We (un)roll

- Manually unroll all loops in light_lut with the help of macros
  - Pretty significant perf gains on my 5600G
- I tried assembling a bitmask of the blocks we actually want to fetch
  and branching in each _FLW_LIGHT_FETCH in an attempt to reduce the
  bandwidth required but that turned out much slower. Perhaps there's
  still some middle-ground to be found for axis-aligned normals
- Re-order the 8-arrays in _flw_lightForDirection to be xzy to be
  consistent with everything else and improve the memory access pattern
This commit is contained in:
Jozufozu 2024-08-12 15:24:43 -07:00
parent 76a4b35ce6
commit 2d37c3894d

View File

@ -11,14 +11,13 @@ const uint _FLW_LIGHT_SECTION_SIZE_INTS = _FLW_LIGHT_SECTION_SIZE_BYTES / 4;
const uint _FLW_COMPLETELY_SOLID = 0x7FFFFFFu; const uint _FLW_COMPLETELY_SOLID = 0x7FFFFFFu;
const float _FLW_EPSILON = 1e-5; const float _FLW_EPSILON = 1e-5;
const uint _FLW_LOWER_10_BITS = 0x3FFu;
const uint _FLW_UPPER_10_BITS = 0xFFF00000u;
uint _flw_indexLut(uint index); uint _flw_indexLut(uint index);
uint _flw_indexLight(uint index); uint _flw_indexLight(uint index);
// Adding this option takes my test world from ~800 to ~1250 FPS on my 3060ti.
// I have not taken it to a profiler otherwise.
#pragma optionNV (unroll all)
/// Find the index for the next step in the LUT. /// Find the index for the next step in the LUT.
/// @param base The base index in the LUT, should point to the start of a coordinate span. /// @param base The base index in the LUT, should point to the start of a coordinate span.
/// @param coord The coordinate to look for. /// @param coord The coordinate to look for.
@ -103,57 +102,120 @@ bool flw_lightFetch(ivec3 blockPos, out vec2 lightCoord) {
return true; return true;
} }
/// Premtively collect all light in a 3x3x3 area centered on our block.
/// Depending on the normal, we won't use all the data, but fetching on demand will have many duplicated fetches.
///
/// The output is a 3-component vector <blockLight, skyLight, valid ? 1 : 0> packed into a single uint to save
/// memory and ALU ops later on. 10 bits are used for each component. This allows 4 such packed ints to be added
/// together with room to spare before overflowing into the next component.
uint[27] _flw_fetchLight3x3x3(uint sectionOffset, ivec3 blockInSectionPos, uint solid) {
uint[27] lights;
uint index = 0u;
uint mask = 1u;
for (int y = -1; y <= 1; y++) {
for (int z = -1; z <= 1; z++) {
for (int x = -1; x <= 1; x++) {
// 0 if the block is solid, 1 if it's not.
uint notSolid = uint((solid & mask) == 0u);
uvec2 light = _flw_lightAt(sectionOffset, uvec3(blockInSectionPos + ivec3(x, y, z)));
lights[index] = light.x;
lights[index] |= (light.y) << 10;
lights[index] |= (notSolid) << 20;
index++;
mask <<= 1;
}
}
}
return lights;
}
uint _flw_fetchSolid3x3x3(uint sectionOffset, ivec3 blockInSectionPos) { uint _flw_fetchSolid3x3x3(uint sectionOffset, ivec3 blockInSectionPos) {
uint ret = 0; uint ret = 0;
uint index = 0; // The formatter does NOT like these macros
for (int y = -1; y <= 1; y++) { // @formatter:off
for (int z = -1; z <= 1; z++) {
for (int x = -1; x <= 1; x++) {
bool flag = _flw_isSolid(sectionOffset, uvec3(blockInSectionPos + ivec3(x, y, z)));
ret |= uint(flag) << index;
index++; #define _FLW_FETCH_SOLID(x, y, z, i) { \
} bool flag = _flw_isSolid(sectionOffset, uvec3(blockInSectionPos + ivec3(x, y, z))); \
} ret |= uint(flag) << i; \
} }
/// fori y, z, x: unrolled
_FLW_FETCH_SOLID(-1, -1, -1, 0)
_FLW_FETCH_SOLID(0, -1, -1, 1)
_FLW_FETCH_SOLID(1, -1, -1, 2)
_FLW_FETCH_SOLID(-1, -1, 0, 3)
_FLW_FETCH_SOLID(0, -1, 0, 4)
_FLW_FETCH_SOLID(1, -1, 0, 5)
_FLW_FETCH_SOLID(-1, -1, 1, 6)
_FLW_FETCH_SOLID(0, -1, 1, 7)
_FLW_FETCH_SOLID(1, -1, 1, 8)
_FLW_FETCH_SOLID(-1, 0, -1, 9)
_FLW_FETCH_SOLID(0, 0, -1, 10)
_FLW_FETCH_SOLID(1, 0, -1, 11)
_FLW_FETCH_SOLID(-1, 0, 0, 12)
_FLW_FETCH_SOLID(0, 0, 0, 13)
_FLW_FETCH_SOLID(1, 0, 0, 14)
_FLW_FETCH_SOLID(-1, 0, 1, 15)
_FLW_FETCH_SOLID(0, 0, 1, 16)
_FLW_FETCH_SOLID(1, 0, 1, 17)
_FLW_FETCH_SOLID(-1, 1, -1, 18)
_FLW_FETCH_SOLID(0, 1, -1, 19)
_FLW_FETCH_SOLID(1, 1, -1, 20)
_FLW_FETCH_SOLID(-1, 1, 0, 21)
_FLW_FETCH_SOLID(0, 1, 0, 22)
_FLW_FETCH_SOLID(1, 1, 0, 23)
_FLW_FETCH_SOLID(-1, 1, 1, 24)
_FLW_FETCH_SOLID(0, 1, 1, 25)
_FLW_FETCH_SOLID(1, 1, 1, 26)
// @formatter:on
return ret; return ret;
} }
/// Premtively collect all light in a 3x3x3 area centered on our block.
/// Depending on the normal, we won't use all the data, but fetching on demand will have many duplicated fetches.
/// Only fetching what we'll actually use using a bitmask turned out significantly slower, but perhaps a less
/// granular approach could see wins.
///
/// The output is a 3-component vector <blockLight, skyLight, valid ? 1 : 0> packed into a single uint to save
/// memory and ALU ops later on. 10 bits are used for each component. This allows 4 such packed ints to be added
/// together with room to spare before overflowing into the next component.
uint[27] _flw_fetchLight3x3x3(uint sectionOffset, ivec3 blockInSectionPos, uint solidMask) {
uint[27] lights;
// @formatter:off
#define _FLW_FETCH_LIGHT(_x, _y, _z, i) { \
uvec2 light = _flw_lightAt(sectionOffset, uvec3(blockInSectionPos + ivec3(_x, _y, _z))); \
lights[i] = (light.x) | ((light.y) << 10) | (uint((solidMask & (1u << i)) == 0u) << 20); \
}
/// fori y, z, x: unrolled
_FLW_FETCH_LIGHT(-1, -1, -1, 0)
_FLW_FETCH_LIGHT(0, -1, -1, 1)
_FLW_FETCH_LIGHT(1, -1, -1, 2)
_FLW_FETCH_LIGHT(-1, -1, 0, 3)
_FLW_FETCH_LIGHT(0, -1, 0, 4)
_FLW_FETCH_LIGHT(1, -1, 0, 5)
_FLW_FETCH_LIGHT(-1, -1, 1, 6)
_FLW_FETCH_LIGHT(0, -1, 1, 7)
_FLW_FETCH_LIGHT(1, -1, 1, 8)
_FLW_FETCH_LIGHT(-1, 0, -1, 9)
_FLW_FETCH_LIGHT(0, 0, -1, 10)
_FLW_FETCH_LIGHT(1, 0, -1, 11)
_FLW_FETCH_LIGHT(-1, 0, 0, 12)
_FLW_FETCH_LIGHT(0, 0, 0, 13)
_FLW_FETCH_LIGHT(1, 0, 0, 14)
_FLW_FETCH_LIGHT(-1, 0, 1, 15)
_FLW_FETCH_LIGHT(0, 0, 1, 16)
_FLW_FETCH_LIGHT(1, 0, 1, 17)
_FLW_FETCH_LIGHT(-1, 1, -1, 18)
_FLW_FETCH_LIGHT(0, 1, -1, 19)
_FLW_FETCH_LIGHT(1, 1, -1, 20)
_FLW_FETCH_LIGHT(-1, 1, 0, 21)
_FLW_FETCH_LIGHT(0, 1, 0, 22)
_FLW_FETCH_LIGHT(1, 1, 0, 23)
_FLW_FETCH_LIGHT(-1, 1, 1, 24)
_FLW_FETCH_LIGHT(0, 1, 1, 25)
_FLW_FETCH_LIGHT(1, 1, 1, 26)
// @formatter:on
return lights;
}
#define _flw_index3x3x3(x, y, z) ((x) + (z) * 3u + (y) * 9u) #define _flw_index3x3x3(x, y, z) ((x) + (z) * 3u + (y) * 9u)
#define _flw_index3x3x3v(p) _flw_index3x3x3((p).x, (p).y, (p).z)
#define _flw_validCountToAo(validCount) (1. - (4. - (validCount)) * 0.2) #define _flw_validCountToAo(validCount) (1. - (4. - (validCount)) * 0.2)
/// Calculate the light for a direction by averaging the light at the corners of the block. /// Calculate the light for a direction by averaging the light at the corners of the block.
@ -167,65 +229,73 @@ uint _flw_fetchSolid3x3x3(uint sectionOffset, ivec3 blockInSectionPos) {
/// @param interpolant The position within the center block. /// @param interpolant The position within the center block.
/// @param c00..c11 4 offsets to determine which "direction" we are averaging. /// @param c00..c11 4 offsets to determine which "direction" we are averaging.
/// @param oppositeMask A bitmask telling this function which bit to flip to get the opposite index for a given corner /// @param oppositeMask A bitmask telling this function which bit to flip to get the opposite index for a given corner
vec3 _flw_lightForDirection(uint[27] lights, vec3 interpolant, uvec3 c00, uvec3 c01, uvec3 c10, uvec3 c11, uint oppositeMask) { vec3 _flw_lightForDirection(uint[27] lights, vec3 interpolant, uint c00, uint c01, uint c10, uint c11, uint oppositeMask) {
// Constant propatation should inline all of these index calculations,
// but since they're distributive we can lay them out more nicely.
uint ic00 = _flw_index3x3x3v(c00);
uint ic01 = _flw_index3x3x3v(c01);
uint ic10 = _flw_index3x3x3v(c10);
uint ic11 = _flw_index3x3x3v(c11);
const uint[8] corners = uint[](
_flw_index3x3x3(0u, 0u, 0u),
_flw_index3x3x3(0u, 0u, 1u),
_flw_index3x3x3(0u, 1u, 0u),
_flw_index3x3x3(0u, 1u, 1u),
_flw_index3x3x3(1u, 0u, 0u),
_flw_index3x3x3(1u, 0u, 1u),
_flw_index3x3x3(1u, 1u, 0u),
_flw_index3x3x3(1u, 1u, 1u)
);
// Division and branching are both kinda expensive, so use this table for the valid block normalization
const float[5] normalizers = float[](0., 1., 1. / 2., 1. / 3., 1. / 4.);
// Sum up the light and number of valid blocks in each corner for this direction // Sum up the light and number of valid blocks in each corner for this direction
uint[8] summed; uint[8] summed;
for (uint i = 0; i < 8; i++) {
uint corner = corners[i]; // @formatter:off
summed[i] = lights[ic00 + corner] + lights[ic01 + corner] + lights[ic10 + corner] + lights[ic11 + corner];
#define _FLW_SUM_CORNER(_x, _y, _z, i) { \
const uint corner = _flw_index3x3x3(_x, _y, _z); \
summed[i] = lights[c00 + corner] + lights[c01 + corner] + lights[c10 + corner] + lights[c11 + corner]; \
} }
_FLW_SUM_CORNER(0u, 0u, 0u, 0)
_FLW_SUM_CORNER(1u, 0u, 0u, 1)
_FLW_SUM_CORNER(0u, 0u, 1u, 2)
_FLW_SUM_CORNER(1u, 0u, 1u, 3)
_FLW_SUM_CORNER(0u, 1u, 0u, 4)
_FLW_SUM_CORNER(1u, 1u, 0u, 5)
_FLW_SUM_CORNER(0u, 1u, 1u, 6)
_FLW_SUM_CORNER(1u, 1u, 1u, 7)
// @formatter:on
// The final light and number of valid blocks for each corner. // The final light and number of valid blocks for each corner.
vec3[8] adjusted; vec3[8] adjusted;
for (uint i = 0; i < 8; i++) {
#ifdef _FLW_INNER_FACE_CORRECTION #ifdef _FLW_INNER_FACE_CORRECTION
// If the current corner has no valid blocks, use the opposite // If the current corner has no valid blocks, use the opposite
// corner's light based on which direction we're evaluating. // corner's light based on which direction we're evaluating.
// Because of how our corners are indexed, moving along one axis is the same as flipping a bit. // Because of how our corners are indexed, moving along one axis is the same as flipping a bit.
uint cornerIndex = (summed[i] & 0xFFF00000u) == 0u ? i ^ oppositeMask : i; #define _FLW_CORNER_INDEX(i) ((summed[i] & _FLW_UPPER_10_BITS) == 0u ? i ^ oppositeMask : i)
#else #else
uint cornerIndex = i; #define _FLW_CORNER_INDEX(i) i
#endif #endif
uint corner = summed[cornerIndex];
uvec3 unpacked = uvec3(corner & 0x3FFu, (corner >> 10u) & 0x3FFu, corner >> 20u); // Division and branching (to avoid dividing by zero) are both kinda expensive, so use this table for the valid block normalization
const float[5] normalizers = float[](0., 1., 1. / 2., 1. / 3., 1. / 4.);
// Normalize by the number of valid blocks. // @formatter:off
adjusted[i].xy = vec2(unpacked.xy) * normalizers[unpacked.z];
adjusted[i].z = float(unpacked.z); #define _FLW_ADJUST_CORNER(i) { \
uint corner = summed[_FLW_CORNER_INDEX(i)]; \
uint validCount = corner >> 20u; \
adjusted[i].xy = vec2(corner & _FLW_LOWER_10_BITS, (corner >> 10u) & _FLW_LOWER_10_BITS) * normalizers[validCount]; \
adjusted[i].z = float(validCount); \
} }
_FLW_ADJUST_CORNER(0)
_FLW_ADJUST_CORNER(1)
_FLW_ADJUST_CORNER(2)
_FLW_ADJUST_CORNER(3)
_FLW_ADJUST_CORNER(4)
_FLW_ADJUST_CORNER(5)
_FLW_ADJUST_CORNER(6)
_FLW_ADJUST_CORNER(7)
// @formatter:on
// Trilinear interpolation, including valid count // Trilinear interpolation, including valid count
vec3 light00 = mix(adjusted[0], adjusted[1], interpolant.z); vec3 light00 = mix(adjusted[0], adjusted[1], interpolant.x);
vec3 light01 = mix(adjusted[2], adjusted[3], interpolant.z); vec3 light01 = mix(adjusted[2], adjusted[3], interpolant.x);
vec3 light10 = mix(adjusted[4], adjusted[5], interpolant.z); vec3 light10 = mix(adjusted[4], adjusted[5], interpolant.x);
vec3 light11 = mix(adjusted[6], adjusted[7], interpolant.z); vec3 light11 = mix(adjusted[6], adjusted[7], interpolant.x);
vec3 light0 = mix(light00, light01, interpolant.y); vec3 light0 = mix(light00, light01, interpolant.z);
vec3 light1 = mix(light10, light11, interpolant.y); vec3 light1 = mix(light10, light11, interpolant.z);
vec3 light = mix(light0, light1, interpolant.x); vec3 light = mix(light0, light1, interpolant.y);
// Normalize the light coords // Normalize the light coords
light.xy *= 1. / 15.; light.xy *= 1. / 15.;
@ -251,7 +321,8 @@ bool flw_light(vec3 worldPos, vec3 normal, out FlwLightAo light) {
// The block's position in the section adjusted into 18x18x18 space // The block's position in the section adjusted into 18x18x18 space
ivec3 blockInSectionPos = (blockPos & 0xF) + 1; ivec3 blockInSectionPos = (blockPos & 0xF) + 1;
#if _FLW_LIGHT_SMOOTHNESS == 1// Directly trilerp as if sampling a texture // Directly trilerp as if sampling a texture
#if _FLW_LIGHT_SMOOTHNESS == 1
// The lowest corner of the 2x2x2 area we'll be trilinear interpolating. // The lowest corner of the 2x2x2 area we'll be trilinear interpolating.
// The ugly bit on the end evaluates to -1 or 0 depending on which side of 0.5 we are. // The ugly bit on the end evaluates to -1 or 0 depending on which side of 0.5 we are.
@ -283,7 +354,8 @@ bool flw_light(vec3 worldPos, vec3 normal, out FlwLightAo light) {
light.light = mix(light0, light1, interpolant.x) / 15.; light.light = mix(light0, light1, interpolant.x) / 15.;
light.ao = 1.; light.ao = 1.;
#elif _FLW_LIGHT_SMOOTHNESS == 2// Lighting and AO accurate to chunk baking // Lighting and AO accurate to chunk baking
#elif _FLW_LIGHT_SMOOTHNESS == 2
uint solid = _flw_fetchSolid3x3x3(sectionOffset, blockInSectionPos); uint solid = _flw_fetchSolid3x3x3(sectionOffset, blockInSectionPos);
@ -304,27 +376,27 @@ bool flw_light(vec3 worldPos, vec3 normal, out FlwLightAo light) {
vec3 lightX; vec3 lightX;
if (normal.x > _FLW_EPSILON) { if (normal.x > _FLW_EPSILON) {
lightX = _flw_lightForDirection(lights, interpolant, uvec3(1u, 0u, 0u), uvec3(1u, 0u, 1u), uvec3(1u, 1u, 0u), uvec3(1u, 1u, 1u), 4u); lightX = _flw_lightForDirection(lights, interpolant, _flw_index3x3x3(1u, 0u, 0u), _flw_index3x3x3(1u, 0u, 1u), _flw_index3x3x3(1u, 1u, 0u), _flw_index3x3x3(1u, 1u, 1u), 1u);
} else if (normal.x < -_FLW_EPSILON) { } else if (normal.x < -_FLW_EPSILON) {
lightX = _flw_lightForDirection(lights, interpolant, uvec3(0u, 0u, 0u), uvec3(0u, 0u, 1u), uvec3(0u, 1u, 0u), uvec3(0u, 1u, 1u), 4u); lightX = _flw_lightForDirection(lights, interpolant, _flw_index3x3x3(0u, 0u, 0u), _flw_index3x3x3(0u, 0u, 1u), _flw_index3x3x3(0u, 1u, 0u), _flw_index3x3x3(0u, 1u, 1u), 1u);
} else { } else {
lightX = vec3(0.); lightX = vec3(0.);
} }
vec3 lightZ; vec3 lightZ;
if (normal.z > _FLW_EPSILON) { if (normal.z > _FLW_EPSILON) {
lightZ = _flw_lightForDirection(lights, interpolant, uvec3(0u, 0u, 1u), uvec3(0u, 1u, 1u), uvec3(1u, 0u, 1u), uvec3(1u, 1u, 1u), 1u); lightZ = _flw_lightForDirection(lights, interpolant, _flw_index3x3x3(0u, 0u, 1u), _flw_index3x3x3(0u, 1u, 1u), _flw_index3x3x3(1u, 0u, 1u), _flw_index3x3x3(1u, 1u, 1u), 2u);
} else if (normal.z < -_FLW_EPSILON) { } else if (normal.z < -_FLW_EPSILON) {
lightZ = _flw_lightForDirection(lights, interpolant, uvec3(0u, 0u, 0u), uvec3(0u, 1u, 0u), uvec3(1u, 0u, 0u), uvec3(1u, 1u, 0u), 1u); lightZ = _flw_lightForDirection(lights, interpolant, _flw_index3x3x3(0u, 0u, 0u), _flw_index3x3x3(0u, 1u, 0u), _flw_index3x3x3(1u, 0u, 0u), _flw_index3x3x3(1u, 1u, 0u), 2u);
} else { } else {
lightZ = vec3(0.); lightZ = vec3(0.);
} }
vec3 lightY; vec3 lightY;
if (normal.y > _FLW_EPSILON) { if (normal.y > _FLW_EPSILON) {
lightY = _flw_lightForDirection(lights, interpolant, uvec3(0u, 1u, 0u), uvec3(0u, 1u, 1u), uvec3(1u, 1u, 0u), uvec3(1u, 1u, 1u), 2u); lightY = _flw_lightForDirection(lights, interpolant, _flw_index3x3x3(0u, 1u, 0u), _flw_index3x3x3(0u, 1u, 1u), _flw_index3x3x3(1u, 1u, 0u), _flw_index3x3x3(1u, 1u, 1u), 4u);
} else if (normal.y < -_FLW_EPSILON) { } else if (normal.y < -_FLW_EPSILON) {
lightY = _flw_lightForDirection(lights, interpolant, uvec3(0u, 0u, 0u), uvec3(0u, 0u, 1u), uvec3(1u, 0u, 0u), uvec3(1u, 0u, 1u), 2u); lightY = _flw_lightForDirection(lights, interpolant, _flw_index3x3x3(0u, 0u, 0u), _flw_index3x3x3(0u, 0u, 1u), _flw_index3x3x3(1u, 0u, 0u), _flw_index3x3x3(1u, 0u, 1u), 4u);
} else { } else {
lightY = vec3(0.); lightY = vec3(0.);
} }
@ -335,7 +407,8 @@ bool flw_light(vec3 worldPos, vec3 normal, out FlwLightAo light) {
light.light = lightAo.xy; light.light = lightAo.xy;
light.ao = lightAo.z; light.ao = lightAo.z;
#else// Entirely flat lighting, the lowest setting and a fallback in case an invalid option is set // Entirely flat lighting, the lowest setting and a fallback in case an invalid option is set
#else
light.light = vec2(_flw_lightAt(sectionOffset, blockInSectionPos)) / 15.; light.light = vec2(_flw_lightAt(sectionOffset, blockInSectionPos)) / 15.;
light.ao = 1.; light.ao = 1.;