mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2025-01-22 10:57:55 +01:00
Monster mat
- Tweak the matrix and quaternion utility shaders.
This commit is contained in:
parent
af56417d23
commit
e5428d20e8
4 changed files with 42 additions and 22 deletions
|
@ -5,5 +5,5 @@ void flw_transformBoundingSphere(in FlwInstance i, inout vec3 center, inout floa
|
||||||
vec3 pivot = i.pivot;
|
vec3 pivot = i.pivot;
|
||||||
vec3 pos = i.position;
|
vec3 pos = i.position;
|
||||||
|
|
||||||
center = rotateVertexByQuat(center - pivot, rotation) + pivot + pos;
|
center = rotateByQuaternion(center - pivot, rotation) + pivot + pos;
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,8 +1,8 @@
|
||||||
#include "flywheel:util/quaternion.glsl"
|
#include "flywheel:util/quaternion.glsl"
|
||||||
|
|
||||||
void flw_instanceVertex(in FlwInstance i) {
|
void flw_instanceVertex(in FlwInstance i) {
|
||||||
flw_vertexPos = vec4(rotateVertexByQuat(flw_vertexPos.xyz - i.pivot, i.rotation) + i.pivot + i.position, 1.0);
|
flw_vertexPos = vec4(rotateByQuaternion(flw_vertexPos.xyz - i.pivot, i.rotation) + i.pivot + i.position, 1.0);
|
||||||
flw_vertexNormal = rotateVertexByQuat(flw_vertexNormal, i.rotation);
|
flw_vertexNormal = rotateByQuaternion(flw_vertexNormal, i.rotation);
|
||||||
flw_vertexColor = i.color;
|
flw_vertexColor = i.color;
|
||||||
flw_vertexLight = i.light / 15.0;
|
flw_vertexLight = i.light / 15.0;
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,20 +1,35 @@
|
||||||
mat4 rotate(vec3 axis, float angle) {
|
mat3 rotation(vec3 axis, float angle) {
|
||||||
float s = sin(angle);
|
float s = sin(angle);
|
||||||
float c = cos(angle);
|
float c = cos(angle);
|
||||||
float oc = 1. - c;
|
float oc = 1. - c;
|
||||||
|
|
||||||
vec3 sa = axis * s;
|
vec3 sa = axis * s;
|
||||||
|
|
||||||
mat4 mr = mat4(1.);
|
return mat3(
|
||||||
mr[0].xyz = oc * axis.xxz * axis.xyx + vec3(c, sa.z, -sa.y);
|
oc * axis.xxz * axis.xyx + vec3(c, sa.z, -sa.y),
|
||||||
mr[1].xyz = oc * axis.xyy * axis.yyz + vec3(-sa.z, c, sa.x);
|
oc * axis.xyy * axis.yyz + vec3(-sa.z, c, sa.x),
|
||||||
mr[2].xyz = oc * axis.zyz * axis.xzz + vec3(sa.y, -sa.x, c);
|
oc * axis.zyz * axis.xzz + vec3(sa.y, -sa.x, c)
|
||||||
|
);
|
||||||
return mr;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
mat4 rotation(vec3 rot) {
|
mat3 rotationDegrees(vec3 axis, float angle) {
|
||||||
return rotate(vec3(0., 1., 0.), rot.y) * rotate(vec3(0., 0., 1.), rot.z) * rotate(vec3(1., 0., 0.), rot.x);
|
return rotation(axis, radians(angle));
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Create a rotation matrix that rotates the vector `from` to `to`.
|
||||||
|
* https://iquilezles.org/articles/noacos/
|
||||||
|
*/
|
||||||
|
mat3 rotationAlign(in vec3 from, in vec3 to) {
|
||||||
|
vec3 v = cross(from, to);
|
||||||
|
float c = dot(from, to);
|
||||||
|
float k = 1. / (1. + c);
|
||||||
|
|
||||||
|
return mat3(
|
||||||
|
k * v * v.xxx + vec3(c, -v.z, v.y),
|
||||||
|
k * v * v.yyy + vec3(v.z, c, -v.x),
|
||||||
|
k * v * v.zzz + vec3(-v.y, v.x, c)
|
||||||
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
mat3 modelToNormal(mat4 mat) {
|
mat3 modelToNormal(mat4 mat) {
|
||||||
|
|
|
@ -1,12 +1,13 @@
|
||||||
#define PI_OVER_2 1.5707963268
|
vec4 quaternion(vec3 axis, float angle) {
|
||||||
|
float halfAngle = angle * 0.5;
|
||||||
vec4 quat(vec3 axis, float angle) {
|
return vec4(axis.xyz * sin(halfAngle), cos(halfAngle));
|
||||||
float halfAngle = angle * PI_OVER_2 / 180.0;
|
|
||||||
vec2 cs = sin(vec2(PI_OVER_2 - halfAngle, halfAngle)); // compute sin and cos in one instruction
|
|
||||||
return vec4(axis.xyz * cs.y, cs.x);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
vec4 quatMult(vec4 q1, vec4 q2) {
|
vec4 quaternionDegrees(vec3 axis, float angle) {
|
||||||
|
return quaternion(axis, radians(angle));
|
||||||
|
}
|
||||||
|
|
||||||
|
vec4 multiplyQuaternions(vec4 q1, vec4 q2) {
|
||||||
// disgustingly vectorized quaternion multiplication
|
// disgustingly vectorized quaternion multiplication
|
||||||
vec4 a = q1.w * q2.xyzw;
|
vec4 a = q1.w * q2.xyzw;
|
||||||
vec4 b = q1.x * q2.wzxy * vec4(1., -1., 1., -1.);
|
vec4 b = q1.x * q2.wzxy * vec4(1., -1., 1., -1.);
|
||||||
|
@ -16,11 +17,15 @@ vec4 quatMult(vec4 q1, vec4 q2) {
|
||||||
return a + b + c + d;
|
return a + b + c + d;
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 rotateVertexByQuat(vec3 v, vec4 q) {
|
vec3 rotateByQuaternion(vec3 v, vec4 q) {
|
||||||
vec3 i = q.xyz;
|
vec3 i = q.xyz;
|
||||||
return v + 2.0 * cross(i, cross(i, v) + q.w * v);
|
return v + 2.0 * cross(i, cross(i, v) + q.w * v);
|
||||||
}
|
}
|
||||||
|
|
||||||
vec3 rotateAbout(vec3 v, vec3 axis, float angle) {
|
vec3 rotateAxisAngle(vec3 v, vec3 axis, float angle) {
|
||||||
return rotateVertexByQuat(v, quat(axis, angle));
|
return rotateByQuaternion(v, quaternion(axis, angle));
|
||||||
|
}
|
||||||
|
|
||||||
|
vec3 rotateAxisAngleDegrees(vec3 v, vec3 axis, float angle) {
|
||||||
|
return rotateByQuaternion(v, quaternionDegrees(axis, angle));
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue