mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2025-01-27 13:27:55 +01:00
400 lines
18 KiB
Java
400 lines
18 KiB
Java
|
/*
|
||
|
* The MIT License
|
||
|
*
|
||
|
* Copyright (c) 2015-2021 Kai Burjack
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to deal
|
||
|
* in the Software without restriction, including without limitation the rights
|
||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
* copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in
|
||
|
* all copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
* THE SOFTWARE.
|
||
|
*/
|
||
|
package com.jozufozu.flywheel.repack.joml;
|
||
|
|
||
|
/**
|
||
|
* This is an implementation of the <a
|
||
|
* href="http://www.cg.cs.tu-bs.de/media/publications/fast-rayaxis-aligned-bounding-box-overlap-tests-using-ray-slopes.pdf">Fast Ray/Axis-Aligned Bounding Box
|
||
|
* Overlap Tests using Ray Slopes</a> paper.
|
||
|
* <p>
|
||
|
* It is an efficient implementation when testing many axis-aligned boxes against the same ray.
|
||
|
* <p>
|
||
|
* This class is thread-safe and can be used in a multithreaded environment when testing many axis-aligned boxes against the same ray concurrently.
|
||
|
*
|
||
|
* @author Kai Burjack
|
||
|
*/
|
||
|
public class RayAabIntersection {
|
||
|
private float originX, originY, originZ;
|
||
|
private float dirX, dirY, dirZ;
|
||
|
|
||
|
/* Needed for ray slope intersection method */
|
||
|
private float c_xy, c_yx, c_zy, c_yz, c_xz, c_zx;
|
||
|
private float s_xy, s_yx, s_zy, s_yz, s_xz, s_zx;
|
||
|
private byte classification;
|
||
|
|
||
|
/**
|
||
|
* Create a new {@link RayAabIntersection} without initializing a ray.
|
||
|
* <p>
|
||
|
* Before using the {@link #test(float, float, float, float, float, float) intersect()} method,
|
||
|
* the method {@link #set(float, float, float, float, float, float) set()} must be called in order to
|
||
|
* initialize the created RayAabIntersection instance with a ray.
|
||
|
*
|
||
|
* @see #set(float, float, float, float, float, float)
|
||
|
*/
|
||
|
public RayAabIntersection() {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Create a new {@link RayAabIntersection} and initialize it with a ray with origin <code>(originX, originY, originZ)</code>
|
||
|
* and direction <code>(dirX, dirY, dirZ)</code>.
|
||
|
* <p>
|
||
|
* In order to change the direction and/or origin of the ray later, use {@link #set(float, float, float, float, float, float) set()}.
|
||
|
*
|
||
|
* @see #set(float, float, float, float, float, float)
|
||
|
*
|
||
|
* @param originX
|
||
|
* the x coordinate of the origin
|
||
|
* @param originY
|
||
|
* the y coordinate of the origin
|
||
|
* @param originZ
|
||
|
* the z coordinate of the origin
|
||
|
* @param dirX
|
||
|
* the x coordinate of the direction
|
||
|
* @param dirY
|
||
|
* the y coordinate of the direction
|
||
|
* @param dirZ
|
||
|
* the z coordinate of the direction
|
||
|
*/
|
||
|
public RayAabIntersection(float originX, float originY, float originZ, float dirX, float dirY, float dirZ) {
|
||
|
set(originX, originY, originZ, dirX, dirY, dirZ);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Update the ray stored by this {@link RayAabIntersection} with the new origin <code>(originX, originY, originZ)</code>
|
||
|
* and direction <code>(dirX, dirY, dirZ)</code>.
|
||
|
*
|
||
|
* @param originX
|
||
|
* the x coordinate of the ray origin
|
||
|
* @param originY
|
||
|
* the y coordinate of the ray origin
|
||
|
* @param originZ
|
||
|
* the z coordinate of the ray origin
|
||
|
* @param dirX
|
||
|
* the x coordinate of the ray direction
|
||
|
* @param dirY
|
||
|
* the y coordinate of the ray direction
|
||
|
* @param dirZ
|
||
|
* the z coordinate of the ray direction
|
||
|
*/
|
||
|
public void set(float originX, float originY, float originZ, float dirX, float dirY, float dirZ) {
|
||
|
this.originX = originX;
|
||
|
this.originY = originY;
|
||
|
this.originZ = originZ;
|
||
|
this.dirX = dirX;
|
||
|
this.dirY = dirY;
|
||
|
this.dirZ = dirZ;
|
||
|
precomputeSlope();
|
||
|
}
|
||
|
|
||
|
private static int signum(float f) {
|
||
|
return (f == 0.0f || Float.isNaN(f)) ? 0 : ((1 - Float.floatToIntBits(f) >>> 31) << 1) - 1;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Precompute the values necessary for the ray slope algorithm.
|
||
|
*/
|
||
|
private void precomputeSlope() {
|
||
|
float invDirX = 1.0f / dirX;
|
||
|
float invDirY = 1.0f / dirY;
|
||
|
float invDirZ = 1.0f / dirZ;
|
||
|
s_yx = dirX * invDirY;
|
||
|
s_xy = dirY * invDirX;
|
||
|
s_zy = dirY * invDirZ;
|
||
|
s_yz = dirZ * invDirY;
|
||
|
s_xz = dirZ * invDirX;
|
||
|
s_zx = dirX * invDirZ;
|
||
|
c_xy = originY - s_xy * originX;
|
||
|
c_yx = originX - s_yx * originY;
|
||
|
c_zy = originY - s_zy * originZ;
|
||
|
c_yz = originZ - s_yz * originY;
|
||
|
c_xz = originZ - s_xz * originX; // <- original paper had a bug here. It switched originZ/originX
|
||
|
c_zx = originX - s_zx * originZ; // <- original paper had a bug here. It switched originZ/originX
|
||
|
int sgnX = signum(dirX);
|
||
|
int sgnY = signum(dirY);
|
||
|
int sgnZ = signum(dirZ);
|
||
|
classification = (byte) ((sgnZ+1) << 4 | (sgnY+1) << 2 | (sgnX+1));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Test whether the ray stored in this {@link RayAabIntersection} intersect the axis-aligned box
|
||
|
* given via its minimum corner <code>(minX, minY, minZ)</code> and its maximum corner <code>(maxX, maxY, maxZ)</code>.
|
||
|
* <p>
|
||
|
* This implementation uses a tableswitch to dispatch to the correct intersection method.
|
||
|
* <p>
|
||
|
* This method is thread-safe and can be used to test many axis-aligned boxes concurrently.
|
||
|
*
|
||
|
* @param minX
|
||
|
* the x coordinate of the minimum corner
|
||
|
* @param minY
|
||
|
* the y coordinate of the minimum corner
|
||
|
* @param minZ
|
||
|
* the z coordinate of the minimum corner
|
||
|
* @param maxX
|
||
|
* the x coordinate of the maximum corner
|
||
|
* @param maxY
|
||
|
* the y coordinate of the maximum corner
|
||
|
* @param maxZ
|
||
|
* the z coordinate of the maximum corner
|
||
|
* @return <code>true</code> iff the ray intersects the given axis-aligned box; <code>false</code> otherwise
|
||
|
*/
|
||
|
public boolean test(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
// tableswitch with dense and consecutive cases (will be a simple jump based on the switch argument)
|
||
|
switch (classification) {
|
||
|
case 0: // 0b000000: // MMM
|
||
|
return MMM(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 1: // 0b000001: // OMM
|
||
|
return OMM(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 2: // 0b000010: // PMM
|
||
|
return PMM(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 3: // 0b000011: // not used
|
||
|
return false;
|
||
|
case 4: // 0b000100: // MOM
|
||
|
return MOM(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 5: // 0b000101: // OOM
|
||
|
return OOM(minX, minY, minZ, maxX, maxY);
|
||
|
case 6: // 0b000110: // POM
|
||
|
return POM(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 7: // 0b000111: // not used
|
||
|
return false;
|
||
|
case 8: // 0b001000: // MPM
|
||
|
return MPM(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 9: // 0b001001: // OPM
|
||
|
return OPM(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 10: // 0b001010: // PPM
|
||
|
return PPM(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 11: // 0b001011: // not used
|
||
|
case 12: // 0b001100: // not used
|
||
|
case 13: // 0b001101: // not used
|
||
|
case 14: // 0b001110: // not used
|
||
|
case 15: // 0b001111: // not used
|
||
|
return false;
|
||
|
case 16: // 0b010000: // MMO
|
||
|
return MMO(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 17: // 0b010001: // OMO
|
||
|
return OMO(minX, minY, minZ, maxX, maxZ);
|
||
|
case 18: // 0b010010: // PMO
|
||
|
return PMO(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 19: // 0b010011: // not used
|
||
|
return false;
|
||
|
case 20: // 0b010100: // MOO
|
||
|
return MOO(minX, minY, minZ, maxY, maxZ);
|
||
|
case 21: // 0b010101: // OOO
|
||
|
return false; // <- degenerate case
|
||
|
case 22: // 0b010110: // POO
|
||
|
return POO(minY, minZ, maxX, maxY, maxZ);
|
||
|
case 23: // 0b010111: // not used
|
||
|
return false;
|
||
|
case 24: // 0b011000: // MPO
|
||
|
return MPO(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 25: // 0b011001: // OPO
|
||
|
return OPO(minX, minZ, maxX, maxY, maxZ);
|
||
|
case 26: // 0b011010: // PPO
|
||
|
return PPO(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 27: // 0b011011: // not used
|
||
|
case 28: // 0b011100: // not used
|
||
|
case 29: // 0b011101: // not used
|
||
|
case 30: // 0b011110: // not used
|
||
|
case 31: // 0b011111: // not used
|
||
|
return false;
|
||
|
case 32: // 0b100000: // MMP
|
||
|
return MMP(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 33: // 0b100001: // OMP
|
||
|
return OMP(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 34: // 0b100010: // PMP
|
||
|
return PMP(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 35: // 0b100011: // not used
|
||
|
return false;
|
||
|
case 36: // 0b100100: // MOP
|
||
|
return MOP(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 37: // 0b100101: // OOP
|
||
|
return OOP(minX, minY, maxX, maxY, maxZ);
|
||
|
case 38: // 0b100110: // POP
|
||
|
return POP(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 39: // 0b100111: // not used
|
||
|
return false;
|
||
|
case 40: // 0b101000: // MPP
|
||
|
return MPP(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 41: // 0b101001: // OPP
|
||
|
return OPP(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
case 42: // 0b101010: // PPP
|
||
|
return PPP(minX, minY, minZ, maxX, maxY, maxZ);
|
||
|
default:
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Intersection tests for all possible ray direction cases */
|
||
|
|
||
|
private boolean MMM(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originX >= minX && originY >= minY && originZ >= minZ
|
||
|
&& s_xy * minX - maxY + c_xy <= 0.0f
|
||
|
&& s_yx * minY - maxX + c_yx <= 0.0f
|
||
|
&& s_zy * minZ - maxY + c_zy <= 0.0f
|
||
|
&& s_yz * minY - maxZ + c_yz <= 0.0f
|
||
|
&& s_xz * minX - maxZ + c_xz <= 0.0f
|
||
|
&& s_zx * minZ - maxX + c_zx <= 0.0f;
|
||
|
}
|
||
|
private boolean OMM(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originX >= minX && originX <= maxX && originY >= minY && originZ >= minZ
|
||
|
&& s_zy * minZ - maxY + c_zy <= 0.0f
|
||
|
&& s_yz * minY - maxZ + c_yz <= 0.0f;
|
||
|
}
|
||
|
private boolean PMM(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originX <= maxX && originY >= minY && originZ >= minZ
|
||
|
&& s_xy * maxX - maxY + c_xy <= 0.0f
|
||
|
&& s_yx * minY - minX + c_yx >= 0.0f
|
||
|
&& s_zy * minZ - maxY + c_zy <= 0.0f
|
||
|
&& s_yz * minY - maxZ + c_yz <= 0.0f
|
||
|
&& s_xz * maxX - maxZ + c_xz <= 0.0f
|
||
|
&& s_zx * minZ - minX + c_zx >= 0.0f;
|
||
|
}
|
||
|
private boolean MOM(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originY >= minY && originY <= maxY && originX >= minX && originZ >= minZ
|
||
|
&& s_xz * minX - maxZ + c_xz <= 0.0f
|
||
|
&& s_zx * minZ - maxX + c_zx <= 0.0f;
|
||
|
}
|
||
|
private boolean OOM(float minX, float minY, float minZ, float maxX, float maxY) {
|
||
|
return originZ >= minZ && originX >= minX && originX <= maxX && originY >= minY && originY <= maxY;
|
||
|
}
|
||
|
private boolean POM(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originY >= minY && originY <= maxY && originX <= maxX && originZ >= minZ
|
||
|
&& s_xz * maxX - maxZ + c_xz <= 0.0f
|
||
|
&& s_zx * minZ - minX + c_zx >= 0.0f;
|
||
|
}
|
||
|
private boolean MPM(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originX >= minX && originY <= maxY && originZ >= minZ
|
||
|
&& s_xy * minX - minY + c_xy >= 0.0f
|
||
|
&& s_yx * maxY - maxX + c_yx <= 0.0f
|
||
|
&& s_zy * minZ - minY + c_zy >= 0.0f
|
||
|
&& s_yz * maxY - maxZ + c_yz <= 0.0f
|
||
|
&& s_xz * minX - maxZ + c_xz <= 0.0f
|
||
|
&& s_zx * minZ - maxX + c_zx <= 0.0f;
|
||
|
}
|
||
|
private boolean OPM(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originX >= minX && originX <= maxX && originY <= maxY && originZ >= minZ
|
||
|
&& s_zy * minZ - minY + c_zy >= 0.0f
|
||
|
&& s_yz * maxY - maxZ + c_yz <= 0.0f;
|
||
|
}
|
||
|
private boolean PPM(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originX <= maxX && originY <= maxY && originZ >= minZ
|
||
|
&& s_xy * maxX - minY + c_xy >= 0.0f
|
||
|
&& s_yx * maxY - minX + c_yx >= 0.0f
|
||
|
&& s_zy * minZ - minY + c_zy >= 0.0f
|
||
|
&& s_yz * maxY - maxZ + c_yz <= 0.0f
|
||
|
&& s_xz * maxX - maxZ + c_xz <= 0.0f
|
||
|
&& s_zx * minZ - minX + c_zx >= 0.0f;
|
||
|
}
|
||
|
private boolean MMO(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originZ >= minZ && originZ <= maxZ && originX >= minX && originY >= minY
|
||
|
&& s_xy * minX - maxY + c_xy <= 0.0f
|
||
|
&& s_yx * minY - maxX + c_yx <= 0.0f;
|
||
|
}
|
||
|
private boolean OMO(float minX, float minY, float minZ, float maxX, float maxZ) {
|
||
|
return originY >= minY && originX >= minX && originX <= maxX && originZ >= minZ && originZ <= maxZ;
|
||
|
}
|
||
|
private boolean PMO(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originZ >= minZ && originZ <= maxZ && originX <= maxX && originY >= minY
|
||
|
&& s_xy * maxX - maxY + c_xy <= 0.0f
|
||
|
&& s_yx * minY - minX + c_yx >= 0.0f;
|
||
|
}
|
||
|
private boolean MOO(float minX, float minY, float minZ, float maxY, float maxZ) {
|
||
|
return originX >= minX && originY >= minY && originY <= maxY && originZ >= minZ && originZ <= maxZ;
|
||
|
}
|
||
|
private boolean POO(float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originX <= maxX && originY >= minY && originY <= maxY && originZ >= minZ && originZ <= maxZ;
|
||
|
}
|
||
|
private boolean MPO(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originZ >= minZ && originZ <= maxZ && originX >= minX && originY <= maxY
|
||
|
&& s_xy * minX - minY + c_xy >= 0.0f
|
||
|
&& s_yx * maxY - maxX + c_yx <= 0.0f;
|
||
|
}
|
||
|
private boolean OPO(float minX, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originY <= maxY && originX >= minX && originX <= maxX && originZ >= minZ && originZ <= maxZ;
|
||
|
}
|
||
|
private boolean PPO(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originZ >= minZ && originZ <= maxZ && originX <= maxX && originY <= maxY
|
||
|
&& s_xy * maxX - minY + c_xy >= 0.0f
|
||
|
&& s_yx * maxY - minX + c_yx >= 0.0f;
|
||
|
}
|
||
|
private boolean MMP(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originX >= minX && originY >= minY && originZ <= maxZ
|
||
|
&& s_xy * minX - maxY + c_xy <= 0.0f
|
||
|
&& s_yx * minY - maxX + c_yx <= 0.0f
|
||
|
&& s_zy * maxZ - maxY + c_zy <= 0.0f
|
||
|
&& s_yz * minY - minZ + c_yz >= 0.0f
|
||
|
&& s_xz * minX - minZ + c_xz >= 0.0f
|
||
|
&& s_zx * maxZ - maxX + c_zx <= 0.0f;
|
||
|
}
|
||
|
private boolean OMP(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originX >= minX && originX <= maxX && originY >= minY && originZ <= maxZ
|
||
|
&& s_zy * maxZ - maxY + c_zy <= 0.0f
|
||
|
&& s_yz * minY - minZ + c_yz >= 0.0f;
|
||
|
}
|
||
|
private boolean PMP(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originX <= maxX && originY >= minY && originZ <= maxZ
|
||
|
&& s_xy * maxX - maxY + c_xy <= 0.0f
|
||
|
&& s_yx * minY - minX + c_yx >= 0.0f
|
||
|
&& s_zy * maxZ - maxY + c_zy <= 0.0f
|
||
|
&& s_yz * minY - minZ + c_yz >= 0.0f
|
||
|
&& s_xz * maxX - minZ + c_xz >= 0.0f
|
||
|
&& s_zx * maxZ - minX + c_zx >= 0.0f;
|
||
|
}
|
||
|
private boolean MOP(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originY >= minY && originY <= maxY && originX >= minX && originZ <= maxZ
|
||
|
&& s_xz * minX - minZ + c_xz >= 0.0f
|
||
|
&& s_zx * maxZ - maxX + c_zx <= 0.0f;
|
||
|
}
|
||
|
private boolean OOP(float minX, float minY, float maxX, float maxY, float maxZ) {
|
||
|
return originZ <= maxZ && originX >= minX && originX <= maxX && originY >= minY && originY <= maxY;
|
||
|
}
|
||
|
private boolean POP(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originY >= minY && originY <= maxY && originX <= maxX && originZ <= maxZ
|
||
|
&& s_xz * maxX - minZ + c_xz >= 0.0f
|
||
|
&& s_zx * maxZ - minX + c_zx <= 0.0f;
|
||
|
}
|
||
|
private boolean MPP(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originX >= minX && originY <= maxY && originZ <= maxZ
|
||
|
&& s_xy * minX - minY + c_xy >= 0.0f
|
||
|
&& s_yx * maxY - maxX + c_yx <= 0.0f
|
||
|
&& s_zy * maxZ - minY + c_zy >= 0.0f
|
||
|
&& s_yz * maxY - minZ + c_yz >= 0.0f
|
||
|
&& s_xz * minX - minZ + c_xz >= 0.0f
|
||
|
&& s_zx * maxZ - maxX + c_zx <= 0.0f;
|
||
|
}
|
||
|
private boolean OPP(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originX >= minX && originX <= maxX && originY <= maxY && originZ <= maxZ
|
||
|
&& s_zy * maxZ - minY + c_zy <= 0.0f
|
||
|
&& s_yz * maxY - minZ + c_yz <= 0.0f;
|
||
|
}
|
||
|
private boolean PPP(float minX, float minY, float minZ, float maxX, float maxY, float maxZ) {
|
||
|
return originX <= maxX && originY <= maxY && originZ <= maxZ
|
||
|
&& s_xy * maxX - minY + c_xy >= 0.0f
|
||
|
&& s_yx * maxY - minX + c_yx >= 0.0f
|
||
|
&& s_zy * maxZ - minY + c_zy >= 0.0f
|
||
|
&& s_yz * maxY - minZ + c_yz >= 0.0f
|
||
|
&& s_xz * maxX - minZ + c_xz >= 0.0f
|
||
|
&& s_zx * maxZ - minX + c_zx >= 0.0f;
|
||
|
}
|
||
|
}
|