Flywheel/joml/Vector3fc.java

1090 lines
34 KiB
Java
Raw Normal View History

2021-12-24 11:21:59 +01:00
/*
* The MIT License
*
* Copyright (c) 2016-2021 JOML
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.jozufozu.flywheel.repack.joml;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.util.*;
/**
* Interface to a read-only view of a 3-dimensional vector of single-precision floats.
*
* @author Kai Burjack
*/
public interface Vector3fc {
/**
* @return the value of the x component
*/
float x();
/**
* @return the value of the y component
*/
float y();
/**
* @return the value of the z component
*/
float z();
/**
* Store this vector into the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the vector is stored, use {@link #get(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @see #get(int, FloatBuffer)
*
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
* @see #get(int, FloatBuffer)
*/
FloatBuffer get(FloatBuffer buffer);
/**
* Store this vector into the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
*/
FloatBuffer get(int index, FloatBuffer buffer);
/**
* Store this vector into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the vector is stored, use {@link #get(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @see #get(int, ByteBuffer)
*
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
* @see #get(int, ByteBuffer)
*/
ByteBuffer get(ByteBuffer buffer);
/**
* Store this vector into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
*/
ByteBuffer get(int index, ByteBuffer buffer);
/**
* Store this vector at the given off-heap memory address.
* <p>
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
* <p>
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
*
* @param address
* the off-heap address where to store this vector
* @return this
*/
Vector3fc getToAddress(long address);
/**
* Subtract the supplied vector from this one and store the result in <code>dest</code>.
*
* @param v
* the vector to subtract
* @param dest
* will hold the result
* @return dest
*/
Vector3f sub(Vector3fc v, Vector3f dest);
/**
* Decrement the components of this vector by the given values and store the result in <code>dest</code>.
*
* @param x
* the x component to subtract
* @param y
* the y component to subtract
* @param z
* the z component to subtract
* @param dest
* will hold the result
* @return dest
*/
Vector3f sub(float x, float y, float z, Vector3f dest);
/**
* Add the supplied vector to this one and store the result in <code>dest</code>.
*
* @param v
* the vector to add
* @param dest
* will hold the result
* @return dest
*/
Vector3f add(Vector3fc v, Vector3f dest);
/**
* Increment the components of this vector by the given values and store the result in <code>dest</code>.
*
* @param x
* the x component to add
* @param y
* the y component to add
* @param z
* the z component to add
* @param dest
* will hold the result
* @return dest
*/
Vector3f add(float x, float y, float z, Vector3f dest);
/**
* Add the component-wise multiplication of <code>a * b</code> to this vector
* and store the result in <code>dest</code>.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @param dest
* will hold the result
* @return dest
*/
Vector3f fma(Vector3fc a, Vector3fc b, Vector3f dest);
/**
* Add the component-wise multiplication of <code>a * b</code> to this vector
* and store the result in <code>dest</code>.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @param dest
* will hold the result
* @return dest
*/
Vector3f fma(float a, Vector3fc b, Vector3f dest);
/**
* Add the component-wise multiplication of <code>this * a</code> to <code>b</code>
* and store the result in <code>dest</code>.
*
* @param a
* the multiplicand
* @param b
* the addend
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulAdd(Vector3fc a, Vector3fc b, Vector3f dest);
/**
* Add the component-wise multiplication of <code>this * a</code> to <code>b</code>
* and store the result in <code>dest</code>.
*
* @param a
* the multiplicand
* @param b
* the addend
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulAdd(float a, Vector3fc b, Vector3f dest);
/**
* Multiply this Vector3f component-wise by another Vector3f and store the result in <code>dest</code>.
*
* @param v
* the vector to multiply by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mul(Vector3fc v, Vector3f dest);
/**
* Divide this Vector3f component-wise by another Vector3f and store the result in <code>dest</code>.
*
* @param v
* the vector to divide by
* @param dest
* will hold the result
* @return dest
*/
Vector3f div(Vector3fc v, Vector3f dest);
/**
* Multiply the given matrix <code>mat</code> with this Vector3f, perform perspective division
* and store the result in <code>dest</code>.
* <p>
* This method uses <code>w=1.0</code> as the fourth vector component.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulProject(Matrix4fc mat, Vector3f dest);
/**
* Multiply the given matrix <code>mat</code> with this Vector3f, perform perspective division
* and store the result in <code>dest</code>.
* <p>
* This method uses the given <code>w</code> as the fourth vector component.
*
* @param mat
* the matrix to multiply this vector by
* @param w
* the w component to use
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulProject(Matrix4fc mat, float w, Vector3f dest);
/**
* Multiply the given matrix with this Vector3f and store the result in <code>dest</code>.
*
* @param mat
* the matrix
* @param dest
* will hold the result
* @return dest
*/
Vector3f mul(Matrix3fc mat, Vector3f dest);
/**
* Multiply the given matrix with this Vector3f and store the result in <code>dest</code>.
*
* @param mat
* the matrix
* @param dest
* will hold the result
* @return dest
*/
Vector3f mul(Matrix3dc mat, Vector3f dest);
/**
* Multiply the given matrix <code>mat</code> with <code>this</code> by assuming a
* third row in the matrix of <code>(0, 0, 1)</code> and store the result in <code>dest</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mul(Matrix3x2fc mat, Vector3f dest);
/**
* Multiply the transpose of the given matrix with this Vector3f and store the result in <code>dest</code>.
*
* @param mat
* the matrix
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulTranspose(Matrix3fc mat, Vector3f dest);
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulPosition(Matrix4fc mat, Vector3f dest);
/**
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulPosition(Matrix4x3fc mat, Vector3f dest);
/**
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix whose transpose to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulTransposePosition(Matrix4fc mat, Vector3f dest);
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>, store the
* result in <code>dest</code> and return the <i>w</i> component of the resulting 4D vector.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the <code>(x, y, z)</code> components of the resulting vector
* @return the <i>w</i> component of the resulting 4D vector after multiplication
*/
float mulPositionW(Matrix4fc mat, Vector3f dest);
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulDirection(Matrix4dc mat, Vector3f dest);
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulDirection(Matrix4fc mat, Vector3f dest);
/**
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulDirection(Matrix4x3fc mat, Vector3f dest);
/**
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix whose transpose to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulTransposeDirection(Matrix4fc mat, Vector3f dest);
/**
* Multiply all components of this {@link Vector3f} by the given scalar
* value and store the result in <code>dest</code>.
*
* @param scalar
* the scalar to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mul(float scalar, Vector3f dest);
/**
* Multiply the components of this Vector3f by the given scalar values and store the result in <code>dest</code>.
*
* @param x
* the x component to multiply this vector by
* @param y
* the y component to multiply this vector by
* @param z
* the z component to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mul(float x, float y, float z, Vector3f dest);
/**
* Divide all components of this {@link Vector3f} by the given scalar
* value and store the result in <code>dest</code>.
*
* @param scalar
* the scalar to divide by
* @param dest
* will hold the result
* @return dest
*/
Vector3f div(float scalar, Vector3f dest);
/**
* Divide the components of this Vector3f by the given scalar values and store the result in <code>dest</code>.
*
* @param x
* the x component to divide this vector by
* @param y
* the y component to divide this vector by
* @param z
* the z component to divide this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f div(float x, float y, float z, Vector3f dest);
/**
* Rotate this vector by the given quaternion <code>quat</code> and store the result in <code>dest</code>.
*
* @see Quaternionfc#transform(Vector3f)
*
* @param quat
* the quaternion to rotate this vector
* @param dest
* will hold the result
* @return dest
*/
Vector3f rotate(Quaternionfc quat, Vector3f dest);
/**
* Compute the quaternion representing a rotation of <code>this</code> vector to point along <code>toDir</code>
* and store the result in <code>dest</code>.
* <p>
* Because there can be multiple possible rotations, this method chooses the one with the shortest arc.
*
* @see Quaternionf#rotationTo(Vector3fc, Vector3fc)
*
* @param toDir
* the destination direction
* @param dest
* will hold the result
* @return dest
*/
Quaternionf rotationTo(Vector3fc toDir, Quaternionf dest);
/**
* Compute the quaternion representing a rotation of <code>this</code> vector to point along <code>(toDirX, toDirY, toDirZ)</code>
* and store the result in <code>dest</code>.
* <p>
* Because there can be multiple possible rotations, this method chooses the one with the shortest arc.
*
* @see Quaternionf#rotationTo(float, float, float, float, float, float)
*
* @param toDirX
* the x coordinate of the destination direction
* @param toDirY
* the y coordinate of the destination direction
* @param toDirZ
* the z coordinate of the destination direction
* @param dest
* will hold the result
* @return dest
*/
Quaternionf rotationTo(float toDirX, float toDirY, float toDirZ, Quaternionf dest);
/**
* Rotate this vector the specified radians around the given rotation axis and store the result
* into <code>dest</code>.
*
* @param angle
* the angle in radians
* @param aX
* the x component of the rotation axis
* @param aY
* the y component of the rotation axis
* @param aZ
* the z component of the rotation axis
* @param dest
* will hold the result
* @return dest
*/
Vector3f rotateAxis(float angle, float aX, float aY, float aZ, Vector3f dest);
/**
* Rotate this vector the specified radians around the X axis and store the result
* into <code>dest</code>.
*
* @param angle
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Vector3f rotateX(float angle, Vector3f dest);
/**
* Rotate this vector the specified radians around the Y axis and store the result
* into <code>dest</code>.
*
* @param angle
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Vector3f rotateY(float angle, Vector3f dest);
/**
* Rotate this vector the specified radians around the Z axis and store the result
* into <code>dest</code>.
*
* @param angle
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Vector3f rotateZ(float angle, Vector3f dest);
/**
* Return the length squared of this vector.
*
* @return the length squared
*/
float lengthSquared();
/**
* Return the length of this vector.
*
* @return the length
*/
float length();
/**
* Normalize this vector and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f normalize(Vector3f dest);
/**
* Scale this vector to have the given length and store the result in <code>dest</code>.
*
* @param length
* the desired length
* @param dest
* will hold the result
* @return dest
*/
Vector3f normalize(float length, Vector3f dest);
/**
* Compute the cross product of this vector and <code>v</code> and store the result in <code>dest</code>.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3f cross(Vector3fc v, Vector3f dest);
/**
* Compute the cross product of this vector and <code>(x, y, z)</code> and store the result in <code>dest</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3f cross(float x, float y, float z, Vector3f dest);
/**
* Return the distance between this Vector and <code>v</code>.
*
* @param v
* the other vector
* @return the distance
*/
float distance(Vector3fc v);
/**
* Return the distance between <code>this</code> vector and <code>(x, y, z)</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return the euclidean distance
*/
float distance(float x, float y, float z);
/**
* Return the square of the distance between this vector and <code>v</code>.
*
* @param v
* the other vector
* @return the squared of the distance
*/
float distanceSquared(Vector3fc v);
/**
* Return the square of the distance between <code>this</code> vector and <code>(x, y, z)</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return the square of the distance
*/
float distanceSquared(float x, float y, float z);
/**
* Return the dot product of this vector and the supplied vector.
*
* @param v
* the other vector
* @return the dot product
*/
float dot(Vector3fc v);
/**
* Return the dot product of this vector and the vector <code>(x, y, z)</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return the dot product
*/
float dot(float x, float y, float z);
/**
* Return the cosine of the angle between this vector and the supplied vector. Use this instead of Math.cos(this.angle(v)).
*
* @see #angle(Vector3fc)
*
* @param v
* the other vector
* @return the cosine of the angle
*/
float angleCos(Vector3fc v);
/**
* Return the angle between this vector and the supplied vector.
*
* @see #angleCos(Vector3fc)
*
* @param v
* the other vector
* @return the angle, in radians
*/
float angle(Vector3fc v);
/**
* Return the signed angle between this vector and the supplied vector with
* respect to the plane with the given normal vector <code>n</code>.
*
* @see #angleCos(Vector3fc)
*
* @param v
* the other vector
* @param n
* the plane's normal vector
* @return the angle, in radians
*/
float angleSigned(Vector3fc v, Vector3fc n);
/**
* Return the signed angle between this vector and the supplied vector with
* respect to the plane with the given normal vector <code>(nx, ny, nz)</code>.
*
* @param x
* the x coordinate of the other vector
* @param y
* the y coordinate of the other vector
* @param z
* the z coordinate of the other vector
* @param nx
* the x coordinate of the plane's normal vector
* @param ny
* the y coordinate of the plane's normal vector
* @param nz
* the z coordinate of the plane's normal vector
* @return the angle, in radians
*/
float angleSigned(float x, float y, float z, float nx, float ny, float nz);
/**
* Set the components of <code>dest</code> to be the component-wise minimum of this and the other vector.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3f min(Vector3fc v, Vector3f dest);
/**
* Set the components of <code>dest</code> to be the component-wise maximum of this and the other vector.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3f max(Vector3fc v, Vector3f dest);
/**
* Negate this vector and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f negate(Vector3f dest);
/**
* Compute the absolute values of the individual components of <code>this</code> and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f absolute(Vector3f dest);
/**
* Reflect this vector about the given <code>normal</code> vector and store the result in <code>dest</code>.
*
* @param normal
* the vector to reflect about
* @param dest
* will hold the result
* @return dest
*/
Vector3f reflect(Vector3fc normal, Vector3f dest);
/**
* Reflect this vector about the given normal vector and store the result in <code>dest</code>.
*
* @param x
* the x component of the normal
* @param y
* the y component of the normal
* @param z
* the z component of the normal
* @param dest
* will hold the result
* @return dest
*/
Vector3f reflect(float x, float y, float z, Vector3f dest);
/**
* Compute the half vector between this and the other vector and store the result in <code>dest</code>.
*
* @param other
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3f half(Vector3fc other, Vector3f dest);
/**
* Compute the half vector between this and the vector <code>(x, y, z)</code>
* and store the result in <code>dest</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3f half(float x, float y, float z, Vector3f dest);
/**
* Compute a smooth-step (i.e. hermite with zero tangents) interpolation
* between <code>this</code> vector and the given vector <code>v</code> and
* store the result in <code>dest</code>.
*
* @param v
* the other vector
* @param t
* the interpolation factor, within <code>[0..1]</code>
* @param dest
* will hold the result
* @return dest
*/
Vector3f smoothStep(Vector3fc v, float t, Vector3f dest);
/**
* Compute a hermite interpolation between <code>this</code> vector with its
* associated tangent <code>t0</code> and the given vector <code>v</code>
* with its tangent <code>t1</code> and store the result in
* <code>dest</code>.
*
* @param t0
* the tangent of <code>this</code> vector
* @param v1
* the other vector
* @param t1
* the tangent of the other vector
* @param t
* the interpolation factor, within <code>[0..1]</code>
* @param dest
* will hold the result
* @return dest
*/
Vector3f hermite(Vector3fc t0, Vector3fc v1, Vector3fc t1, float t, Vector3f dest);
/**
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
* then the result is <code>other</code>.
*
* @param other
* the other vector
* @param t
* the interpolation factor between 0.0 and 1.0
* @param dest
* will hold the result
* @return dest
*/
Vector3f lerp(Vector3fc other, float t, Vector3f dest);
/**
* Get the value of the specified component of this vector.
*
* @param component
* the component, within <code>[0..2]</code>
* @return the value
* @throws IllegalArgumentException if <code>component</code> is not within <code>[0..2]</code>
*/
float get(int component) throws IllegalArgumentException;
/**
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector
* using the given {@link RoundingMode}.
*
* @param mode
* the {@link RoundingMode} to use
* @param dest
* will hold the result
* @return dest
*/
Vector3i get(int mode, Vector3i dest);
/**
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f get(Vector3f dest);
/**
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d get(Vector3d dest);
/**
* Determine the component with the biggest absolute value.
*
* @return the component index, within <code>[0..2]</code>
*/
int maxComponent();
/**
* Determine the component with the smallest (towards zero) absolute value.
*
* @return the component index, within <code>[0..2]</code>
*/
int minComponent();
/**
* Transform <code>this</code> vector so that it is orthogonal to the given vector <code>v</code>, normalize the result and store it into <code>dest</code>.
* <p>
* Reference: <a href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">GramSchmidt process</a>
*
* @param v
* the reference vector which the result should be orthogonal to
* @param dest
* will hold the result
* @return dest
*/
Vector3f orthogonalize(Vector3fc v, Vector3f dest);
/**
* Transform <code>this</code> vector so that it is orthogonal to the given unit vector <code>v</code>, normalize the result and store it into <code>dest</code>.
* <p>
* The vector <code>v</code> is assumed to be a {@link #normalize(Vector3f) unit} vector.
* <p>
* Reference: <a href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">GramSchmidt process</a>
*
* @param v
* the reference unit vector which the result should be orthogonal to
* @param dest
* will hold the result
* @return dest
*/
Vector3f orthogonalizeUnit(Vector3fc v, Vector3f dest);
/**
* Compute for each component of this vector the largest (closest to positive
* infinity) {@code float} value that is less than or equal to that
* component and is equal to a mathematical integer and store the result in
* <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f floor(Vector3f dest);
/**
* Compute for each component of this vector the smallest (closest to negative
* infinity) {@code float} value that is greater than or equal to that
* component and is equal to a mathematical integer and store the result in
* <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f ceil(Vector3f dest);
/**
* Compute for each component of this vector the closest float that is equal to
* a mathematical integer, with ties rounding to positive infinity and store
* the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f round(Vector3f dest);
/**
* Determine whether all components are finite floating-point values, that
* is, they are not {@link Float#isNaN() NaN} and not
* {@link Float#isInfinite() infinity}.
*
* @return {@code true} if all components are finite floating-point values;
* {@code false} otherwise
*/
boolean isFinite();
/**
* Compare the vector components of <code>this</code> vector with the given vector using the given <code>delta</code>
* and return whether all of them are equal within a maximum difference of <code>delta</code>.
* <p>
* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap}
* and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those
* data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods.
*
* @param v
* the other vector
* @param delta
* the allowed maximum difference
* @return <code>true</code> whether all of the vector components are equal; <code>false</code> otherwise
*/
boolean equals(Vector3fc v, float delta);
/**
* Compare the vector components of <code>this</code> vector with the given <code>(x, y, z)</code>
* and return whether all of them are equal.
*
* @param x
* the x component to compare to
* @param y
* the y component to compare to
* @param z
* the z component to compare to
* @return <code>true</code> if all the vector components are equal
*/
boolean equals(float x, float y, float z);
}