|
* Reference: <a href="http://www.graphics.cornell.edu/pubs/1997/MT97.pdf">Fast,
|
||
|
* Minimum Storage Ray/Triangle Intersection</a>
|
||
|
*/
|
||
|
private static boolean isPointOnSphericalTriangle(float x, float y, float z, float v0X, float v0Y, float v0Z, float v1X, float v1Y, float v1Z, float v2X, float v2Y,
|
||
|
float v2Z, float epsilon) {
|
||
|
float edge1X = v1X - v0X;
|
||
|
float edge1Y = v1Y - v0Y;
|
||
|
float edge1Z = v1Z - v0Z;
|
||
|
float edge2X = v2X - v0X;
|
||
|
float edge2Y = v2Y - v0Y;
|
||
|
float edge2Z = v2Z - v0Z;
|
||
|
float pvecX = y * edge2Z - z * edge2Y;
|
||
|
float pvecY = z * edge2X - x * edge2Z;
|
||
|
float pvecZ = x * edge2Y - y * edge2X;
|
||
|
float det = edge1X * pvecX + edge1Y * pvecY + edge1Z * pvecZ;
|
||
|
if (det > -epsilon && det < epsilon)
|
||
|
return false;
|
||
|
float tvecX = -v0X;
|
||
|
float tvecY = -v0Y;
|
||
|
float tvecZ = -v0Z;
|
||
|
float invDet = 1.0f / det;
|
||
|
float u = (tvecX * pvecX + tvecY * pvecY + tvecZ * pvecZ) * invDet;
|
||
|
if (u < 0.0f || u > 1.0f)
|
||
|
return false;
|
||
|
float qvecX = tvecY * edge1Z - tvecZ * edge1Y;
|
||
|
float qvecY = tvecZ * edge1X - tvecX * edge1Z;
|
||
|
float qvecZ = tvecX * edge1Y - tvecY * edge1X;
|
||
|
float v = (x * qvecX + y * qvecY + z * qvecZ) * invDet;
|
||
|
if (v < 0.0f || u + v > 1.0f)
|
||
|
return false;
|
||
|
float t = (edge2X * qvecX + edge2Y * qvecY + edge2Z * qvecZ) * invDet;
|
||
|
return t >= epsilon;
|
||
|
}
|
||
|
|
||
|
private int child(float x, float y, float z) {
|
||
|
for (int i = 0; i < children.length; i++) {
|
||
|
Node c = children[i];
|
||
|
if (isPointOnSphericalTriangle(x, y, z, c.v0x, c.v0y, c.v0z, c.v1x, c.v1y, c.v1z, c.v2x, c.v2y, c.v2z, 1E-5f))
|
||
|
return i;
|
||
|
}
|
||
|
// No child found. This can happen in 'nearest()' when querying possible nearby nodes
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Reference: <a href="https://en.wikipedia.org/wiki/Great-circle_distance#Vector_version">https://en.wikipedia.org/</a>
|
||
|
*/
|
||
|
private float greatCircleDist(float x1, float y1, float z1, float x2, float y2, float z2) {
|
||
|
float dot = x1 * x2 + y1 * y2 + z1 * z2;
|
||
|
/*
|
||
|
* Just use a linear function, because we (mostly) do less-than comparisons on the result.
|
||
|
* We just need a linear function which:
|
||
|
* f(-1) = PI
|
||
|
* f(0) = PI/2
|
||
|
* f(1) = 0
|
||
|
*/
|
||
|
return (float) (-Math.PIHalf * dot + Math.PIHalf);
|
||
|
//return (float) Math.acos(dot);
|
||
|
}
|
||
|
|
||
|
float nearest(float x, float y, float z) {
|
||
|
return nearest(x, y, z, Float.POSITIVE_INFINITY);
|
||
|
}
|
||
|
float nearest(float x, float y, float z, float n) {
|
||
|
float gcd = greatCircleDist(x, y, z, cx, cy, cz);
|
||
|
/*
|
||
|
* If great-circle-distance between query point and centroid is larger than the current smallest distance 'n' plus the great circle diameter 'arc', we abort here,
|
||
|
* because then it is not possible for any point in the triangle patch to be closer to the query point than 'n'.
|
||
|
*/
|
||
|
/*
|
||
|
* Yes, we are subtracting two great-circle distances from one another here, which we did not even compute correctly
|
||
|
* using our overly linear arccos approximation. But the 1.7 factor above will take care that we still stay conservative
|
||
|
* enough here and not rejecting triangle patches which would contain samples nearer than 'n'.
|
||
|
*/
|
||
|
if (gcd - arc > n)
|
||
|
return n;
|
||
|
float nr = n;
|
||
|
if (children != null) {
|
||
|
int num = children.length, mod = num-1;
|
||
|
for (int i = child(x, y, z), c = 0; c < num; i = (i + 1) & mod, c++) {
|
||
|
float n1 = children[i].nearest(x, y, z, nr);
|
||
|
nr = Math.min(n1, nr);
|
||
|
}
|
||
|
return nr;
|
||
|
}
|
||
|
for (int i = 0; objects != null && i < objects.size(); i++) {
|
||
|
Vector3f o = (Vector3f) objects.get(i);
|
||
|
float d = greatCircleDist(o.x, o.y, o.z, x, y, z);
|
||
|
if (d < nr)
|
||
|
nr = d;
|
||
|
}
|
||
|
return nr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private boolean onHemisphere;
|
||
|
private int numSamples;
|
||
|
private int numCandidates = 60; // <- use a reasonable default
|
||
|
private long seed;
|
||
|
|
||
|
/**
|
||
|
* Create a new instance of {@link Sphere} to configure and generate 'best candidate' sample positions on the unit sphere.
|
||
|
*/
|
||
|
public Sphere() {}
|
||
|
|
||
|
/**
|
||
|
* Generate 'best candidate' sample positions and store the coordinates of all generated samples into the given <code>xyzs</code> float array.
|
||
|
* <p>
|
||
|
* <em>This method performs heap allocations, so should be used sparingly.</em>
|
||
|
*
|
||
|
* @param xyzs
|
||
|
* will hold the x, y and z coordinates of all samples in the order <code>XYZXYZXYZ...</code>.
|
||
|
* This array must have a length of at least <code>numSamples</code>
|
||
|
* @return this
|
||
|
*/
|
||
|
public Sphere generate(final float[] xyzs) {
|
||
|
final IntHolder i = new IntHolder();
|
||
|
return generate(new Callback3d() {
|
||
|
public void onNewSample(float x, float y, float z) {
|
||
|
xyzs[3 * i.value + 0] = x;
|
||
|
xyzs[3 * i.value + 1] = y;
|
||
|
xyzs[3 * i.value + 2] = z;
|
||
|
i.value++;
|
||
|
}
|
||
|
});
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate 'best candidate' sample positions and store the coordinates of all generated samples into the given <code>xyzs</code> FloatBuffer.
|
||
|
* <p>
|
||
|
* The samples will be written starting at the current position of the FloatBuffer. The position of the FloatBuffer will not be modified.
|
||
|
* <p>
|
||
|
* <em>This method performs heap allocations, so should be used sparingly.</em>
|
||
|
*
|
||
|
* @param xyzs
|
||
|
* will hold the x, y and z coordinates of all samples in the order <code>XYZXYZXYZ...</code>.
|
||
|
* This FloatBuffer must have at least <code>numSamples</code> remaining elements.
|
||
|
* The position of the buffer will not be modified by this method
|
||
|
* @return this
|
||
|
*/
|
||
|
public Sphere generate(final FloatBuffer xyzs) {
|
||
|
final IntHolder i = new IntHolder();
|
||
|
final int pos = xyzs.position();
|
||
|
return generate(new Callback3d() {
|
||
|
public void onNewSample(float x, float y, float z) {
|
||
|
xyzs.put(pos + 3 * i.value + 0, x);
|
||
|
xyzs.put(pos + 3 * i.value + 1, y);
|
||
|
xyzs.put(pos + 3 * i.value + 2, z);
|
||
|
i.value++;
|
||
|
}
|
||
|
});
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set the seed to initialize the pseudo-random number generator with.
|
||
|
*
|
||
|
* @param seed
|
||
|
* the seed value
|
||
|
* @return this
|
||
|
*/
|
||
|
public Sphere seed(long seed) {
|
||
|
this.seed = seed;
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set the number of samples to generate.
|
||
|
*
|
||
|
* @param numSamples
|
||
|
* the number of samples
|
||
|
* @return this
|
||
|
*/
|
||
|
public Sphere numSamples(int numSamples) {
|
||
|
this.numSamples = numSamples;
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set the number of candidates to try for each generated sample.
|
||
|
*
|
||
|
* @param numCandidates
|
||
|
* the number of candidates to try
|
||
|
* @return this
|
||
|
*/
|
||
|
public Sphere numCandidates(int numCandidates) {
|
||
|
this.numCandidates = numCandidates;
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set whether to generate samples on a hemisphere around the <code>+Z</code> axis.
|
||
|
* <p>
|
||
|
* The default is <code>false</code>, which will generate samples on the whole unit sphere.
|
||
|
*
|
||
|
* @param onHemisphere
|
||
|
* whether to generate samples on the hemisphere
|
||
|
* @return this
|
||
|
*/
|
||
|
public Sphere onHemisphere(boolean onHemisphere) {
|
||
|
this.onHemisphere = onHemisphere;
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate 'best candidate' sample call the given <code>callback</code> for each generated sample.
|
||
|
* <p>
|
||
|
* <em>This method performs heap allocations, so should be used sparingly.</em>
|
||
|
*
|
||
|
* @param callback
|
||
|
* will be called with the coordinates of each generated sample position
|
||
|
* @return this
|
||
|
*/
|
||
|
public Sphere generate(Callback3d callback) {
|
||
|
Random rnd = new Random(seed);
|
||
|
Node otree = new Node();
|
||
|
for (int i = 0; i < numSamples; i++) {
|
||
|
float bestX = Float.NaN, bestY = Float.NaN, bestZ = Float.NaN, bestDist = 0.0f;
|
||
|
for (int c = 0; c < numCandidates; c++) {
|
||
|
/*
|
||
|
* Random point on sphere
|
||
|
*
|
||
|
* Reference: <a href="http://mathworld.wolfram.com/SpherePointPicking.html">http://mathworld.wolfram.com/</a>
|
||
|
*/
|
||
|
float x1, x2;
|
||
|
do {
|
||
|
x1 = rnd.nextFloat() * 2.0f - 1.0f;
|
||
|
x2 = rnd.nextFloat() * 2.0f - 1.0f;
|
||
|
} while (x1 * x1 + x2 * x2 > 1.0f);
|
||
|
float sqrt = (float) Math.sqrt(1.0 - x1 * x1 - x2 * x2);
|
||
|
float x = 2 * x1 * sqrt;
|
||
|
float y = 2 * x2 * sqrt;
|
||
|
float z = 1.0f - 2.0f * (x1 * x1 + x2 * x2);
|
||
|
if (onHemisphere) {
|
||
|
z = Math.abs(z);
|
||
|
}
|
||
|
float minDist = otree.nearest(x, y, z);
|
||
|
if (minDist > bestDist) {
|
||
|
bestDist = minDist;
|
||
|
bestX = x;
|
||
|
bestY = y;
|
||
|
bestZ = z;
|
||
|
}
|
||
|
}
|
||
|
callback.onNewSample(bestX, bestY, bestZ);
|
||
|
otree.insert(new Vector3f(bestX, bestY, bestZ));
|
||
|
}
|
||
|
return this;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Simple quatree that can handle points and 1-nearest neighbor search.
|
||
|
*
|
||
|
* @author Kai Burjack
|
||
|
*/
|
||
|
private static class QuadTree {
|
||
|
private static final int MAX_OBJECTS_PER_NODE = 32;
|
||
|
|
||
|
// Constants for the quadrants of the quadtree
|
||
|
private static final int PXNY = 0;
|
||
|
private static final int NXNY = 1;
|
||
|
private static final int NXPY = 2;
|
||
|
private static final int PXPY = 3;
|
||
|
|
||
|
private float minX, minY, hs;
|
||
|
private ArrayList objects;
|
||
|
private QuadTree[] children;
|
||
|
|
||
|
QuadTree(float minX, float minY, float size) {
|
||
|
this.minX = minX;
|
||
|
this.minY = minY;
|
||
|
this.hs = size * 0.5f;
|
||
|
}
|
||
|
|
||
|
private void split() {
|
||
|
children = new QuadTree[4];
|
||
|
children[NXNY] = new QuadTree(minX, minY, hs);
|
||
|
children[PXNY] = new QuadTree(minX + hs, minY, hs);
|
||
|
children[NXPY] = new QuadTree(minX, minY + hs, hs);
|
||
|
children[PXPY] = new QuadTree(minX + hs, minY + hs, hs);
|
||
|
}
|
||
|
|
||
|
private void insertIntoChild(Vector2f o) {
|
||
|
children[quadrant(o.x, o.y)].insert(o);
|
||
|
}
|
||
|
|
||
|
void insert(Vector2f object) {
|
||
|
if (children != null) {
|
||
|
insertIntoChild(object);
|
||
|
return;
|
||
|
}
|
||
|
if (objects != null && objects.size() == MAX_OBJECTS_PER_NODE) {
|
||
|
split();
|
||
|
for (int i = 0; i < objects.size(); i++)
|
||
|
insertIntoChild((Vector2f) objects.get(i));
|
||
|
objects = null;
|
||
|
insertIntoChild(object);
|
||
|
} else {
|
||
|
if (objects == null)
|
||
|
objects = new ArrayList(MAX_OBJECTS_PER_NODE);
|
||
|
objects.add(object);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private int quadrant(float x, float y) {
|
||
|
if (x < minX + hs) {
|
||
|
if (y < minY + hs)
|
||
|
return NXNY;
|
||
|
return NXPY;
|
||
|
}
|
||
|
if (y < minY + hs)
|
||
|
return PXNY;
|
||
|
return PXPY;
|
||
|
}
|
||
|
|
||
|
float nearest(float x, float y, float lowerBound, float upperBound) {
|
||
|
float ub = upperBound;
|
||
|
if (x < minX - upperBound || x > minX + hs * 2 + upperBound || y < minY - upperBound
|
||
|
|| y > minY + hs * 2 + upperBound)
|
||
|
return ub;
|
||
|
if (children != null) {
|
||
|
for (int i = quadrant(x, y), c = 0; c < 4; i = (i + 1) & 3, c++) {
|
||
|
float n1 = children[i].nearest(x, y, lowerBound, ub);
|
||
|
ub = Math.min(n1, ub);
|
||
|
if (ub <= lowerBound)
|
||
|
return lowerBound;
|
||
|
}
|
||
|
return ub;
|
||
|
}
|
||
|
float ub2 = ub * ub;
|
||
|
float lb2 = lowerBound * lowerBound;
|
||
|
for (int i = 0; objects != null && i < objects.size(); i++) {
|
||
|
Vector2f o = (Vector2f) objects.get(i);
|
||
|
float d = o.distanceSquared(x, y);
|
||
|
if (d <= lb2)
|
||
|
return lowerBound;
|
||
|
if (d < ub2)
|
||
|
ub2 = d;
|
||
|
}
|
||
|
return (float) Math.sqrt(ub2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generates Best Candidate samples on a unit disk.
|
||
|
*
|
||
|
* @author Kai Burjack
|
||
|
*/
|
||
|
public static class Disk {
|
||
|
private int numSamples;
|
||
|
private int numCandidates = 60; // <- use a reasonable default
|
||
|
private long seed;
|
||
|
|
||
|
/**
|
||
|
* Create a new instance of {@link Disk} to configure and generate 'best candidate' sample positions on the unit disk.
|
||
|
*/
|
||
|
public Disk() {}
|
||
|
|
||
|
/**
|
||
|
* Set the seed to initialize the pseudo-random number generator with.
|
||
|
*
|
||
|
* @param seed
|
||
|
* the seed value
|
||
|
* @return this
|
||
|
*/
|
||
|
public Disk seed(long seed) {
|
||
|
this.seed = seed;
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set the number of samples to generate.
|
||
|
*
|
||
|
* @param numSamples
|
||
|
* the number of samples
|
||
|
* @return this
|
||
|
*/
|
||
|
public Disk numSamples(int numSamples) {
|
||
|
this.numSamples = numSamples;
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set the number of candidates to try for each generated sample.
|
||
|
*
|
||
|
* @param numCandidates
|
||
|
* the number of candidates to try
|
||
|
* @return this
|
||
|
*/
|
||
|
public Disk numCandidates(int numCandidates) {
|
||
|
this.numCandidates = numCandidates;
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate 'best candidate' sample positions and store the coordinates of all generated samples into the given <code>xys</code> float array.
|
||
|
* <p>
|
||
|
* <em>This method performs heap allocations, so should be used sparingly.</em>
|
||
|
*
|
||
|
* @param xys
|
||
|
* will hold the x and y coordinates of all samples in the order <code>XYXYXY...</code>.
|
||
|
* This array must have a length of at least <code>numSamples</code>
|
||
|
* @return this
|
||
|
*/
|
||
|
public Disk generate(final float[] xys) {
|
||
|
final IntHolder i = new IntHolder();
|
||
|
return generate(new Callback2d() {
|
||
|
public void onNewSample(float x, float y) {
|
||
|
xys[2 * i.value + 0] = x;
|
||
|
xys[2 * i.value + 1] = y;
|
||
|
i.value++;
|
||
|
}
|
||
|
});
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate 'best candidate' sample positions and store the coordinates of all generated samples into the given <code>xys</code> FloatBuffer.
|
||
|
* <p>
|
||
|
* The samples will be written starting at the current position of the FloatBuffer. The position of the FloatBuffer will not be modified.
|
||
|
* <p>
|
||
|
* <em>This method performs heap allocations, so should be used sparingly.</em>
|
||
|
*
|
||
|
* @param xys
|
||
|
* will hold the x and y coordinates of all samples in the order <code>XYXYXY...</code>. This FloatBuffer must have at least <code>numSamples</code> remaining elements. The
|
||
|
* position of the buffer will not be modified by this method
|
||
|
* @return this
|
||
|
*/
|
||
|
public Disk generate(final FloatBuffer xys) {
|
||
|
final IntHolder i = new IntHolder();
|
||
|
final int pos = xys.position();
|
||
|
return generate(new Callback2d() {
|
||
|
public void onNewSample(float x, float y) {
|
||
|
xys.put(pos + 3 * i.value + 0, x);
|
||
|
xys.put(pos + 3 * i.value + 1, y);
|
||
|
i.value++;
|
||
|
}
|
||
|
});
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate 'best candidate' sample positions and call the given <code>callback</code> for each generated sample.
|
||
|
* <p>
|
||
|
* <em>This method performs heap allocations, so should be used sparingly.</em>
|
||
|
*
|
||
|
* @param callback
|
||
|
* will be called with the coordinates of each generated sample position
|
||
|
* @return this
|
||
|
*/
|
||
|
public Disk generate(Callback2d callback) {
|
||
|
QuadTree qtree = new QuadTree(-1, -1, 2);
|
||
|
Random rnd = new Random(seed);
|
||
|
for (int i = 0; i < numSamples; i++) {
|
||
|
float bestX = 0, bestY = 0, bestDist = 0.0f;
|
||
|
for (int c = 0; c < numCandidates; c++) {
|
||
|
float x, y;
|
||
|
do {
|
||
|
x = rnd.nextFloat() * 2.0f - 1.0f;
|
||
|
y = rnd.nextFloat() * 2.0f - 1.0f;
|
||
|
} while (x * x + y * y > 1.0f);
|
||
|
float minDist = qtree.nearest(x, y, bestDist, Float.POSITIVE_INFINITY);
|
||
|
if (minDist > bestDist) {
|
||
|
bestDist = minDist;
|
||
|
bestX = x;
|
||
|
bestY = y;
|
||
|
}
|
||
|
}
|
||
|
callback.onNewSample(bestX, bestY);
|
||
|
qtree.insert(new Vector2f(bestX, bestY));
|
||
|
}
|
||
|
return this;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generates Best Candidate samples on a unit quad.
|
||
|
*
|
||
|
* @author Kai Burjack
|
||
|
*/
|
||
|
public static class Quad {
|
||
|
private int numSamples;
|
||
|
private int numCandidates = 60; // <- use a reasonable default
|
||
|
private long seed;
|
||
|
|
||
|
/**
|
||
|
* Create a new instance of {@link Quad} to configure and generate 'best candidate' sample positions on the unit quad.
|
||
|
*/
|
||
|
public Quad() {}
|
||
|
|
||
|
/**
|
||
|
* Set the seed to initialize the pseudo-random number generator with.
|
||
|
*
|
||
|
* @param seed
|
||
|
* the seed value
|
||
|
* @return this
|
||
|
*/
|
||
|
public Quad seed(long seed) {
|
||
|
this.seed = seed;
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set the number of samples to generate.
|
||
|
*
|
||
|
* @param numSamples
|
||
|
* the number of samples
|
||
|
* @return this
|
||
|
*/
|
||
|
public Quad numSamples(int numSamples) {
|
||
|
this.numSamples = numSamples;
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set the number of candidates to try for each generated sample.
|
||
|
*
|
||
|
* @param numCandidates
|
||
|
* the number of candidates to try
|
||
|
* @return this
|
||
|
*/
|
||
|
public Quad numCandidates(int numCandidates) {
|
||
|
this.numCandidates = numCandidates;
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate 'best candidate' sample positions and store the coordinates of all generated samples into the given <code>xyzs</code> float array.
|
||
|
* <p>
|
||
|
* <em>This method performs heap allocations, so should be used sparingly.</em>
|
||
|
*
|
||
|
* @param xyzs
|
||
|
* will hold the x, y and z coordinates of all samples in the order <code>XYZXYZXYZ...</code>.
|
||
|
* This array must have a length of at least <code>numSamples</code>
|
||
|
* @return this
|
||
|
*/
|
||
|
public Quad generate(final float[] xyzs) {
|
||
|
final IntHolder i = new IntHolder();
|
||
|
return generate(new Callback2d() {
|
||
|
public void onNewSample(float x, float y) {
|
||
|
xyzs[2 * i.value + 0] = x;
|
||
|
xyzs[2 * i.value + 1] = y;
|
||
|
i.value++;
|
||
|
}
|
||
|
});
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate 'best candidate' sample positions and store the coordinates of all generated samples into the given <code>xys</code> FloatBuffer.
|
||
|
* <p>
|
||
|
* The samples will be written starting at the current position of the FloatBuffer. The position of the FloatBuffer will not be modified.
|
||
|
* <p>
|
||
|
* <em>This method performs heap allocations, so should be used sparingly.</em>
|
||
|
*
|
||
|
* @param xys
|
||
|
* will hold the x and y coordinates of all samples in the order <code>XYXYXY...</code>. This FloatBuffer must have at least <code>numSamples</code> remaining elements. The position of
|
||
|
* the buffer will not be modified by this method
|
||
|
* @return this
|
||
|
*/
|
||
|
public Quad generate(final FloatBuffer xys) {
|
||
|
final IntHolder i = new IntHolder();
|
||
|
final int pos = xys.position();
|
||
|
return generate(new Callback2d() {
|
||
|
public void onNewSample(float x, float y) {
|
||
|
xys.put(pos + 3 * i.value + 0, x);
|
||
|
xys.put(pos + 3 * i.value + 1, y);
|
||
|
i.value++;
|
||
|
}
|
||
|
});
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate 'best candidate' sample positions and call the given <code>callback</code> for each generated sample.
|
||
|
* <p>
|
||
|
* <em>This method performs heap allocations, so should be used sparingly.</em>
|
||
|
*
|
||
|
* @param callback
|
||
|
* will be called with the coordinates of each generated sample position
|
||
|
* @return this
|
||
|
*/
|
||
|
public Quad generate(Callback2d callback) {
|
||
|
QuadTree qtree = new QuadTree(-1, -1, 2);
|
||
|
Random rnd = new Random(seed);
|
||
|
for (int i = 0; i < numSamples; i++) {
|
||
|
float bestX = 0, bestY = 0, bestDist = 0.0f;
|
||
|
for (int c = 0; c < numCandidates; c++) {
|
||
|
float x = rnd.nextFloat() * 2.0f - 1.0f;
|
||
|
float y = rnd.nextFloat() * 2.0f - 1.0f;
|
||
|
float minDist = qtree.nearest(x, y, bestDist, Float.POSITIVE_INFINITY);
|
||
|
if (minDist > bestDist) {
|
||
|
bestDist = minDist;
|
||
|
bestX = x;
|
||
|
bestY = y;
|
||
|
}
|
||
|
}
|
||
|
callback.onNewSample(bestX, bestY);
|
||
|
qtree.insert(new Vector2f(bestX, bestY));
|
||
|
}
|
||
|
return this;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Simple octree for points and 1-nearest neighbor distance query.
|
||
|
*
|
||
|
* @author Kai Burjack
|
||
|
*/
|
||
|
private static class Octree {
|
||
|
private static final int MAX_OBJECTS_PER_NODE = 32;
|
||
|
|
||
|
// Constants for the octants of the octree
|
||
|
private static final int PXNYNZ = 0;
|
||
|
private static final int NXNYNZ = 1;
|
||
|
private static final int NXPYNZ = 2;
|
||
|
private static final int PXPYNZ = 3;
|
||
|
private static final int PXNYPZ = 4;
|
||
|
private static final int NXNYPZ = 5;
|
||
|
private static final int NXPYPZ = 6;
|
||
|
private static final int PXPYPZ = 7;
|
||
|
|
||
|
private float minX, minY, minZ, hs;
|
||
|
private ArrayList objects;
|
||
|
private Octree[] children;
|
||
|
|
||
|
Octree(float minX, float minY, float minZ, float size) {
|
||
|
this.minX = minX;
|
||
|
this.minY = minY;
|
||
|
this.minZ = minZ;
|
||
|
this.hs = size * 0.5f;
|
||
|
}
|
||
|
|
||
|
private void split() {
|
||
|
children = new Octree[8];
|
||
|
children[NXNYNZ] = new Octree(minX, minY, minZ, hs);
|
||
|
children[PXNYNZ] = new Octree(minX + hs, minY, minZ, hs);
|
||
|
children[NXPYNZ] = new Octree(minX, minY + hs, minZ, hs);
|
||
|
children[PXPYNZ] = new Octree(minX + hs, minY + hs, minZ, hs);
|
||
|
children[NXNYPZ] = new Octree(minX, minY, minZ + hs, hs);
|
||
|
children[PXNYPZ] = new Octree(minX + hs, minY, minZ + hs, hs);
|
||
|
children[NXPYPZ] = new Octree(minX, minY + hs, minZ + hs, hs);
|
||
|
children[PXPYPZ] = new Octree(minX + hs, minY + hs, minZ + hs, hs);
|
||
|
}
|
||
|
|
||
|
private void insertIntoChild(Vector3f o) {
|
||
|
children[octant(o.x, o.y, o.z)].insert(o);
|
||
|
}
|
||
|
|
||
|
void insert(Vector3f object) {
|
||
|
if (children != null) {
|
||
|
insertIntoChild(object);
|
||
|
return;
|
||
|
}
|
||
|
if (objects != null && objects.size() == MAX_OBJECTS_PER_NODE) {
|
||
|
split();
|
||
|
for (int i = 0; i < objects.size(); i++)
|
||
|
insertIntoChild((Vector3f) objects.get(i));
|
||
|
objects = null;
|
||
|
insertIntoChild(object);
|
||
|
} else {
|
||
|
if (objects == null)
|
||
|
objects = new ArrayList(MAX_OBJECTS_PER_NODE);
|
||
|
objects.add(object);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private int octant(float x, float y, float z) {
|
||
|
if (x < minX + hs)
|
||
|
if (y < minY + hs) {
|
||
|
if (z < minZ + hs)
|
||
|
return NXNYNZ;
|
||
|
return NXNYPZ;
|
||
|
} else if (z < minZ + hs)
|
||
|
return NXPYNZ;
|
||
|
else
|
||
|
return NXPYPZ;
|
||
|
else if (y < minY + hs) {
|
||
|
if (z < minZ + hs)
|
||
|
return PXNYNZ;
|
||
|
return PXNYPZ;
|
||
|
} else if (z < minZ + hs)
|
||
|
return PXPYNZ;
|
||
|
else
|
||
|
return PXPYPZ;
|
||
|
}
|
||
|
|
||
|
float nearest(float x, float y, float z, float lowerBound, float upperBound) {
|
||
|
float up = upperBound;
|
||
|
if (x < minX - upperBound || x > minX + hs * 2 + upperBound || y < minY - upperBound || y > minY + hs * 2 + upperBound ||
|
||
|
z < minZ - upperBound || z > minZ + hs * 2 + upperBound)
|
||
|
return up;
|
||
|
if (children != null) {
|
||
|
for (int i = octant(x, y, z), c = 0; c < 8; i = (i + 1) & 7, c++) {
|
||
|
float n1 = children[i].nearest(x, y, z, lowerBound, up);
|
||
|
up = Math.min(n1, up);
|
||
|
if (up <= lowerBound)
|
||
|
return lowerBound;
|
||
|
}
|
||
|
return up;
|
||
|
}
|
||
|
float up2 = up * up;
|
||
|
float lb2 = lowerBound * lowerBound;
|
||
|
for (int i = 0; objects != null && i < objects.size(); i++) {
|
||
|
Vector3f o = (Vector3f) objects.get(i);
|
||
|
float d = o.distanceSquared(x, y, z);
|
||
|
if (d <= lb2)
|
||
|
return lowerBound;
|
||
|
if (d < up2)
|
||
|
up2 = d;
|
||
|
}
|
||
|
return (float) Math.sqrt(up2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generates Best Candidate samples inside a unit cube.
|
||
|
*
|
||
|
* @author Kai Burjack
|
||
|
*/
|
||
|
public static class Cube {
|
||
|
private int numSamples;
|
||
|
private int numCandidates = 60; // <- use a reasonable default
|
||
|
private long seed;
|
||
|
|
||
|
/**
|
||
|
* Create a new instance of {@link Cube} to configure and generate 'best candidate' sample positions
|
||
|
* on the unit cube with each sample tried <code>numCandidates</code> number of times, and call the
|
||
|
* given <code>callback</code> for each sample generate.
|
||
|
*/
|
||
|
public Cube() {}
|
||
|
|
||
|
/**
|
||
|
* Set the seed to initialize the pseudo-random number generator with.
|
||
|
*
|
||
|
* @param seed
|
||
|
* the seed value
|
||
|
* @return this
|
||
|
*/
|
||
|
public Cube seed(long seed) {
|
||
|
this.seed = seed;
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set the number of samples to generate.
|
||
|
*
|
||
|
* @param numSamples
|
||
|
* the number of samples
|
||
|
* @return this
|
||
|
*/
|
||
|
public Cube numSamples(int numSamples) {
|
||
|
this.numSamples = numSamples;
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set the number of candidates to try for each generated sample.
|
||
|
*
|
||
|
* @param numCandidates
|
||
|
* the number of candidates to try
|
||
|
* @return this
|
||
|
*/
|
||
|
public Cube numCandidates(int numCandidates) {
|
||
|
this.numCandidates = numCandidates;
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate 'best candidate' sample positions and store the coordinates of all generated samples into the given <code>xyzs</code> float array.
|
||
|
* <p>
|
||
|
* <em>This method performs heap allocations, so should be used sparingly.</em>
|
||
|
*
|
||
|
* @param xyzs
|
||
|
* will hold the x, y and z coordinates of all samples in the order <code>XYZXYZXYZ...</code>.
|
||
|
* This array must have a length of at least <code>numSamples</code>
|
||
|
* @return this
|
||
|
*/
|
||
|
public Cube generate(final float[] xyzs) {
|
||
|
final IntHolder i = new IntHolder();
|
||
|
return generate(new Callback3d() {
|
||
|
public void onNewSample(float x, float y, float z) {
|
||
|
xyzs[3 * i.value + 0] = x;
|
||
|
xyzs[3 * i.value + 1] = y;
|
||
|
xyzs[3 * i.value + 2] = z;
|
||
|
i.value++;
|
||
|
}
|
||
|
});
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate 'best candidate' sample positions and store the coordinates of all generated samples into the given <code>xyzs</code> FloatBuffer.
|
||
|
* <p>
|
||
|
* The samples will be written starting at the current position of the FloatBuffer. The position of the FloatBuffer will not be modified.
|
||
|
* <p>
|
||
|
* <em>This method performs heap allocations, so should be used sparingly.</em>
|
||
|
*
|
||
|
* @param xyzs
|
||
|
* will hold the x, y and z coordinates of all samples in the order <code>XYZXYZXYZ...</code>.
|
||
|
* This FloatBuffer must have at least <code>numSamples</code> remaining elements.
|
||
|
* The position of the buffer will not be modified by this method
|
||
|
* @return this
|
||
|
*/
|
||
|
public Cube generate(final FloatBuffer xyzs) {
|
||
|
final IntHolder i = new IntHolder();
|
||
|
final int pos = xyzs.position();
|
||
|
return generate(new Callback3d() {
|
||
|
public void onNewSample(float x, float y, float z) {
|
||
|
xyzs.put(pos + 3 * i.value + 0, x);
|
||
|
xyzs.put(pos + 3 * i.value + 1, y);
|
||
|
xyzs.put(pos + 3 * i.value + 2, z);
|
||
|
i.value++;
|
||
|
}
|
||
|
});
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate 'best candidate' sample positions and call the given <code>callback</code> for each generated sample.
|
||
|
* <p>
|
||
|
* <em>This method performs heap allocations, so should be used sparingly.</em>
|
||
|
*
|
||
|
* @param callback
|
||
|
* will be called with the coordinates of each generated sample position
|
||
|
* @return this
|
||
|
*/
|
||
|
public Cube generate(Callback3d callback) {
|
||
|
Octree octree = new Octree(-1, -1, -1, 2);
|
||
|
Random rnd = new Random(seed);
|
||
|
for (int i = 0; i < numSamples; i++) {
|
||
|
float bestX = 0, bestY = 0, bestZ = 0, bestDist = 0.0f;
|
||
|
for (int c = 0; c < numCandidates; c++) {
|
||
|
float x = rnd.nextFloat() * 2.0f - 1.0f;
|
||
|
float y = rnd.nextFloat() * 2.0f - 1.0f;
|
||
|
float z = rnd.nextFloat() * 2.0f - 1.0f;
|
||
|
float minDist = octree.nearest(x, y, z, bestDist, Float.POSITIVE_INFINITY);
|
||
|
if (minDist > bestDist) {
|
||
|
bestDist = minDist;
|
||
|
bestX = x;
|
||
|
bestY = y;
|
||
|
bestZ = z;
|
||
|
}
|
||
|
}
|
||
|
callback.onNewSample(bestX, bestY, bestZ);
|
||
|
octree.insert(new Vector3f(bestX, bestY, bestZ));
|
||
|
}
|
||
|
return this;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|