0
0
Fork 0
mirror of https://github.com/Jozufozu/Flywheel.git synced 2025-01-15 23:55:53 +01:00
Flywheel/joml/Vector2dc.java

671 lines
20 KiB
Java
Raw Normal View History

2021-12-24 11:21:59 +01:00
/*
* The MIT License
*
* Copyright (c) 2016-2021 JOML
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.jozufozu.flywheel.repack.joml;
import java.nio.ByteBuffer;
import java.nio.DoubleBuffer;
import java.util.*;
/**
* Interface to a read-only view of a 2-dimensional vector of double-precision floats.
*
* @author Kai Burjack
*/
public interface Vector2dc {
/**
* @return the value of the x component
*/
double x();
/**
* @return the value of the y component
*/
double y();
/**
* Store this vector into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the vector is stored, use {@link #get(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* will receive the values of this vector in <code>x, y</code> order
* @return the passed in buffer
* @see #get(int, ByteBuffer)
*/
ByteBuffer get(ByteBuffer buffer);
/**
* Store this vector into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this vector in <code>x, y</code> order
* @return the passed in buffer
*/
ByteBuffer get(int index, ByteBuffer buffer);
/**
* Store this vector into the supplied {@link DoubleBuffer} at the current
* buffer {@link DoubleBuffer#position() position}.
* <p>
* This method will not increment the position of the given DoubleBuffer.
* <p>
* In order to specify the offset into the DoubleBuffer at which
* the vector is stored, use {@link #get(int, DoubleBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* will receive the values of this vector in <code>x, y</code> order
* @return the passed in buffer
* @see #get(int, DoubleBuffer)
*/
DoubleBuffer get(DoubleBuffer buffer);
/**
* Store this vector into the supplied {@link DoubleBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given DoubleBuffer.
*
* @param index
* the absolute position into the DoubleBuffer
* @param buffer
* will receive the values of this vector in <code>x, y</code> order
* @return the passed in buffer
*/
DoubleBuffer get(int index, DoubleBuffer buffer);
/**
* Store this vector at the given off-heap memory address.
* <p>
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
* <p>
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
*
* @param address
* the off-heap address where to store this vector
* @return this
*/
Vector2dc getToAddress(long address);
/**
* Subtract <code>(x, y)</code> from this vector and store the result in <code>dest</code>.
*
* @param x
* the x component to subtract
* @param y
* the y component to subtract
* @param dest
* will hold the result
* @return dest
*/
Vector2d sub(double x, double y, Vector2d dest);
/**
* Subtract <code>v</code> from <code>this</code> vector and store the result in <code>dest</code>.
*
* @param v
* the vector to subtract
* @param dest
* will hold the result
* @return dest
*/
Vector2d sub(Vector2dc v, Vector2d dest);
/**
* Subtract <code>v</code> from <code>this</code> vector and store the result in <code>dest</code>.
*
* @param v
* the vector to subtract
* @param dest
* will hold the result
* @return dest
*/
Vector2d sub(Vector2fc v, Vector2d dest);
/**
* Multiply the components of this vector by the given scalar and store the result in <code>dest</code>.
*
* @param scalar
* the value to multiply this vector's components by
* @param dest
* will hold the result
* @return dest
*/
Vector2d mul(double scalar, Vector2d dest);
/**
* Multiply the components of this Vector2d by the given scalar values and store the result in <code>dest</code>.
*
* @param x
* the x component to multiply this vector by
* @param y
* the y component to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector2d mul(double x, double y, Vector2d dest);
/**
* Multiply this Vector2d component-wise by another Vector2d and store the result in <code>dest</code>.
*
* @param v
* the vector to multiply by
* @param dest
* will hold the result
* @return dest
*/
Vector2d mul(Vector2dc v, Vector2d dest);
/**
* Divide this Vector2d by the given scalar value and store the result in <code>dest</code>.
*
* @param scalar
* the scalar to divide this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector2d div(double scalar, Vector2d dest);
/**
* Divide the components of this Vector3f by the given scalar values and store the result in <code>dest</code>.
*
* @param x
* the x component to divide this vector by
* @param y
* the y component to divide this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector2d div(double x, double y, Vector2d dest);
/**
* Divide this Vector2d component-wise by another Vector2f and store the result in <code>dest</code>.
*
* @param v
* the vector to divide by
* @param dest
* will hold the result
* @return dest
*/
Vector2d div(Vector2fc v, Vector2d dest);
/**
* Divide this by <code>v</code> component-wise and store the result into <code>dest</code>.
*
* @param v
* the vector to divide by
* @param dest
* will hold the result
* @return dest
*/
Vector2d div(Vector2dc v, Vector2d dest);
/**
* Multiply the given matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector2d mul(Matrix2dc mat, Vector2d dest);
/**
* Multiply the given matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector2d mul(Matrix2fc mat, Vector2d dest);
/**
* Multiply the transpose of the given matrix with this Vector2f and store the result in <code>dest</code>.
*
* @param mat
* the matrix
* @param dest
* will hold the result
* @return dest
*/
Vector2d mulTranspose(Matrix2dc mat, Vector2d dest);
/**
* Multiply the transpose of the given matrix with this Vector2f and store the result in <code>dest</code>.
*
* @param mat
* the matrix
* @param dest
* will hold the result
* @return dest
*/
Vector2d mulTranspose(Matrix2fc mat, Vector2d dest);
/**
* Multiply the given 3x2 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>z</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector2d mulPosition(Matrix3x2dc mat, Vector2d dest);
/**
* Multiply the given 3x2 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>z</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector2d mulDirection(Matrix3x2dc mat, Vector2d dest);
/**
* Return the dot product of this vector and <code>v</code>.
*
* @param v
* the other vector
* @return the dot product
*/
double dot(Vector2dc v);
/**
* Return the angle between this vector and the supplied vector.
*
* @param v
* the other vector
* @return the angle, in radians
*/
double angle(Vector2dc v);
/**
* Return the length squared of this vector.
*
* @return the length squared
*/
double lengthSquared();
/**
* Return the length of this vector.
*
* @return the length
*/
double length();
/**
* Return the distance between this and <code>v</code>.
*
* @param v
* the other vector
* @return the distance
*/
double distance(Vector2dc v);
/**
* Return the distance squared between this and <code>v</code>.
*
* @param v
* the other vector
* @return the distance squared
*/
double distanceSquared(Vector2dc v);
/**
* Return the distance between this and <code>v</code>.
*
* @param v
* the other vector
* @return the distance
*/
double distance(Vector2fc v);
/**
* Return the distance squared between this and <code>v</code>.
*
* @param v
* the other vector
* @return the distance squared
*/
double distanceSquared(Vector2fc v);
/**
* Return the distance between <code>this</code> vector and <code>(x, y)</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @return the euclidean distance
*/
double distance(double x, double y);
/**
* Return the distance squared between <code>this</code> vector and <code>(x, y)</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @return the euclidean distance squared
*/
double distanceSquared(double x, double y);
/**
* Normalize this vector and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector2d normalize(Vector2d dest);
/**
* Scale this vector to have the given length and store the result in <code>dest</code>.
*
* @param length
* the desired length
* @param dest
* will hold the result
* @return dest
*/
Vector2d normalize(double length, Vector2d dest);
/**
* Add <code>(x, y)</code> to this vector and store the result in <code>dest</code>.
*
* @param x
* the x component to add
* @param y
* the y component to add
* @param dest
* will hold the result
* @return dest
*/
Vector2d add(double x, double y, Vector2d dest);
/**
* Add <code>v</code> to this vector and store the result in <code>dest</code>.
*
* @param v
* the vector to add
* @param dest
* will hold the result
* @return dest
*/
Vector2d add(Vector2dc v, Vector2d dest);
/**
* Add <code>v</code> to this vector and store the result in <code>dest</code>.
*
* @param v
* the vector to add
* @param dest
* will hold the result
* @return dest
*/
Vector2d add(Vector2fc v, Vector2d dest);
/**
* Negate this vector and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector2d negate(Vector2d dest);
/**
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
* then the result is <code>other</code>.
*
* @param other
* the other vector
* @param t
* the interpolation factor between 0.0 and 1.0
* @param dest
* will hold the result
* @return dest
*/
Vector2d lerp(Vector2dc other, double t, Vector2d dest);
/**
* Add the component-wise multiplication of <code>a * b</code> to this vector
* and store the result in <code>dest</code>.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @param dest
* will hold the result
* @return dest
*/
Vector2d fma(Vector2dc a, Vector2dc b, Vector2d dest);
/**
* Add the component-wise multiplication of <code>a * b</code> to this vector
* and store the result in <code>dest</code>.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @param dest
* will hold the result
* @return dest
*/
Vector2d fma(double a, Vector2dc b, Vector2d dest);
/**
* Set the components of <code>dest</code> to be the component-wise minimum of this and the other vector.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector2d min(Vector2dc v, Vector2d dest);
/**
* Set the components of <code>dest</code> to be the component-wise maximum of this and the other vector.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector2d max(Vector2dc v, Vector2d dest);
/**
* Determine the component with the biggest absolute value.
*
* @return the component index, within <code>[0..1]</code>
*/
int maxComponent();
/**
* Determine the component with the smallest (towards zero) absolute value.
*
* @return the component index, within <code>[0..1]</code>
*/
int minComponent();
/**
* Get the value of the specified component of this vector.
*
* @param component
* the component, within <code>[0..1]</code>
* @return the value
* @throws IllegalArgumentException if <code>component</code> is not within <code>[0..1]</code>
*/
double get(int component) throws IllegalArgumentException;
/**
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector
* using the given {@link RoundingMode}.
*
* @param mode
* the {@link RoundingMode} to use
* @param dest
* will hold the result
* @return dest
*/
Vector2i get(int mode, Vector2i dest);
/**
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector.
*
* @param dest
* will hold the result
* @return dest
*/
Vector2f get(Vector2f dest);
/**
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector.
*
* @param dest
* will hold the result
* @return dest
*/
Vector2d get(Vector2d dest);
/**
* Compute for each component of this vector the largest (closest to positive
* infinity) {@code double} value that is less than or equal to that
* component and is equal to a mathematical integer and store the result in
* <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector2d floor(Vector2d dest);
/**
* Compute for each component of this vector the smallest (closest to negative
* infinity) {@code double} value that is greater than or equal to that
* component and is equal to a mathematical integer and store the result in
* <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector2d ceil(Vector2d dest);
/**
* Compute for each component of this vector the closest double that is equal to
* a mathematical integer, with ties rounding to positive infinity and store
* the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector2d round(Vector2d dest);
/**
* Determine whether all components are finite floating-point values, that
* is, they are not {@link Double#isNaN() NaN} and not
* {@link Double#isInfinite() infinity}.
*
* @return {@code true} if all components are finite floating-point values;
* {@code false} otherwise
*/
boolean isFinite();
/**
* Compute the absolute of each of this vector's components
* and store the result into <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector2d absolute(Vector2d dest);
/**
* Compare the vector components of <code>this</code> vector with the given vector using the given <code>delta</code>
* and return whether all of them are equal within a maximum difference of <code>delta</code>.
* <p>
* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap}
* and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those
* data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods.
*
* @param v
* the other vector
* @param delta
* the allowed maximum difference
* @return <code>true</code> whether all of the vector components are equal; <code>false</code> otherwise
*/
boolean equals(Vector2dc v, double delta);
/**
* Compare the vector components of <code>this</code> vector with the given <code>(x, y)</code>
* and return whether all of them are equal.
*
* @param x
* the x component to compare to
* @param y
* the y component to compare to
* @return <code>true</code> if all the vector components are equal
*/
boolean equals(double x, double y);
}