Flywheel/joml/Matrix2f.java

1430 lines
42 KiB
Java
Raw Normal View History

2021-12-24 11:21:59 +01:00
/*
* The MIT License
*
* Copyright (c) 2020-2021 JOML
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.jozufozu.flywheel.repack.joml;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.text.DecimalFormat;
import java.text.NumberFormat;
/**
* Contains the definition of a 2x2 matrix of floats, and associated functions to transform
* it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:
* <p>
* m00 m10<br>
* m01 m11<br>
*
* @author Joseph Burton
*/
public class Matrix2f implements Externalizable, Cloneable, Matrix2fc {
private static final long serialVersionUID = 1L;
public float m00, m01;
public float m10, m11;
/**
* Create a new {@link Matrix2f} and set it to {@link #identity() identity}.
*/
public Matrix2f() {
m00 = 1.0f;
m11 = 1.0f;
}
/**
* Create a new {@link Matrix2f} and make it a copy of the given matrix.
*
* @param mat
* the {@link Matrix2fc} to copy the values from
*/
public Matrix2f(Matrix2fc mat) {
if (mat instanceof Matrix2f) {
MemUtil.INSTANCE.copy((Matrix2f) mat, this);
} else {
setMatrix2fc(mat);
}
}
/**
* Create a new {@link Matrix2f} and make it a copy of the upper left 2x2 of the given {@link Matrix3fc}.
*
* @param mat
* the {@link Matrix3fc} to copy the values from
*/
public Matrix2f(Matrix3fc mat) {
if (mat instanceof Matrix3f) {
MemUtil.INSTANCE.copy((Matrix3f) mat, this);
} else {
setMatrix3fc(mat);
}
}
/**
* Create a new 2x2 matrix using the supplied float values. The order of the parameter is column-major,
* so the first two parameters specify the two elements of the first column.
*
* @param m00
* the value of m00
* @param m01
* the value of m01
* @param m10
* the value of m10
* @param m11
* the value of m11
*/
public Matrix2f(float m00, float m01,
float m10, float m11) {
this.m00 = m00;
this.m01 = m01;
this.m10 = m10;
this.m11 = m11;
}
/**
* Create a new {@link Matrix2f} by reading its 4 float components from the given {@link FloatBuffer}
* at the buffer's current position.
* <p>
* That FloatBuffer is expected to hold the values in column-major order.
* <p>
* The buffer's position will not be changed by this method.
*
* @param buffer
* the {@link FloatBuffer} to read the matrix values from
*/
public Matrix2f(FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
}
/**
* Create a new {@link Matrix2f} and initialize its two columns using the supplied vectors.
*
* @param col0
* the first column
* @param col1
* the second column
*/
public Matrix2f(Vector2fc col0, Vector2fc col1) {
m00 = col0.x();
m01 = col0.y();
m10 = col1.x();
m11 = col1.y();
}
public float m00() {
return m00;
}
public float m01() {
return m01;
}
public float m10() {
return m10;
}
public float m11() {
return m11;
}
/**
* Set the value of the matrix element at column 0 and row 0.
*
* @param m00
* the new value
* @return this
*/
public Matrix2f m00(float m00) {
this.m00 = m00;
return this;
}
/**
* Set the value of the matrix element at column 0 and row 1.
*
* @param m01
* the new value
* @return this
*/
public Matrix2f m01(float m01) {
this.m01 = m01;
return this;
}
/**
* Set the value of the matrix element at column 1 and row 0.
*
* @param m10
* the new value
* @return this
*/
public Matrix2f m10(float m10) {
this.m10 = m10;
return this;
}
/**
* Set the value of the matrix element at column 1 and row 1.
*
* @param m11
* the new value
* @return this
*/
public Matrix2f m11(float m11) {
this.m11 = m11;
return this;
}
/**
* Set the value of the matrix element at column 0 and row 0.
*
* @param m00
* the new value
* @return this
*/
Matrix2f _m00(float m00) {
this.m00 = m00;
return this;
}
/**
* Set the value of the matrix element at column 0 and row 1.
*
* @param m01
* the new value
* @return this
*/
Matrix2f _m01(float m01) {
this.m01 = m01;
return this;
}
/**
* Set the value of the matrix element at column 1 and row 0.
*
* @param m10
* the new value
* @return this
*/
Matrix2f _m10(float m10) {
this.m10 = m10;
return this;
}
/**
* Set the value of the matrix element at column 1 and row 1.
*
* @param m11
* the new value
* @return this
*/
Matrix2f _m11(float m11) {
this.m11 = m11;
return this;
}
/**
* Set the elements of this matrix to the ones in <code>m</code>.
*
* @param m
* the matrix to copy the elements from
* @return this
*/
public Matrix2f set(Matrix2fc m) {
if (m instanceof Matrix2f) {
MemUtil.INSTANCE.copy((Matrix2f) m, this);
} else {
setMatrix2fc(m);
}
return this;
}
private void setMatrix2fc(Matrix2fc mat) {
m00 = mat.m00();
m01 = mat.m01();
m10 = mat.m10();
m11 = mat.m11();
}
/**
* Set the elements of this matrix to the left 2x2 submatrix of <code>m</code>.
*
* @param m
* the matrix to copy the elements from
* @return this
*/
public Matrix2f set(Matrix3x2fc m) {
if (m instanceof Matrix3x2f) {
MemUtil.INSTANCE.copy((Matrix3x2f) m, this);
} else {
setMatrix3x2fc(m);
}
return this;
}
private void setMatrix3x2fc(Matrix3x2fc mat) {
m00 = mat.m00();
m01 = mat.m01();
m10 = mat.m10();
m11 = mat.m11();
}
/**
* Set the elements of this matrix to the upper left 2x2 of the given {@link Matrix3fc}.
*
* @param m
* the {@link Matrix3fc} to copy the values from
* @return this
*/
public Matrix2f set(Matrix3fc m) {
if (m instanceof Matrix3f) {
MemUtil.INSTANCE.copy((Matrix3f) m, this);
} else {
setMatrix3fc(m);
}
return this;
}
private void setMatrix3fc(Matrix3fc mat) {
m00 = mat.m00();
m01 = mat.m01();
m10 = mat.m10();
m11 = mat.m11();
}
/**
* Multiply this matrix by the supplied <code>right</code> matrix.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* transformation of the right matrix will be applied first!
*
* @param right
* the right operand of the matrix multiplication
* @return this
*/
public Matrix2f mul(Matrix2fc right) {
return mul(right, this);
}
public Matrix2f mul(Matrix2fc right, Matrix2f dest) {
float nm00 = m00 * right.m00() + m10 * right.m01();
float nm01 = m01 * right.m00() + m11 * right.m01();
float nm10 = m00 * right.m10() + m10 * right.m11();
float nm11 = m01 * right.m10() + m11 * right.m11();
dest.m00 = nm00;
dest.m01 = nm01;
dest.m10 = nm10;
dest.m11 = nm11;
return dest;
}
/**
* Pre-multiply this matrix by the supplied <code>left</code> matrix and store the result in <code>this</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the <code>left</code> matrix,
* then the new matrix will be <code>L * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>L * M * v</code>, the
* transformation of <code>this</code> matrix will be applied first!
*
* @param left
* the left operand of the matrix multiplication
* @return this
*/
public Matrix2f mulLocal(Matrix2fc left) {
return mulLocal(left, this);
}
public Matrix2f mulLocal(Matrix2fc left, Matrix2f dest) {
float nm00 = left.m00() * m00 + left.m10() * m01;
float nm01 = left.m01() * m00 + left.m11() * m01;
float nm10 = left.m00() * m10 + left.m10() * m11;
float nm11 = left.m01() * m10 + left.m11() * m11;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m10 = nm10;
dest.m11 = nm11;
return dest;
}
/**
* Set the values within this matrix to the supplied float values. The result looks like this:
* <p>
* m00, m10<br>
* m01, m11<br>
*
* @param m00
* the new value of m00
* @param m01
* the new value of m01
* @param m10
* the new value of m10
* @param m11
* the new value of m11
* @return this
*/
public Matrix2f set(float m00, float m01,
float m10, float m11) {
this.m00 = m00;
this.m01 = m01;
this.m10 = m10;
this.m11 = m11;
return this;
}
/**
* Set the values in this matrix based on the supplied float array. The result looks like this:
* <p>
* 0, 2<br>
* 1, 3<br>
*
* This method only uses the first 4 values, all others are ignored.
*
* @param m
* the array to read the matrix values from
* @return this
*/
public Matrix2f set(float m[]) {
MemUtil.INSTANCE.copy(m, 0, this);
return this;
}
/**
* Set the two columns of this matrix to the supplied vectors, respectively.
*
* @param col0
* the first column
* @param col1
* the second column
* @return this
*/
public Matrix2f set(Vector2fc col0, Vector2fc col1) {
m00 = col0.x();
m01 = col0.y();
m10 = col1.x();
m11 = col1.y();
return this;
}
public float determinant() {
return m00 * m11 - m10 * m01;
}
/**
* Invert this matrix.
*
* @return this
*/
public Matrix2f invert() {
return invert(this);
}
public Matrix2f invert(Matrix2f dest) {
float s = 1.0f / determinant();
float nm00 = m11 * s;
float nm01 = -m01 * s;
float nm10 = -m10 * s;
float nm11 = m00 * s;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m10 = nm10;
dest.m11 = nm11;
return dest;
}
/**
* Transpose this matrix.
*
* @return this
*/
public Matrix2f transpose() {
return transpose(this);
}
public Matrix2f transpose(Matrix2f dest) {
dest.set(m00, m10,
m01, m11);
return dest;
}
/**
* Return a string representation of this matrix.
* <p>
* This method creates a new {@link DecimalFormat} on every invocation with the format string "<code>0.000E0;-</code>".
*
* @return the string representation
*/
public String toString() {
String str = toString(Options.NUMBER_FORMAT);
StringBuffer res = new StringBuffer();
int eIndex = Integer.MIN_VALUE;
for (int i = 0; i < str.length(); i++) {
char c = str.charAt(i);
if (c == 'E') {
eIndex = i;
} else if (c == ' ' && eIndex == i - 1) {
// workaround Java 1.4 DecimalFormat bug
res.append('+');
continue;
} else if (Character.isDigit(c) && eIndex == i - 1) {
res.append('+');
}
res.append(c);
}
return res.toString();
}
/**
* Return a string representation of this matrix by formatting the matrix elements with the given {@link NumberFormat}.
*
* @param formatter
* the {@link NumberFormat} used to format the matrix values with
* @return the string representation
*/
public String toString(NumberFormat formatter) {
return Runtime.format(m00, formatter) + " " + Runtime.format(m10, formatter) + "\n"
+ Runtime.format(m01, formatter) + " " + Runtime.format(m11, formatter) + "\n";
}
/**
* Get the current values of <code>this</code> matrix and store them into
* <code>dest</code>.
* <p>
* This is the reverse method of {@link #set(Matrix2fc)} and allows to obtain
* intermediate calculation results when chaining multiple transformations.
*
* @see #set(Matrix2fc)
*
* @param dest
* the destination matrix
* @return the passed in destination
*/
public Matrix2f get(Matrix2f dest) {
return dest.set(this);
}
public Matrix3x2f get(Matrix3x2f dest) {
return dest.set(this);
}
public Matrix3f get(Matrix3f dest) {
return dest.set(this);
}
public float getRotation() {
return Math.atan2(m01, m11);
}
public FloatBuffer get(FloatBuffer buffer) {
return get(buffer.position(), buffer);
}
public FloatBuffer get(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.put(this, index, buffer);
return buffer;
}
public ByteBuffer get(ByteBuffer buffer) {
return get(buffer.position(), buffer);
}
public ByteBuffer get(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.put(this, index, buffer);
return buffer;
}
public FloatBuffer getTransposed(FloatBuffer buffer) {
return get(buffer.position(), buffer);
}
public FloatBuffer getTransposed(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.putTransposed(this, index, buffer);
return buffer;
}
public ByteBuffer getTransposed(ByteBuffer buffer) {
return get(buffer.position(), buffer);
}
public ByteBuffer getTransposed(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.putTransposed(this, index, buffer);
return buffer;
}
public Matrix2fc getToAddress(long address) {
if (Options.NO_UNSAFE)
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
MemUtil.MemUtilUnsafe.put(this, address);
return this;
}
public float[] get(float[] arr, int offset) {
MemUtil.INSTANCE.copy(this, arr, offset);
return arr;
}
public float[] get(float[] arr) {
return get(arr, 0);
}
/**
* Set the values of this matrix by reading 4 float values from the given {@link FloatBuffer} in column-major order,
* starting at its current position.
* <p>
* The FloatBuffer is expected to contain the values in column-major order.
* <p>
* The position of the FloatBuffer will not be changed by this method.
*
* @param buffer
* the FloatBuffer to read the matrix values from in column-major order
* @return this
*/
public Matrix2f set(FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
return this;
}
/**
* Set the values of this matrix by reading 4 float values from the given {@link ByteBuffer} in column-major order,
* starting at its current position.
* <p>
* The ByteBuffer is expected to contain the values in column-major order.
* <p>
* The position of the ByteBuffer will not be changed by this method.
*
* @param buffer
* the ByteBuffer to read the matrix values from in column-major order
* @return this
*/
public Matrix2f set(ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
return this;
}
/**
* Set the values of this matrix by reading 4 float values from the given {@link FloatBuffer} in column-major order,
* starting at the specified absolute buffer position/index.
* <p>
* The FloatBuffer is expected to contain the values in column-major order.
* <p>
* The position of the FloatBuffer will not be changed by this method.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* the FloatBuffer to read the matrix values from in column-major order
* @return this
*/
public Matrix2f set(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
return this;
}
/**
* Set the values of this matrix by reading 4 float values from the given {@link ByteBuffer} in column-major order,
* starting at the specified absolute buffer position/index.
* <p>
* The ByteBuffer is expected to contain the values in column-major order.
* <p>
* The position of the ByteBuffer will not be changed by this method.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* the ByteBuffer to read the matrix values from in column-major order
* @return this
*/
public Matrix2f set(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
return this;
}
/**
* Set the values of this matrix by reading 4 float values from off-heap memory in column-major order,
* starting at the given address.
* <p>
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
* <p>
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
*
* @param address
* the off-heap memory address to read the matrix values from in column-major order
* @return this
*/
public Matrix2f setFromAddress(long address) {
if (Options.NO_UNSAFE)
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
MemUtil.MemUtilUnsafe.get(this, address);
return this;
}
/**
* Set all values within this matrix to zero.
*
* @return this
*/
public Matrix2f zero() {
MemUtil.INSTANCE.zero(this);
return this;
}
/**
* Set this matrix to the identity.
*
* @return this
*/
public Matrix2f identity() {
MemUtil.INSTANCE.identity(this);
return this;
}
public Matrix2f scale(Vector2fc xy, Matrix2f dest) {
return scale(xy.x(), xy.y(), dest);
}
/**
* Apply scaling to this matrix by scaling the base axes by the given <code>xy.x</code> and
* <code>xy.y</code> factors, respectively.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
* scaling will be applied first!
*
* @param xy
* the factors of the x and y component, respectively
* @return this
*/
public Matrix2f scale(Vector2fc xy) {
return scale(xy.x(), xy.y(), this);
}
public Matrix2f scale(float x, float y, Matrix2f dest) {
// scale matrix elements:
// m00 = x, m11 = y
// all others = 0
dest.m00 = m00 * x;
dest.m01 = m01 * x;
dest.m10 = m10 * y;
dest.m11 = m11 * y;
return dest;
}
/**
* Apply scaling to this matrix by scaling the base axes by the given x and
* y factors.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
* , the scaling will be applied first!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @return this
*/
public Matrix2f scale(float x, float y) {
return scale(x, y, this);
}
public Matrix2f scale(float xy, Matrix2f dest) {
return scale(xy, xy, dest);
}
/**
* Apply scaling to this matrix by uniformly scaling all base axes by the given <code>xy</code> factor.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
* , the scaling will be applied first!
*
* @see #scale(float, float)
*
* @param xy
* the factor for all components
* @return this
*/
public Matrix2f scale(float xy) {
return scale(xy, xy);
}
public Matrix2f scaleLocal(float x, float y, Matrix2f dest) {
dest.m00 = x * m00;
dest.m01 = y * m01;
dest.m10 = x * m10;
dest.m11 = y * m11;
return dest;
}
/**
* Pre-multiply scaling to this matrix by scaling the base axes by the given x and
* y factors.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>S * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>, the
* scaling will be applied last!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @return this
*/
public Matrix2f scaleLocal(float x, float y) {
return scaleLocal(x, y, this);
}
/**
* Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.
* <p>
* The resulting matrix can be multiplied against another transformation
* matrix to obtain an additional scaling.
* <p>
* In order to post-multiply a scaling transformation directly to a
* matrix, use {@link #scale(float) scale()} instead.
*
* @see #scale(float)
*
* @param factor
* the scale factor in x and y
* @return this
*/
public Matrix2f scaling(float factor) {
MemUtil.INSTANCE.zero(this);
m00 = factor;
m11 = factor;
return this;
}
/**
* Set this matrix to be a simple scale matrix.
*
* @param x
* the scale in x
* @param y
* the scale in y
* @return this
*/
public Matrix2f scaling(float x, float y) {
MemUtil.INSTANCE.zero(this);
m00 = x;
m11 = y;
return this;
}
/**
* Set this matrix to be a simple scale matrix which scales the base axes by <code>xy.x</code> and <code>xy.y</code> respectively.
* <p>
* The resulting matrix can be multiplied against another transformation
* matrix to obtain an additional scaling.
* <p>
* In order to post-multiply a scaling transformation directly to a
* matrix use {@link #scale(Vector2fc) scale()} instead.
*
* @see #scale(Vector2fc)
*
* @param xy
* the scale in x and y respectively
* @return this
*/
public Matrix2f scaling(Vector2fc xy) {
return scaling(xy.x(), xy.y());
}
/**
* Set this matrix to a rotation matrix which rotates the given radians about the origin.
* <p>
* The produced rotation will rotate a vector counter-clockwise around the origin.
* <p>
* The resulting matrix can be multiplied against another transformation
* matrix to obtain an additional rotation.
* <p>
* In order to post-multiply a rotation transformation directly to a
* matrix, use {@link #rotate(float) rotate()} instead.
*
* @see #rotate(float)
*
* @param angle
* the angle in radians
* @return this
*/
public Matrix2f rotation(float angle) {
float sin = Math.sin(angle);
float cos = Math.cosFromSin(sin, angle);
m00 = cos;
m01 = sin;
m10 = -sin;
m11 = cos;
return this;
}
public Vector2f transform(Vector2f v) {
return v.mul(this);
}
public Vector2f transform(Vector2fc v, Vector2f dest) {
v.mul(this, dest);
return dest;
}
public Vector2f transform(float x, float y, Vector2f dest) {
dest.set(m00 * x + m10 * y,
m01 * x + m11 * y);
return dest;
}
public Vector2f transformTranspose(Vector2f v) {
return v.mulTranspose(this);
}
public Vector2f transformTranspose(Vector2fc v, Vector2f dest) {
v.mulTranspose(this, dest);
return dest;
}
public Vector2f transformTranspose(float x, float y, Vector2f dest) {
dest.set(m00 * x + m01 * y,
m10 * x + m11 * y);
return dest;
}
public void writeExternal(ObjectOutput out) throws IOException {
out.writeFloat(m00);
out.writeFloat(m01);
out.writeFloat(m10);
out.writeFloat(m11);
}
public void readExternal(ObjectInput in) throws IOException {
m00 = in.readFloat();
m01 = in.readFloat();
m10 = in.readFloat();
m11 = in.readFloat();
}
/**
* Apply rotation about the origin to this matrix by rotating the given amount of radians.
* <p>
* The produced rotation will rotate a vector counter-clockwise around the origin.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>
* , the rotation will be applied first!
* <p>
* Reference: <a href="https://en.wikipedia.org/wiki/Rotation_matrix#In_two_dimensions">http://en.wikipedia.org</a>
*
* @param angle
* the angle in radians
* @return this
*/
public Matrix2f rotate(float angle) {
return rotate(angle, this);
}
public Matrix2f rotate(float angle, Matrix2f dest) {
float s = Math.sin(angle);
float c = Math.cosFromSin(s, angle);
// rotation matrix elements:
// m00 = c, m01 = s, m10 = -s, m11 = c
float nm00 = m00 * c + m10 * s;
float nm01 = m01 * c + m11 * s;
float nm10 = m10 * c - m00 * s;
float nm11 = m11 * c - m01 * s;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m10 = nm10;
dest.m11 = nm11;
return dest;
}
/**
* Pre-multiply a rotation to this matrix by rotating the given amount of radians about the origin.
* <p>
* The produced rotation will rotate a vector counter-clockwise around the origin.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>R * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
* rotation will be applied last!
* <p>
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
* transformation, use {@link #rotation(float) rotation()}.
* <p>
* Reference: <a href="https://en.wikipedia.org/wiki/Rotation_matrix#In_two_dimensions">http://en.wikipedia.org</a>
*
* @see #rotation(float)
*
* @param angle
* the angle in radians to rotate about the X axis
* @return this
*/
public Matrix2f rotateLocal(float angle) {
return rotateLocal(angle, this);
}
public Matrix2f rotateLocal(float angle, Matrix2f dest) {
float s = Math.sin(angle);
float c = Math.cosFromSin(s, angle);
// rotation matrix elements:
// m00 = c, m01 = s, m10 = -s, m11 = c
float nm00 = c * m00 - s * m01;
float nm01 = s * m00 + c * m01;
float nm10 = c * m10 - s * m11;
float nm11 = s * m10 + c * m11;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m10 = nm10;
dest.m11 = nm11;
return dest;
}
public Vector2f getRow(int row, Vector2f dest) throws IndexOutOfBoundsException {
switch (row) {
case 0:
dest.x = m00;
dest.y = m10;
break;
case 1:
dest.x = m01;
dest.y = m11;
break;
default:
throw new IndexOutOfBoundsException();
}
return dest;
}
/**
* Set the row at the given <code>row</code> index, starting with <code>0</code>.
*
* @param row
* the row index in <code>[0..1]</code>
* @param src
* the row components to set
* @return this
* @throws IndexOutOfBoundsException if <code>row</code> is not in <code>[0..1]</code>
*/
public Matrix2f setRow(int row, Vector2fc src) throws IndexOutOfBoundsException {
return setRow(row, src.x(), src.y());
}
/**
* Set the row at the given <code>row</code> index, starting with <code>0</code>.
*
* @param row
* the row index in <code>[0..1]</code>
* @param x
* the first element in the row
* @param y
* the second element in the row
* @return this
* @throws IndexOutOfBoundsException if <code>row</code> is not in <code>[0..1]</code>
*/
public Matrix2f setRow(int row, float x, float y) throws IndexOutOfBoundsException {
switch (row) {
case 0:
this.m00 = x;
this.m10 = y;
break;
case 1:
this.m01 = x;
this.m11 = y;
break;
default:
throw new IndexOutOfBoundsException();
}
return this;
}
public Vector2f getColumn(int column, Vector2f dest) throws IndexOutOfBoundsException {
switch (column) {
case 0:
dest.x = m00;
dest.y = m01;
break;
case 1:
dest.x = m10;
dest.y = m11;
break;
default:
throw new IndexOutOfBoundsException();
}
return dest;
}
/**
* Set the column at the given <code>column</code> index, starting with <code>0</code>.
*
* @param column
* the column index in <code>[0..1]</code>
* @param src
* the column components to set
* @return this
* @throws IndexOutOfBoundsException if <code>column</code> is not in <code>[0..1]</code>
*/
public Matrix2f setColumn(int column, Vector2fc src) throws IndexOutOfBoundsException {
return setColumn(column, src.x(), src.y());
}
/**
* Set the column at the given <code>column</code> index, starting with <code>0</code>.
*
* @param column
* the column index in <code>[0..1]</code>
* @param x
* the first element in the column
* @param y
* the second element in the column
* @return this
* @throws IndexOutOfBoundsException if <code>column</code> is not in <code>[0..1]</code>
*/
public Matrix2f setColumn(int column, float x, float y) throws IndexOutOfBoundsException {
switch (column) {
case 0:
this.m00 = x;
this.m01 = y;
break;
case 1:
this.m10 = x;
this.m11 = y;
break;
default:
throw new IndexOutOfBoundsException();
}
return this;
}
public float get(int column, int row) {
switch (column) {
case 0:
switch (row) {
case 0:
return m00;
case 1:
return m01;
default:
break;
}
break;
case 1:
switch (row) {
case 0:
return m10;
case 1:
return m11;
default:
break;
}
break;
default:
break;
}
throw new IndexOutOfBoundsException();
}
/**
* Set the matrix element at the given column and row to the specified value.
*
* @param column
* the colum index in <code>[0..1]</code>
* @param row
* the row index in <code>[0..1]</code>
* @param value
* the value
* @return this
*/
public Matrix2f set(int column, int row, float value) {
switch (column) {
case 0:
switch (row) {
case 0:
this.m00 = value;
return this;
case 1:
this.m01 = value;
return this;
default:
break;
}
break;
case 1:
switch (row) {
case 0:
this.m10 = value;
return this;
case 1:
this.m11 = value;
return this;
default:
break;
}
break;
default:
break;
}
throw new IndexOutOfBoundsException();
}
/**
* Set <code>this</code> matrix to its own normal matrix.
* <p>
* Please note that, if <code>this</code> is an orthogonal matrix or a matrix whose columns are orthogonal vectors,
* then this method <i>need not</i> be invoked, since in that case <code>this</code> itself is its normal matrix.
* In this case, use {@link #set(Matrix2fc)} to set a given Matrix2f to this matrix.
*
* @see #set(Matrix2fc)
*
* @return this
*/
public Matrix2f normal() {
return normal(this);
}
/**
* Compute a normal matrix from <code>this</code> matrix and store it into <code>dest</code>.
* <p>
* Please note that, if <code>this</code> is an orthogonal matrix or a matrix whose columns are orthogonal vectors,
* then this method <i>need not</i> be invoked, since in that case <code>this</code> itself is its normal matrix.
* In this case, use {@link #set(Matrix2fc)} to set a given Matrix2f to this matrix.
*
* @see #set(Matrix2fc)
*
* @param dest
* will hold the result
* @return dest
*/
public Matrix2f normal(Matrix2f dest) {
float det = m00 * m11 - m10 * m01;
float s = 1.0f / det;
/* Invert and transpose in one go */
float nm00 = m11 * s;
float nm01 = -m10 * s;
float nm10 = -m01 * s;
float nm11 = m00 * s;
dest.m00 = nm00;
dest.m01 = nm01;
dest.m10 = nm10;
dest.m11 = nm11;
return dest;
}
public Vector2f getScale(Vector2f dest) {
dest.x = Math.sqrt(m00 * m00 + m01 * m01);
dest.y = Math.sqrt(m10 * m10 + m11 * m11);
return dest;
}
public Vector2f positiveX(Vector2f dir) {
if (m00 * m11 < m01 * m10) { // negative determinant?
dir.x = -m11;
dir.y = m01;
} else {
dir.x = m11;
dir.y = -m01;
}
return dir.normalize(dir);
}
public Vector2f normalizedPositiveX(Vector2f dir) {
if (m00 * m11 < m01 * m10) { // negative determinant?
dir.x = -m11;
dir.y = m01;
} else {
dir.x = m11;
dir.y = -m01;
}
return dir;
}
public Vector2f positiveY(Vector2f dir) {
if (m00 * m11 < m01 * m10) { // negative determinant?
dir.x = m10;
dir.y = -m00;
} else {
dir.x = -m10;
dir.y = m00;
}
return dir.normalize(dir);
}
public Vector2f normalizedPositiveY(Vector2f dir) {
if (m00 * m11 < m01 * m10) { // negative determinant?
dir.x = m10;
dir.y = -m00;
} else {
dir.x = -m10;
dir.y = m00;
}
return dir;
}
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + Float.floatToIntBits(m00);
result = prime * result + Float.floatToIntBits(m01);
result = prime * result + Float.floatToIntBits(m10);
result = prime * result + Float.floatToIntBits(m11);
return result;
}
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Matrix2f other = (Matrix2f) obj;
if (Float.floatToIntBits(m00) != Float.floatToIntBits(other.m00))
return false;
if (Float.floatToIntBits(m01) != Float.floatToIntBits(other.m01))
return false;
if (Float.floatToIntBits(m10) != Float.floatToIntBits(other.m10))
return false;
if (Float.floatToIntBits(m11) != Float.floatToIntBits(other.m11))
return false;
return true;
}
public boolean equals(Matrix2fc m, float delta) {
if (this == m)
return true;
if (m == null)
return false;
if (!(m instanceof Matrix2f))
return false;
if (!Runtime.equals(m00, m.m00(), delta))
return false;
if (!Runtime.equals(m01, m.m01(), delta))
return false;
if (!Runtime.equals(m10, m.m10(), delta))
return false;
if (!Runtime.equals(m11, m.m11(), delta))
return false;
return true;
}
/**
* Exchange the values of <code>this</code> matrix with the given <code>other</code> matrix.
*
* @param other
* the other matrix to exchange the values with
* @return this
*/
public Matrix2f swap(Matrix2f other) {
MemUtil.INSTANCE.swap(this, other);
return this;
}
/**
* Component-wise add <code>this</code> and <code>other</code>.
*
* @param other
* the other addend
* @return this
*/
public Matrix2f add(Matrix2fc other) {
return add(other, this);
}
public Matrix2f add(Matrix2fc other, Matrix2f dest) {
dest.m00 = m00 + other.m00();
dest.m01 = m01 + other.m01();
dest.m10 = m10 + other.m10();
dest.m11 = m11 + other.m11();
return dest;
}
/**
* Component-wise subtract <code>subtrahend</code> from <code>this</code>.
*
* @param subtrahend
* the subtrahend
* @return this
*/
public Matrix2f sub(Matrix2fc subtrahend) {
return sub(subtrahend, this);
}
public Matrix2f sub(Matrix2fc other, Matrix2f dest) {
dest.m00 = m00 - other.m00();
dest.m01 = m01 - other.m01();
dest.m10 = m10 - other.m10();
dest.m11 = m11 - other.m11();
return dest;
}
/**
* Component-wise multiply <code>this</code> by <code>other</code>.
*
* @param other
* the other matrix
* @return this
*/
public Matrix2f mulComponentWise(Matrix2fc other) {
return sub(other, this);
}
public Matrix2f mulComponentWise(Matrix2fc other, Matrix2f dest) {
dest.m00 = m00 * other.m00();
dest.m01 = m01 * other.m01();
dest.m10 = m10 * other.m10();
dest.m11 = m11 * other.m11();
return dest;
}
/**
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
* and store the result in <code>this</code>.
* <p>
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
* then the result is <code>other</code>.
*
* @param other
* the other matrix
* @param t
* the interpolation factor between 0.0 and 1.0
* @return this
*/
public Matrix2f lerp(Matrix2fc other, float t) {
return lerp(other, t, this);
}
public Matrix2f lerp(Matrix2fc other, float t, Matrix2f dest) {
dest.m00 = Math.fma(other.m00() - m00, t, m00);
dest.m01 = Math.fma(other.m01() - m01, t, m01);
dest.m10 = Math.fma(other.m10() - m10, t, m10);
dest.m11 = Math.fma(other.m11() - m11, t, m11);
return dest;
}
public boolean isFinite() {
return Math.isFinite(m00) && Math.isFinite(m01) &&
Math.isFinite(m10) && Math.isFinite(m11);
}
public Object clone() throws CloneNotSupportedException {
return super.clone();
}
}