Merge remote-tracking branch 'refs/remotes/upstream/1.20/dev' into feat/multi-loader-1.21

This commit is contained in:
IThundxr 2024-07-28 19:00:44 -04:00
commit b55afc9b72
Failed to generate hash of commit
8 changed files with 196 additions and 46 deletions

View file

@ -8,6 +8,7 @@ import org.lwjgl.system.MemoryUtil;
import dev.engine_room.flywheel.api.task.Plan;
import dev.engine_room.flywheel.backend.engine.indirect.StagingBuffer;
import dev.engine_room.flywheel.backend.gl.buffer.GlBuffer;
import dev.engine_room.flywheel.lib.math.MoreMath;
import dev.engine_room.flywheel.lib.task.SimplePlan;
import it.unimi.dsi.fastutil.ints.IntArrayList;
import it.unimi.dsi.fastutil.longs.Long2IntMap;
@ -36,7 +37,10 @@ import net.minecraft.world.level.lighting.LayerLightEventListener;
* <p>Thus, each section occupies 5832 bytes.
*/
public class LightStorage {
public static final long SECTION_SIZE_BYTES = 9 * 9 * 9 * 8;
public static final int BLOCKS_PER_SECTION = 18 * 18 * 18;
public static final int LIGHT_SIZE_BYTES = BLOCKS_PER_SECTION;
public static final int SOLID_SIZE_BYTES = MoreMath.ceilingDiv(BLOCKS_PER_SECTION, Integer.SIZE) * Integer.BYTES;
public static final int SECTION_SIZE_BYTES = SOLID_SIZE_BYTES + LIGHT_SIZE_BYTES;
private static final int DEFAULT_ARENA_CAPACITY_SECTIONS = 64;
private static final int INVALID_SECTION = -1;
@ -158,6 +162,8 @@ public class LightStorage {
// Zero it out first. This is basically free and makes it easier to handle missing sections later.
MemoryUtil.memSet(ptr, 0, SECTION_SIZE_BYTES);
collectSolidData(ptr, section);
collectCenter(blockLight, skyLight, ptr, section);
for (SectionEdge i : SectionEdge.values()) {
@ -175,6 +181,53 @@ public class LightStorage {
collectCorners(blockLight, skyLight, ptr, section);
}
private void collectSolidData(long ptr, long section) {
var blockPos = new BlockPos.MutableBlockPos();
int xMin = SectionPos.sectionToBlockCoord(SectionPos.x(section));
int yMin = SectionPos.sectionToBlockCoord(SectionPos.y(section));
int zMin = SectionPos.sectionToBlockCoord(SectionPos.z(section));
var bitSet = new BitSet(BLOCKS_PER_SECTION);
int index = 0;
for (int y = -1; y < 17; y++) {
for (int z = -1; z < 17; z++) {
for (int x = -1; x < 17; x++) {
blockPos.set(xMin + x, yMin + y, zMin + z);
boolean isFullBlock = level.getBlockState(blockPos)
.isCollisionShapeFullBlock(level, blockPos);
if (isFullBlock) {
bitSet.set(index);
}
index++;
}
}
}
var longArray = bitSet.toLongArray();
for (long l : longArray) {
MemoryUtil.memPutLong(ptr, l);
ptr += Long.BYTES;
}
}
private void writeSolid(long ptr, int index, boolean blockValid) {
if (!blockValid) {
return;
}
int intIndex = index / Integer.SIZE;
int bitIndex = index % Integer.SIZE;
long offset = intIndex * Integer.BYTES;
int bitField = MemoryUtil.memGetInt(ptr + offset);
bitField |= 1 << bitIndex;
MemoryUtil.memPutInt(ptr + offset, bitField);
}
private void collectXStrip(LayerLightEventListener blockLight, LayerLightEventListener skyLight, long ptr, long section, SectionEdge y, SectionEdge z) {
var pos = SectionPos.of(section);
var blockData = blockLight.getDataLayerData(pos);
@ -303,7 +356,7 @@ public class LightStorage {
long packedByte = (block & 0xF) | ((sky & 0xF) << 4);
MemoryUtil.memPutByte(ptr + offset, (byte) packedByte);
MemoryUtil.memPutByte(ptr + SOLID_SIZE_BYTES + offset, (byte) packedByte);
}
/**

View file

@ -17,7 +17,7 @@ import net.minecraft.world.level.Level;
import net.minecraft.world.phys.Vec3;
public final class FrameUniforms extends UniformWriter {
private static final int SIZE = 96 + 64 * 9 + 16 * 4 + 8 * 2 + 8 + 4 * 10;
private static final int SIZE = 96 + 64 * 9 + 16 * 5 + 8 * 2 + 8 + 4 * 10;
static final UniformBuffer BUFFER = new UniformBuffer(Uniforms.FRAME_INDEX, SIZE);
private static final Matrix4f VIEW = new Matrix4f();
@ -94,6 +94,8 @@ public final class FrameUniforms extends UniformWriter {
ptr = writeMatrices(ptr);
ptr = writeRenderOrigin(ptr, renderOrigin);
ptr = writeCamera(ptr);
var window = Minecraft.getInstance()
@ -114,6 +116,11 @@ public final class FrameUniforms extends UniformWriter {
BUFFER.markDirty();
}
private static long writeRenderOrigin(long ptr, Vec3i renderOrigin) {
ptr = writeIVec3(ptr, renderOrigin.getX(), renderOrigin.getY(), renderOrigin.getZ());
return ptr;
}
private static void setPrev() {
VIEW_PREV.set(VIEW);
PROJECTION_PREV.set(PROJECTION);

View file

@ -45,6 +45,28 @@ class UniformWriter {
return ptr + 16;
}
static long writeIVec2(long ptr, int x, int y) {
MemoryUtil.memPutInt(ptr, x);
MemoryUtil.memPutInt(ptr + 4, y);
return ptr + 8;
}
static long writeIVec3(long ptr, int x, int y, int z) {
MemoryUtil.memPutInt(ptr, x);
MemoryUtil.memPutInt(ptr + 4, y);
MemoryUtil.memPutInt(ptr + 8, z);
MemoryUtil.memPutInt(ptr + 12, 0); // empty component of vec4 because we don't trust std140
return ptr + 16;
}
static long writeIVec4(long ptr, int x, int y, int z, int w) {
MemoryUtil.memPutInt(ptr, x);
MemoryUtil.memPutInt(ptr + 4, y);
MemoryUtil.memPutInt(ptr + 8, z);
MemoryUtil.memPutInt(ptr + 12, w);
return ptr + 16;
}
static long writeMat4(long ptr, Matrix4f mat) {
ExtraMemoryOps.putMatrix4f(ptr, mat);
return ptr + 64;

View file

@ -1,10 +1,10 @@
// TODO: Add config for light smoothness. Should work at a compile flag level
/// Get the light at the given world position from the given normal.
/// Get the light at the given world position relative to flw_renderOrigin from the given normal.
/// This may be interpolated for smooth lighting.
bool flw_light(vec3 worldPos, vec3 normal, out vec2 light);
/// Get the light at the given world position.
/// Get the light at the given world position relative to flw_renderOrigin.
/// This may be interpolated for smooth lighting.
bool flw_light(vec3 worldPos, out vec2 light);

View file

@ -1,6 +1,16 @@
const uint _FLW_LIGHT_SECTION_SIZE_BYTES = 18 * 18 * 18;
const uint _FLW_BLOCKS_PER_SECTION = 18 * 18 * 18;
const uint _FLW_LIGHT_SIZE_BYTES = _FLW_BLOCKS_PER_SECTION;
const uint _FLW_SOLID_SIZE_BYTES = ((_FLW_BLOCKS_PER_SECTION + 31) / 32) * 4;
const uint _FLW_LIGHT_START_BYTES = _FLW_SOLID_SIZE_BYTES;
const uint _FLW_LIGHT_SECTION_SIZE_BYTES = _FLW_SOLID_SIZE_BYTES + _FLW_LIGHT_SIZE_BYTES;
const uint _FLW_SOLID_START_INTS = 0;
const uint _FLW_LIGHT_START_INTS = _FLW_SOLID_SIZE_BYTES / 4;
const uint _FLW_LIGHT_SECTION_SIZE_INTS = _FLW_LIGHT_SECTION_SIZE_BYTES / 4;
const uint _FLW_COMPLETELY_SOLID = 0x7FFFFFFu;
const float _FLW_EPSILON = 1e-5;
uint _flw_indexLut(uint index);
uint _flw_indexLight(uint index);
@ -51,17 +61,28 @@ bool _flw_chunkCoordToSectionIndex(ivec3 sectionPos, out uint index) {
return false;
}
vec2 _flw_lightAt(uint sectionOffset, uvec3 blockInSectionPos) {
uvec2 _flw_lightAt(uint sectionOffset, uvec3 blockInSectionPos) {
uint byteOffset = blockInSectionPos.x + blockInSectionPos.z * 18u + blockInSectionPos.y * 18u * 18u;
uint uintOffset = byteOffset >> 2u;
uint bitOffset = (byteOffset & 3u) << 3;
uint raw = _flw_indexLight(sectionOffset + uintOffset);
uint raw = _flw_indexLight(sectionOffset + _FLW_LIGHT_START_INTS + uintOffset);
uint block = (raw >> bitOffset) & 0xFu;
uint sky = (raw >> (bitOffset + 4u)) & 0xFu;
return vec2(block, sky);
return uvec2(block, sky);
}
bool _flw_isSolid(uint sectionOffset, uvec3 blockInSectionPos) {
uint bitOffset = blockInSectionPos.x + blockInSectionPos.z * 18u + blockInSectionPos.y * 18u * 18u;
uint uintOffset = bitOffset / 32u;
uint bitInWordOffset = bitOffset % 32u;
uint word = _flw_indexLight(sectionOffset + _FLW_SOLID_START_INTS + uintOffset);
return (word & (1u << bitInWordOffset)) != 0;
}
bool flw_lightFetch(ivec3 blockPos, out vec2 lightCoord) {
@ -74,7 +95,7 @@ bool flw_lightFetch(ivec3 blockPos, out vec2 lightCoord) {
uvec3 blockInSectionPos = (blockPos & 0xF) + 1;
lightCoord = _flw_lightAt(sectionOffset, blockInSectionPos) / 15.;
lightCoord = vec2(_flw_lightAt(sectionOffset, blockInSectionPos)) / 15.;
return true;
}
@ -82,7 +103,7 @@ bool flw_light(vec3 worldPos, out vec2 lightCoord) {
// Always use the section of the block we are contained in to ensure accuracy.
// We don't want to interpolate between sections, but also we might not be able
// to rely on the existence neighboring sections, so don't do any extra rounding here.
ivec3 blockPos = ivec3(floor(worldPos));
ivec3 blockPos = ivec3(floor(worldPos)) + flw_renderOrigin;
uint lightSectionIndex;
if (_flw_chunkCoordToSectionIndex(blockPos >> 4, lightSectionIndex)) {
@ -104,14 +125,14 @@ bool flw_light(vec3 worldPos, out vec2 lightCoord) {
// Fetch everything for trilinear interpolation
// Hypothetically we could re-order these and do some calculations in-between fetches
// to help with latency hiding, but the compiler should be able to do that for us.
vec2 light000 = _flw_lightAt(sectionOffset, lowestCorner);
vec2 light001 = _flw_lightAt(sectionOffset, lowestCorner + uvec3(0, 0, 1));
vec2 light010 = _flw_lightAt(sectionOffset, lowestCorner + uvec3(0, 1, 0));
vec2 light011 = _flw_lightAt(sectionOffset, lowestCorner + uvec3(0, 1, 1));
vec2 light100 = _flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 0, 0));
vec2 light101 = _flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 0, 1));
vec2 light110 = _flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 1, 0));
vec2 light111 = _flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 1, 1));
vec2 light000 = vec2(_flw_lightAt(sectionOffset, lowestCorner));
vec2 light001 = vec2(_flw_lightAt(sectionOffset, lowestCorner + uvec3(0, 0, 1)));
vec2 light010 = vec2(_flw_lightAt(sectionOffset, lowestCorner + uvec3(0, 1, 0)));
vec2 light011 = vec2(_flw_lightAt(sectionOffset, lowestCorner + uvec3(0, 1, 1)));
vec2 light100 = vec2(_flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 0, 0)));
vec2 light101 = vec2(_flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 0, 1)));
vec2 light110 = vec2(_flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 1, 0)));
vec2 light111 = vec2(_flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 1, 1)));
vec2 light00 = mix(light000, light001, interpolant.z);
vec2 light01 = mix(light010, light011, interpolant.z);
@ -131,13 +152,19 @@ uint _flw_lightIndex(in uvec3 p) {
/// Premtively collect all light in a 3x3x3 area centered on our block.
/// Depending on the normal, we won't use all the data, but fetching on demand will have many duplicated fetches.
vec2[27] _flw_lightFetch3x3x3(uint sectionOffset, ivec3 blockInSectionPos) {
vec2[27] lights;
uvec3[27] _flw_fetchLight3x3x3(uint sectionOffset, ivec3 blockInSectionPos, uint solid) {
uvec3[27] lights;
uint index = 0u;
uint mask = 1u;
for (int y = -1; y <= 1; y++) {
for (int z = -1; z <= 1; z++) {
for (int x = -1; x <= 1; x++) {
lights[_flw_lightIndex(uvec3(x + 1, y + 1, z + 1))] = _flw_lightAt(sectionOffset, uvec3(blockInSectionPos + ivec3(x, y, z)));
// 0 if the block is solid, 1 if it's not.
uint flag = uint((solid & mask) == 0u);
lights[index] = uvec3(_flw_lightAt(sectionOffset, uvec3(blockInSectionPos + ivec3(x, y, z))), flag);
index++;
mask <<= 1;
}
}
}
@ -145,6 +172,24 @@ vec2[27] _flw_lightFetch3x3x3(uint sectionOffset, ivec3 blockInSectionPos) {
return lights;
}
uint _flw_fetchSolid3x3x3(uint sectionOffset, ivec3 blockInSectionPos) {
uint ret = 0;
uint index = 0;
for (int y = -1; y <= 1; y++) {
for (int z = -1; z <= 1; z++) {
for (int x = -1; x <= 1; x++) {
bool flag = _flw_isSolid(sectionOffset, uvec3(blockInSectionPos + ivec3(x, y, z)));
ret |= uint(flag) << index;
index++;
}
}
}
return ret;
}
/// Calculate the light for a direction by averaging the light at the corners of the block.
///
/// To make this reusable across directions, c00..c11 choose what values relative to each corner to use.
@ -155,16 +200,26 @@ vec2[27] _flw_lightFetch3x3x3(uint sectionOffset, ivec3 blockInSectionPos) {
/// @param lights The light data for the 3x3x3 area.
/// @param interpolant The position within the center block.
/// @param c00..c11 4 offsets to determine which "direction" we are averaging.
vec2 _flw_lightForDirection(in vec2[27] lights, in vec3 interpolant, in uvec3 c00, in uvec3 c01, in uvec3 c10, in uvec3 c11) {
vec2 _flw_lightForDirection(in uvec3[27] lights, in vec3 interpolant, in uvec3 c00, in uvec3 c01, in uvec3 c10, in uvec3 c11) {
vec2 light000 = lights[_flw_lightIndex(c00 + uvec3(0u, 0u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 0u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 0u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 0u, 0u))];
vec2 light001 = lights[_flw_lightIndex(c00 + uvec3(0u, 0u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 0u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 0u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 0u, 1u))];
vec2 light010 = lights[_flw_lightIndex(c00 + uvec3(0u, 1u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 1u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 1u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 1u, 0u))];
vec2 light011 = lights[_flw_lightIndex(c00 + uvec3(0u, 1u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 1u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 1u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 1u, 1u))];
vec2 light100 = lights[_flw_lightIndex(c00 + uvec3(1u, 0u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 0u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 0u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 0u, 0u))];
vec2 light101 = lights[_flw_lightIndex(c00 + uvec3(1u, 0u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 0u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 0u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 0u, 1u))];
vec2 light110 = lights[_flw_lightIndex(c00 + uvec3(1u, 1u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 1u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 1u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 1u, 0u))];
vec2 light111 = lights[_flw_lightIndex(c00 + uvec3(1u, 1u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 1u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 1u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 1u, 1u))];
uvec3 i000 = lights[_flw_lightIndex(c00 + uvec3(0u, 0u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 0u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 0u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 0u, 0u))];
uvec3 i001 = lights[_flw_lightIndex(c00 + uvec3(0u, 0u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 0u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 0u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 0u, 1u))];
uvec3 i010 = lights[_flw_lightIndex(c00 + uvec3(0u, 1u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 1u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 1u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 1u, 0u))];
uvec3 i011 = lights[_flw_lightIndex(c00 + uvec3(0u, 1u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 1u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 1u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 1u, 1u))];
uvec3 i100 = lights[_flw_lightIndex(c00 + uvec3(1u, 0u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 0u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 0u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 0u, 0u))];
uvec3 i101 = lights[_flw_lightIndex(c00 + uvec3(1u, 0u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 0u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 0u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 0u, 1u))];
uvec3 i110 = lights[_flw_lightIndex(c00 + uvec3(1u, 1u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 1u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 1u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 1u, 0u))];
uvec3 i111 = lights[_flw_lightIndex(c00 + uvec3(1u, 1u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 1u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 1u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 1u, 1u))];
// Divide by the number of light transmitting blocks to get the average.
vec2 light000 = i000.z == 0 ? vec2(0) : vec2(i000.xy) / float(i000.z);
vec2 light001 = i001.z == 0 ? vec2(0) : vec2(i001.xy) / float(i001.z);
vec2 light010 = i010.z == 0 ? vec2(0) : vec2(i010.xy) / float(i010.z);
vec2 light011 = i011.z == 0 ? vec2(0) : vec2(i011.xy) / float(i011.z);
vec2 light100 = i100.z == 0 ? vec2(0) : vec2(i100.xy) / float(i100.z);
vec2 light101 = i101.z == 0 ? vec2(0) : vec2(i101.xy) / float(i101.z);
vec2 light110 = i110.z == 0 ? vec2(0) : vec2(i110.xy) / float(i110.z);
vec2 light111 = i111.z == 0 ? vec2(0) : vec2(i111.xy) / float(i111.z);
vec2 light00 = mix(light000, light001, interpolant.z);
vec2 light01 = mix(light010, light011, interpolant.z);
@ -174,15 +229,14 @@ vec2 _flw_lightForDirection(in vec2[27] lights, in vec3 interpolant, in uvec3 c0
vec2 light0 = mix(light00, light01, interpolant.y);
vec2 light1 = mix(light10, light11, interpolant.y);
// Divide by 60 (15 * 4) to normalize.
return mix(light0, light1, interpolant.x) / 63.;
return mix(light0, light1, interpolant.x) / 15.;
}
bool flw_light(vec3 worldPos, vec3 normal, out vec2 lightCoord) {
// Always use the section of the block we are contained in to ensure accuracy.
// We don't want to interpolate between sections, but also we might not be able
// to rely on the existence neighboring sections, so don't do any extra rounding here.
ivec3 blockPos = ivec3(floor(worldPos));
ivec3 blockPos = ivec3(floor(worldPos)) + flw_renderOrigin;
uint lightSectionIndex;
if (_flw_chunkCoordToSectionIndex(blockPos >> 4, lightSectionIndex)) {
@ -194,24 +248,31 @@ bool flw_light(vec3 worldPos, vec3 normal, out vec2 lightCoord) {
// The block's position in the section adjusted into 18x18x18 space
ivec3 blockInSectionPos = (blockPos & 0xF) + 1;
uint solid = _flw_fetchSolid3x3x3(sectionOffset, blockInSectionPos);
if (solid == _FLW_COMPLETELY_SOLID) {
lightCoord = vec2(0.);
return true;
}
// Fetch everything in a 3x3x3 area centered around the block.
vec2[27] lights = _flw_lightFetch3x3x3(sectionOffset, blockInSectionPos);
uvec3[27] lights = _flw_fetchLight3x3x3(sectionOffset, blockInSectionPos, solid);
vec3 interpolant = fract(worldPos);
vec2 lightX;
if (normal.x > 0) {
if (normal.x > _FLW_EPSILON) {
lightX = _flw_lightForDirection(lights, interpolant, uvec3(1u, 0u, 0u), uvec3(1u, 0u, 1u), uvec3(1u, 1u, 0u), uvec3(1u, 1u, 1u));
} else if (normal.x < 0) {
} else if (normal.x < -_FLW_EPSILON) {
lightX = _flw_lightForDirection(lights, interpolant, uvec3(0u, 0u, 0u), uvec3(0u, 0u, 1u), uvec3(0u, 1u, 0u), uvec3(0u, 1u, 1u));
} else {
lightX = vec2(0.);
}
vec2 lightZ;
if (normal.z > 0) {
if (normal.z > _FLW_EPSILON) {
lightZ = _flw_lightForDirection(lights, interpolant, uvec3(0u, 0u, 1u), uvec3(0u, 1u, 1u), uvec3(1u, 0u, 1u), uvec3(1u, 1u, 1u));
} else if (normal.z < 0) {
} else if (normal.z < -_FLW_EPSILON) {
lightZ = _flw_lightForDirection(lights, interpolant, uvec3(0u, 0u, 0u), uvec3(0u, 1u, 0u), uvec3(1u, 0u, 0u), uvec3(1u, 1u, 0u));
} else {
lightZ = vec2(0.);
@ -219,9 +280,9 @@ bool flw_light(vec3 worldPos, vec3 normal, out vec2 lightCoord) {
vec2 lightY;
// Average the light in relevant directions at each corner.
if (normal.y > 0.) {
if (normal.y > _FLW_EPSILON) {
lightY = _flw_lightForDirection(lights, interpolant, uvec3(0u, 1u, 0u), uvec3(0u, 1u, 1u), uvec3(1u, 1u, 0u), uvec3(1u, 1u, 1u));
} else if (normal.y < 0.) {
} else if (normal.y < -_FLW_EPSILON) {
lightY = _flw_lightForDirection(lights, interpolant, uvec3(0u, 0u, 0u), uvec3(0u, 0u, 1u), uvec3(1u, 0u, 0u), uvec3(1u, 0u, 1u));
} else {
lightY = vec2(0.);

View file

@ -22,6 +22,8 @@ layout(std140) uniform _FlwFrameUniforms {
mat4 flw_viewProjectionInverse;
mat4 flw_viewProjectionPrev;
ivec4 _flw_renderOrigin;
vec4 _flw_cameraPos;
vec4 _flw_cameraPosPrev;
vec4 _flw_cameraLook;
@ -47,10 +49,11 @@ layout(std140) uniform _FlwFrameUniforms {
uint _flw_debugMode;
};
#define flw_cameraPos _flw_cameraPos.xyz
#define flw_cameraLook _flw_cameraLook.xyz
#define flw_cameraPosPrev _flw_cameraPosPrev.xyz
#define flw_cameraLookPrev _flw_cameraLookPrev.xyz
#define flw_renderOrigin (_flw_renderOrigin.xyz)
#define flw_cameraPos (_flw_cameraPos.xyz)
#define flw_cameraLook (_flw_cameraLook.xyz)
#define flw_cameraPosPrev (_flw_cameraPosPrev.xyz)
#define flw_cameraLookPrev (_flw_cameraLookPrev.xyz)
#define FLW_CAMERA_IN_FLUID_WATER 1
#define FLW_CAMERA_IN_FLUID_LAVA 2

View file

@ -9,6 +9,10 @@ public final class MoreMath {
*/
public static final float SQRT_3_OVER_2 = (float) (Math.sqrt(3.0) / 2.0);
public static int align32(int size) {
return (size + 31) & ~31;
}
public static int align16(int size) {
return (size + 15) & ~15;
}

View file

@ -1,6 +1,6 @@
void flw_shaderLight() {
vec2 embeddedLight;
if (flw_lightFetch(ivec3(floor(flw_vertexPos.xyz)), embeddedLight)) {
if (flw_lightFetch(ivec3(floor(flw_vertexPos.xyz)) + flw_renderOrigin, embeddedLight)) {
flw_fragLight = max(flw_fragLight, embeddedLight);
}
}