mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2025-01-15 00:36:08 +01:00
726 lines
26 KiB
Java
726 lines
26 KiB
Java
|
/*
|
||
|
* The MIT License
|
||
|
*
|
||
|
* Copyright (c) 2020-2021 JOML
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to deal
|
||
|
* in the Software without restriction, including without limitation the rights
|
||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
* copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in
|
||
|
* all copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
* THE SOFTWARE.
|
||
|
*/
|
||
|
package com.jozufozu.flywheel.repack.joml;
|
||
|
|
||
|
import java.nio.ByteBuffer;
|
||
|
import java.nio.DoubleBuffer;
|
||
|
import java.util.*;
|
||
|
|
||
|
/**
|
||
|
* Interface to a read-only view of a 2x2 matrix of double-precision floats.
|
||
|
*
|
||
|
* @author Joseph Burton
|
||
|
*/
|
||
|
public interface Matrix2dc {
|
||
|
|
||
|
/**
|
||
|
* Return the value of the matrix element at column 0 and row 0.
|
||
|
*
|
||
|
* @return the value of the matrix element
|
||
|
*/
|
||
|
double m00();
|
||
|
|
||
|
/**
|
||
|
* Return the value of the matrix element at column 0 and row 1.
|
||
|
*
|
||
|
* @return the value of the matrix element
|
||
|
*/
|
||
|
double m01();
|
||
|
|
||
|
/**
|
||
|
* Return the value of the matrix element at column 1 and row 0.
|
||
|
*
|
||
|
* @return the value of the matrix element
|
||
|
*/
|
||
|
double m10();
|
||
|
|
||
|
/**
|
||
|
* Return the value of the matrix element at column 1 and row 1.
|
||
|
*
|
||
|
* @return the value of the matrix element
|
||
|
*/
|
||
|
double m11();
|
||
|
|
||
|
/**
|
||
|
* Multiply this matrix by the supplied <code>right</code> matrix and store the result in <code>dest</code>.
|
||
|
* <p>
|
||
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
|
||
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
||
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
||
|
* transformation of the right matrix will be applied first!
|
||
|
*
|
||
|
* @param right
|
||
|
* the right operand of the matrix multiplication
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d mul(Matrix2dc right, Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Multiply this matrix by the supplied <code>right</code> matrix and store the result in <code>dest</code>.
|
||
|
* <p>
|
||
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
|
||
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
||
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
||
|
* transformation of the right matrix will be applied first!
|
||
|
*
|
||
|
* @param right
|
||
|
* the right operand of the matrix multiplication
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d mul(Matrix2fc right, Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Pre-multiply this matrix by the supplied <code>left</code> matrix and store the result in <code>dest</code>.
|
||
|
* <p>
|
||
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the <code>left</code> matrix,
|
||
|
* then the new matrix will be <code>L * M</code>. So when transforming a
|
||
|
* vector <code>v</code> with the new matrix by using <code>L * M * v</code>, the
|
||
|
* transformation of <code>this</code> matrix will be applied first!
|
||
|
*
|
||
|
* @param left
|
||
|
* the left operand of the matrix multiplication
|
||
|
* @param dest
|
||
|
* the destination matrix, which will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d mulLocal(Matrix2dc left, Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Return the determinant of this matrix.
|
||
|
*
|
||
|
* @return the determinant
|
||
|
*/
|
||
|
double determinant();
|
||
|
|
||
|
/**
|
||
|
* Invert the <code>this</code> matrix and store the result in <code>dest</code>.
|
||
|
*
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d invert(Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Transpose <code>this</code> matrix and store the result in <code>dest</code>.
|
||
|
*
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d transpose(Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Get the current values of <code>this</code> matrix and store them into
|
||
|
* <code>dest</code>.
|
||
|
*
|
||
|
* @param dest
|
||
|
* the destination matrix
|
||
|
* @return the passed in destination
|
||
|
*/
|
||
|
Matrix2d get(Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Get the current values of <code>this</code> matrix and store them as
|
||
|
* the rotational component of <code>dest</code>. All other values of <code>dest</code> will
|
||
|
* be set to 0.
|
||
|
*
|
||
|
* @see Matrix3x2d#set(Matrix2dc)
|
||
|
*
|
||
|
* @param dest
|
||
|
* the destination matrix
|
||
|
* @return the passed in destination
|
||
|
*/
|
||
|
Matrix3x2d get(Matrix3x2d dest);
|
||
|
|
||
|
/**
|
||
|
* Get the current values of <code>this</code> matrix and store them as
|
||
|
* the rotational component of <code>dest</code>. All other values of <code>dest</code> will
|
||
|
* be set to identity.
|
||
|
*
|
||
|
* @see Matrix3d#set(Matrix2dc)
|
||
|
*
|
||
|
* @param dest
|
||
|
* the destination matrix
|
||
|
* @return the passed in destination
|
||
|
*/
|
||
|
Matrix3d get(Matrix3d dest);
|
||
|
|
||
|
/**
|
||
|
* Get the angle of the rotation component of <code>this</code> matrix.
|
||
|
* <p>
|
||
|
* This method assumes that there is a valid rotation to be returned, i.e. that
|
||
|
* <code>atan2(-m10, m00) == atan2(m01, m11)</code>.
|
||
|
*
|
||
|
* @return the angle
|
||
|
*/
|
||
|
double getRotation();
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Store this matrix in column-major order into the supplied {@link DoubleBuffer} at the current
|
||
|
* buffer {@link DoubleBuffer#position() position}.
|
||
|
* <p>
|
||
|
* This method will not increment the position of the given DoubleBuffer.
|
||
|
* <p>
|
||
|
* In order to specify the offset into the DoubleBuffer at which
|
||
|
* the matrix is stored, use {@link #get(int, DoubleBuffer)}, taking
|
||
|
* the absolute position as parameter.
|
||
|
*
|
||
|
* @see #get(int, DoubleBuffer)
|
||
|
*
|
||
|
* @param buffer
|
||
|
* will receive the values of this matrix in column-major order at its current position
|
||
|
* @return the passed in buffer
|
||
|
*/
|
||
|
DoubleBuffer get(DoubleBuffer buffer);
|
||
|
|
||
|
/**
|
||
|
* Store this matrix in column-major order into the supplied {@link DoubleBuffer} starting at the specified
|
||
|
* absolute buffer position/index.
|
||
|
* <p>
|
||
|
* This method will not increment the position of the given DoubleBuffer.
|
||
|
*
|
||
|
* @param index
|
||
|
* the absolute position into the DoubleBuffer
|
||
|
* @param buffer
|
||
|
* will receive the values of this matrix in column-major order
|
||
|
* @return the passed in buffer
|
||
|
*/
|
||
|
DoubleBuffer get(int index, DoubleBuffer buffer);
|
||
|
|
||
|
/**
|
||
|
* Store this matrix in column-major order into the supplied {@link ByteBuffer} at the current
|
||
|
* buffer {@link ByteBuffer#position() position}.
|
||
|
* <p>
|
||
|
* This method will not increment the position of the given ByteBuffer.
|
||
|
* <p>
|
||
|
* In order to specify the offset into the ByteBuffer at which
|
||
|
* the matrix is stored, use {@link #get(int, ByteBuffer)}, taking
|
||
|
* the absolute position as parameter.
|
||
|
*
|
||
|
* @see #get(int, ByteBuffer)
|
||
|
*
|
||
|
* @param buffer
|
||
|
* will receive the values of this matrix in column-major order at its current position
|
||
|
* @return the passed in buffer
|
||
|
*/
|
||
|
ByteBuffer get(ByteBuffer buffer);
|
||
|
|
||
|
/**
|
||
|
* Store this matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
|
||
|
* absolute buffer position/index.
|
||
|
* <p>
|
||
|
* This method will not increment the position of the given ByteBuffer.
|
||
|
*
|
||
|
* @param index
|
||
|
* the absolute position into the ByteBuffer
|
||
|
* @param buffer
|
||
|
* will receive the values of this matrix in column-major order
|
||
|
* @return the passed in buffer
|
||
|
*/
|
||
|
ByteBuffer get(int index, ByteBuffer buffer);
|
||
|
|
||
|
/**
|
||
|
* Store the transpose of this matrix in column-major order into the supplied {@link DoubleBuffer} at the current
|
||
|
* buffer {@link DoubleBuffer#position() position}.
|
||
|
* <p>
|
||
|
* This method will not increment the position of the given DoubleBuffer.
|
||
|
* <p>
|
||
|
* In order to specify the offset into the DoubleBuffer at which
|
||
|
* the matrix is stored, use {@link #getTransposed(int, DoubleBuffer)}, taking
|
||
|
* the absolute position as parameter.
|
||
|
*
|
||
|
* @see #getTransposed(int, DoubleBuffer)
|
||
|
*
|
||
|
* @param buffer
|
||
|
* will receive the values of this matrix in column-major order at its current position
|
||
|
* @return the passed in buffer
|
||
|
*/
|
||
|
DoubleBuffer getTransposed(DoubleBuffer buffer);
|
||
|
|
||
|
/**
|
||
|
* Store the transpose of this matrix in column-major order into the supplied {@link DoubleBuffer} starting at the specified
|
||
|
* absolute buffer position/index.
|
||
|
* <p>
|
||
|
* This method will not increment the position of the given DoubleBuffer.
|
||
|
*
|
||
|
* @param index
|
||
|
* the absolute position into the DoubleBuffer
|
||
|
* @param buffer
|
||
|
* will receive the values of this matrix in column-major order
|
||
|
* @return the passed in buffer
|
||
|
*/
|
||
|
DoubleBuffer getTransposed(int index, DoubleBuffer buffer);
|
||
|
|
||
|
/**
|
||
|
* Store the transpose of this matrix in column-major order into the supplied {@link ByteBuffer} at the current
|
||
|
* buffer {@link ByteBuffer#position() position}.
|
||
|
* <p>
|
||
|
* This method will not increment the position of the given ByteBuffer.
|
||
|
* <p>
|
||
|
* In order to specify the offset into the ByteBuffer at which
|
||
|
* the matrix is stored, use {@link #getTransposed(int, ByteBuffer)}, taking
|
||
|
* the absolute position as parameter.
|
||
|
*
|
||
|
* @see #getTransposed(int, ByteBuffer)
|
||
|
*
|
||
|
* @param buffer
|
||
|
* will receive the values of this matrix in column-major order at its current position
|
||
|
* @return the passed in buffer
|
||
|
*/
|
||
|
ByteBuffer getTransposed(ByteBuffer buffer);
|
||
|
|
||
|
/**
|
||
|
* Store the transpose of this matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
|
||
|
* absolute buffer position/index.
|
||
|
* <p>
|
||
|
* This method will not increment the position of the given ByteBuffer.
|
||
|
*
|
||
|
* @param index
|
||
|
* the absolute position into the ByteBuffer
|
||
|
* @param buffer
|
||
|
* will receive the values of this matrix in column-major order
|
||
|
* @return the passed in buffer
|
||
|
*/
|
||
|
ByteBuffer getTransposed(int index, ByteBuffer buffer);
|
||
|
|
||
|
/**
|
||
|
* Store this matrix in column-major order at the given off-heap address.
|
||
|
* <p>
|
||
|
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
|
||
|
* <p>
|
||
|
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
|
||
|
*
|
||
|
* @param address
|
||
|
* the off-heap address where to store this matrix
|
||
|
* @return this
|
||
|
*/
|
||
|
Matrix2dc getToAddress(long address);
|
||
|
|
||
|
/**
|
||
|
* Store this matrix into the supplied double array in column-major order at the given offset.
|
||
|
*
|
||
|
* @param arr
|
||
|
* the array to write the matrix values into
|
||
|
* @param offset
|
||
|
* the offset into the array
|
||
|
* @return the passed in array
|
||
|
*/
|
||
|
double[] get(double[] arr, int offset);
|
||
|
|
||
|
/**
|
||
|
* Store this matrix into the supplied double array in column-major order.
|
||
|
* <p>
|
||
|
* In order to specify an explicit offset into the array, use the method {@link #get(double[], int)}.
|
||
|
*
|
||
|
* @see #get(double[], int)
|
||
|
*
|
||
|
* @param arr
|
||
|
* the array to write the matrix values into
|
||
|
* @return the passed in array
|
||
|
*/
|
||
|
double[] get(double[] arr);
|
||
|
|
||
|
/**
|
||
|
* Apply scaling to <code>this</code> matrix by scaling the base axes by the given <code>xy.x</code> and
|
||
|
* <code>xy.y</code> factors, respectively and store the result in <code>dest</code>.
|
||
|
* <p>
|
||
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
||
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
||
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
|
||
|
* , the scaling will be applied first!
|
||
|
*
|
||
|
* @param xy
|
||
|
* the factors of the x and y component, respectively
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d scale(Vector2dc xy, Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Apply scaling to this matrix by scaling the base axes by the given x and
|
||
|
* y factors and store the result in <code>dest</code>.
|
||
|
* <p>
|
||
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
||
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
||
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
|
||
|
* , the scaling will be applied first!
|
||
|
*
|
||
|
* @param x
|
||
|
* the factor of the x component
|
||
|
* @param y
|
||
|
* the factor of the y component
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d scale(double x, double y, Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Apply scaling to this matrix by uniformly scaling all base axes by the given <code>xy</code> factor
|
||
|
* and store the result in <code>dest</code>.
|
||
|
* <p>
|
||
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
||
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
||
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
|
||
|
* , the scaling will be applied first!
|
||
|
*
|
||
|
* @see #scale(double, double, Matrix2d)
|
||
|
*
|
||
|
* @param xy
|
||
|
* the factor for all components
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d scale(double xy, Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Pre-multiply scaling to <code>this</code> matrix by scaling the base axes by the given x and
|
||
|
* y factors and store the result in <code>dest</code>.
|
||
|
* <p>
|
||
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
||
|
* then the new matrix will be <code>S * M</code>. So when transforming a
|
||
|
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>
|
||
|
* , the scaling will be applied last!
|
||
|
*
|
||
|
* @param x
|
||
|
* the factor of the x component
|
||
|
* @param y
|
||
|
* the factor of the y component
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d scaleLocal(double x, double y, Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Transform the given vector by this matrix.
|
||
|
*
|
||
|
* @param v
|
||
|
* the vector to transform
|
||
|
* @return v
|
||
|
*/
|
||
|
Vector2d transform(Vector2d v);
|
||
|
|
||
|
/**
|
||
|
* Transform the given vector by this matrix and store the result in <code>dest</code>.
|
||
|
*
|
||
|
* @param v
|
||
|
* the vector to transform
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Vector2d transform(Vector2dc v, Vector2d dest);
|
||
|
|
||
|
/**
|
||
|
* Transform the vector <code>(x, y)</code> by this matrix and store the result in <code>dest</code>.
|
||
|
*
|
||
|
* @param x
|
||
|
* the x coordinate of the vector to transform
|
||
|
* @param y
|
||
|
* the y coordinate of the vector to transform
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Vector2d transform(double x, double y, Vector2d dest);
|
||
|
|
||
|
/**
|
||
|
* Transform the given vector by the transpose of this matrix.
|
||
|
*
|
||
|
* @param v
|
||
|
* the vector to transform
|
||
|
* @return v
|
||
|
*/
|
||
|
Vector2d transformTranspose(Vector2d v);
|
||
|
|
||
|
/**
|
||
|
* Transform the given vector by the transpose of this matrix and store the result in <code>dest</code>.
|
||
|
*
|
||
|
* @param v
|
||
|
* the vector to transform
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Vector2d transformTranspose(Vector2dc v, Vector2d dest);
|
||
|
|
||
|
/**
|
||
|
* Transform the vector <code>(x, y)</code> by the transpose of this matrix and store the result in <code>dest</code>.
|
||
|
*
|
||
|
* @param x
|
||
|
* the x coordinate of the vector to transform
|
||
|
* @param y
|
||
|
* the y coordinate of the vector to transform
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Vector2d transformTranspose(double x, double y, Vector2d dest);
|
||
|
|
||
|
/**
|
||
|
* Apply rotation to this matrix by rotating the given amount of radians
|
||
|
* and store the result in <code>dest</code>.
|
||
|
* <p>
|
||
|
* The produced rotation will rotate a vector counter-clockwise around the origin.
|
||
|
* <p>
|
||
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
||
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
||
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>
|
||
|
* , the rotation will be applied first!
|
||
|
* <p>
|
||
|
* Reference: <a href="https://en.wikipedia.org/wiki/Rotation_matrix#In_two_dimensions">http://en.wikipedia.org</a>
|
||
|
*
|
||
|
* @param ang
|
||
|
* the angle in radians
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d rotate(double ang, Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Pre-multiply a rotation to this matrix by rotating the given amount of radians
|
||
|
* and store the result in <code>dest</code>.
|
||
|
* <p>
|
||
|
* The produced rotation will rotate a vector counter-clockwise around the origin.
|
||
|
* <p>
|
||
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
||
|
* then the new matrix will be <code>R * M</code>. So when transforming a
|
||
|
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
|
||
|
* rotation will be applied last!
|
||
|
* <p>
|
||
|
* Reference: <a href="https://en.wikipedia.org/wiki/Rotation_matrix#In_two_dimensions">http://en.wikipedia.org</a>
|
||
|
*
|
||
|
* @param ang
|
||
|
* the angle in radians
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d rotateLocal(double ang, Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Get the row at the given <code>row</code> index, starting with <code>0</code>.
|
||
|
*
|
||
|
* @param row
|
||
|
* the row index in <code>[0..1]</code>
|
||
|
* @param dest
|
||
|
* will hold the row components
|
||
|
* @return the passed in destination
|
||
|
* @throws IndexOutOfBoundsException if <code>row</code> is not in <code>[0..1]</code>
|
||
|
*/
|
||
|
Vector2d getRow(int row, Vector2d dest) throws IndexOutOfBoundsException;
|
||
|
|
||
|
/**
|
||
|
* Get the column at the given <code>column</code> index, starting with <code>0</code>.
|
||
|
*
|
||
|
* @param column
|
||
|
* the column index in <code>[0..1]</code>
|
||
|
* @param dest
|
||
|
* will hold the column components
|
||
|
* @return the passed in destination
|
||
|
* @throws IndexOutOfBoundsException if <code>column</code> is not in <code>[0..1]</code>
|
||
|
*/
|
||
|
Vector2d getColumn(int column, Vector2d dest) throws IndexOutOfBoundsException;
|
||
|
|
||
|
/**
|
||
|
* Get the matrix element value at the given column and row.
|
||
|
*
|
||
|
* @param column
|
||
|
* the colum index in <code>[0..1]</code>
|
||
|
* @param row
|
||
|
* the row index in <code>[0..1]</code>
|
||
|
* @return the element value
|
||
|
*/
|
||
|
double get(int column, int row);
|
||
|
|
||
|
/**
|
||
|
* Compute a normal matrix from <code>this</code> matrix and store it into <code>dest</code>.
|
||
|
*
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d normal(Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Get the scaling factors of <code>this</code> matrix for the three base axes.
|
||
|
*
|
||
|
* @param dest
|
||
|
* will hold the scaling factors for <code>x</code> and <code>y</code>
|
||
|
* @return dest
|
||
|
*/
|
||
|
Vector2d getScale(Vector2d dest);
|
||
|
|
||
|
/**
|
||
|
* Obtain the direction of <code>+X</code> before the transformation represented by <code>this</code> matrix is applied.
|
||
|
* <p>
|
||
|
* This method is equivalent to the following code:
|
||
|
* <pre>
|
||
|
* Matrix2d inv = new Matrix2d(this).invert();
|
||
|
* inv.transform(dir.set(1, 0)).normalize();
|
||
|
* </pre>
|
||
|
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveX(Vector2d)} instead.
|
||
|
*
|
||
|
* @param dest
|
||
|
* will hold the direction of <code>+X</code>
|
||
|
* @return dest
|
||
|
*/
|
||
|
Vector2d positiveX(Vector2d dest);
|
||
|
|
||
|
/**
|
||
|
* Obtain the direction of <code>+X</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
|
||
|
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
|
||
|
* <p>
|
||
|
* This method is equivalent to the following code:
|
||
|
* <pre>
|
||
|
* Matrix2d inv = new Matrix2d(this).transpose();
|
||
|
* inv.transform(dir.set(1, 0));
|
||
|
* </pre>
|
||
|
*
|
||
|
* @param dest
|
||
|
* will hold the direction of <code>+X</code>
|
||
|
* @return dest
|
||
|
*/
|
||
|
Vector2d normalizedPositiveX(Vector2d dest);
|
||
|
|
||
|
/**
|
||
|
* Obtain the direction of <code>+Y</code> before the transformation represented by <code>this</code> matrix is applied.
|
||
|
* <p>
|
||
|
* This method is equivalent to the following code:
|
||
|
* <pre>
|
||
|
* Matrix2d inv = new Matrix2d(this).invert();
|
||
|
* inv.transform(dir.set(0, 1)).normalize();
|
||
|
* </pre>
|
||
|
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveY(Vector2d)} instead.
|
||
|
*
|
||
|
* @param dest
|
||
|
* will hold the direction of <code>+Y</code>
|
||
|
* @return dest
|
||
|
*/
|
||
|
Vector2d positiveY(Vector2d dest);
|
||
|
|
||
|
/**
|
||
|
* Obtain the direction of <code>+Y</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
|
||
|
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
|
||
|
* <p>
|
||
|
* This method is equivalent to the following code:
|
||
|
* <pre>
|
||
|
* Matrix2d inv = new Matrix2d(this).transpose();
|
||
|
* inv.transform(dir.set(0, 1));
|
||
|
* </pre>
|
||
|
*
|
||
|
* @param dest
|
||
|
* will hold the direction of <code>+Y</code>
|
||
|
* @return dest
|
||
|
*/
|
||
|
Vector2d normalizedPositiveY(Vector2d dest);
|
||
|
|
||
|
/**
|
||
|
* Component-wise add <code>this</code> and <code>other</code> and store the result in <code>dest</code>.
|
||
|
*
|
||
|
* @param other
|
||
|
* the other addend
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d add(Matrix2dc other, Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Component-wise subtract <code>subtrahend</code> from <code>this</code> and store the result in <code>dest</code>.
|
||
|
*
|
||
|
* @param subtrahend
|
||
|
* the subtrahend
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d sub(Matrix2dc subtrahend, Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Component-wise multiply <code>this</code> by <code>other</code> and store the result in <code>dest</code>.
|
||
|
*
|
||
|
* @param other
|
||
|
* the other matrix
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d mulComponentWise(Matrix2dc other, Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
|
||
|
* and store the result in <code>dest</code>.
|
||
|
* <p>
|
||
|
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
|
||
|
* then the result is <code>other</code>.
|
||
|
*
|
||
|
* @param other
|
||
|
* the other matrix
|
||
|
* @param t
|
||
|
* the interpolation factor between 0.0 and 1.0
|
||
|
* @param dest
|
||
|
* will hold the result
|
||
|
* @return dest
|
||
|
*/
|
||
|
Matrix2d lerp(Matrix2dc other, double t, Matrix2d dest);
|
||
|
|
||
|
/**
|
||
|
* Compare the matrix elements of <code>this</code> matrix with the given matrix using the given <code>delta</code>
|
||
|
* and return whether all of them are equal within a maximum difference of <code>delta</code>.
|
||
|
* <p>
|
||
|
* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap}
|
||
|
* and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those
|
||
|
* data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods.
|
||
|
*
|
||
|
* @param m
|
||
|
* the other matrix
|
||
|
* @param delta
|
||
|
* the allowed maximum difference
|
||
|
* @return <code>true</code> whether all of the matrix elements are equal; <code>false</code> otherwise
|
||
|
*/
|
||
|
boolean equals(Matrix2dc m, double delta);
|
||
|
|
||
|
/**
|
||
|
* Determine whether all matrix elements are finite floating-point values, that
|
||
|
* is, they are not {@link Double#isNaN() NaN} and not
|
||
|
* {@link Double#isInfinite() infinity}.
|
||
|
*
|
||
|
* @return {@code true} if all components are finite floating-point values;
|
||
|
* {@code false} otherwise
|
||
|
*/
|
||
|
boolean isFinite();
|
||
|
|
||
|
}
|