mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2025-01-07 12:56:31 +01:00
Barely better batches
- TransformCall now uses ForEachSlicePlan to reduce the number of objects created. - WaitGroup#await can now timeout. This allows the main thread to contribute more work in a syncPoint. - Don't normalize in transformNormal, things already are normalized.
This commit is contained in:
parent
257ee07e0e
commit
fcd70cccd0
7 changed files with 172 additions and 67 deletions
|
@ -13,7 +13,8 @@ import com.jozufozu.flywheel.api.material.Material;
|
|||
import com.jozufozu.flywheel.api.material.MaterialVertexTransformer;
|
||||
import com.jozufozu.flywheel.api.task.Plan;
|
||||
import com.jozufozu.flywheel.api.vertex.MutableVertexList;
|
||||
import com.jozufozu.flywheel.lib.task.ForEachPlan;
|
||||
import com.jozufozu.flywheel.api.vertex.ReusableVertexList;
|
||||
import com.jozufozu.flywheel.lib.task.ForEachSlicePlan;
|
||||
import com.jozufozu.flywheel.lib.vertex.VertexTransformations;
|
||||
import com.mojang.blaze3d.vertex.PoseStack;
|
||||
import com.mojang.math.Matrix3f;
|
||||
|
@ -37,22 +38,26 @@ public class TransformCall<I extends Instance> {
|
|||
meshVertexCount = mesh.getVertexCount();
|
||||
Vector4fc meshBoundingSphere = mesh.boundingSphere();
|
||||
|
||||
drawPlan = ForEachPlan.of(instancer::getAll, (instance, ctx) -> {
|
||||
var boundingSphere = new Vector4f(meshBoundingSphere);
|
||||
drawPlan = ForEachSlicePlan.of(instancer::getAll, (subList, ctx) -> {
|
||||
ReusableVertexList vertexList = ctx.buffer.slice(0, meshVertexCount);
|
||||
Vector4f boundingSphere = new Vector4f();
|
||||
|
||||
for (I instance : subList) {
|
||||
boundingSphere.set(meshBoundingSphere);
|
||||
boundingSphereTransformer.transform(boundingSphere, instance);
|
||||
|
||||
if (!ctx.frustum
|
||||
.testSphere(boundingSphere.x, boundingSphere.y, boundingSphere.z, boundingSphere.w)) {
|
||||
return;
|
||||
if (!ctx.frustum.testSphere(boundingSphere.x, boundingSphere.y, boundingSphere.z, boundingSphere.w)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
final int baseVertex = ctx.vertexCounter.getAndAdd(meshVertexCount);
|
||||
var sub = ctx.buffer.slice(baseVertex, meshVertexCount);
|
||||
vertexList.ptr(ctx.buffer.ptrForVertex(baseVertex));
|
||||
|
||||
mesh.copyTo(sub.ptr());
|
||||
instanceVertexTransformer.transform(sub, instance);
|
||||
materialVertexTransformer.transform(sub, ctx.level);
|
||||
applyMatrices(sub, ctx.matrices);
|
||||
mesh.copyTo(vertexList.ptr());
|
||||
instanceVertexTransformer.transform(vertexList, instance);
|
||||
materialVertexTransformer.transform(vertexList, ctx.level);
|
||||
applyMatrices(vertexList, ctx.matrices);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
|
|
|
@ -145,10 +145,9 @@ public class ParallelTaskExecutor implements TaskExecutor {
|
|||
processTask(task);
|
||||
} else {
|
||||
// then wait for the other threads to finish.
|
||||
waitGroup.await();
|
||||
// at this point we know taskQueue is empty,
|
||||
// but one of the worker threads may have submitted a main thread task.
|
||||
if (mainThreadQueue.isEmpty()) {
|
||||
boolean done = waitGroup.await(10_000);
|
||||
// If we timed-out tasks may have been added to the queue, so check again.
|
||||
if (done && mainThreadQueue.isEmpty()) {
|
||||
// if they didn't, we're done.
|
||||
break;
|
||||
}
|
||||
|
@ -157,13 +156,17 @@ public class ParallelTaskExecutor implements TaskExecutor {
|
|||
}
|
||||
|
||||
public void discardAndAwait() {
|
||||
while (true) {
|
||||
// Discard everyone else's work...
|
||||
while (taskQueue.pollLast() != null) {
|
||||
waitGroup.done();
|
||||
}
|
||||
|
||||
// ...wait for any stragglers...
|
||||
waitGroup.await();
|
||||
if (waitGroup.await(100_000)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
// ...and clear the main thread queue.
|
||||
mainThreadQueue.clear();
|
||||
}
|
||||
|
|
|
@ -8,8 +8,17 @@ import java.util.function.Supplier;
|
|||
import com.jozufozu.flywheel.api.task.Plan;
|
||||
import com.jozufozu.flywheel.api.task.TaskExecutor;
|
||||
|
||||
public record ForEachPlan<T, C>(Supplier<List<T>> listSupplier,
|
||||
BiConsumer<T, C> action) implements SimplyComposedPlan<C> {
|
||||
/**
|
||||
* A plan that executes code on each element of a provided list.
|
||||
* <p>
|
||||
* Operations are dynamically batched based on the number of available threads.
|
||||
*
|
||||
* @param listSupplier A supplier of the list to iterate over.
|
||||
* @param action The action to perform on each element.
|
||||
* @param <T> The type of the list elements.
|
||||
* @param <C> The type of the context object.
|
||||
*/
|
||||
public record ForEachPlan<T, C>(Supplier<List<T>> listSupplier, BiConsumer<T, C> action) implements SimplyComposedPlan<C> {
|
||||
public static <T, C> Plan<C> of(Supplier<List<T>> iterable, BiConsumer<T, C> forEach) {
|
||||
return new ForEachPlan<>(iterable, forEach);
|
||||
}
|
||||
|
|
|
@ -0,0 +1,30 @@
|
|||
package com.jozufozu.flywheel.lib.task;
|
||||
|
||||
import java.util.List;
|
||||
import java.util.function.BiConsumer;
|
||||
import java.util.function.Supplier;
|
||||
|
||||
import com.jozufozu.flywheel.api.task.Plan;
|
||||
import com.jozufozu.flywheel.api.task.TaskExecutor;
|
||||
|
||||
/**
|
||||
* A plan that executes code over many slices of a provided list.
|
||||
* <p>
|
||||
* The size of the slice is dynamically determined based on the number of available threads.
|
||||
*
|
||||
* @param listSupplier A supplier of the list to iterate over.
|
||||
* @param action The action to perform on each sub list.
|
||||
* @param <T> The type of the list elements.
|
||||
* @param <C> The type of the context object.
|
||||
*/
|
||||
public record ForEachSlicePlan<T, C>(Supplier<List<T>> listSupplier,
|
||||
BiConsumer<List<T>, C> action) implements SimplyComposedPlan<C> {
|
||||
public static <T, C> Plan<C> of(Supplier<List<T>> iterable, BiConsumer<List<T>, C> forEach) {
|
||||
return new ForEachSlicePlan<>(iterable, forEach);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void execute(TaskExecutor taskExecutor, C context, Runnable onCompletion) {
|
||||
taskExecutor.execute(() -> PlanUtil.distributeSlices(taskExecutor, context, onCompletion, listSupplier.get(), action));
|
||||
}
|
||||
}
|
|
@ -1,5 +1,6 @@
|
|||
package com.jozufozu.flywheel.lib.task;
|
||||
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
import java.util.function.BiConsumer;
|
||||
|
||||
|
@ -12,38 +13,84 @@ public class PlanUtil {
|
|||
|
||||
if (size == 0) {
|
||||
onCompletion.run();
|
||||
} else if (size <= getChunkSize(taskExecutor, size)) {
|
||||
processList(context, onCompletion, list, action);
|
||||
return;
|
||||
}
|
||||
|
||||
final int sliceSize = sliceSize(taskExecutor, size);
|
||||
|
||||
if (size <= sliceSize) {
|
||||
for (T t : list) {
|
||||
action.accept(t, context);
|
||||
}
|
||||
onCompletion.run();
|
||||
} else if (sliceSize == 1) {
|
||||
var synchronizer = new Synchronizer(size, onCompletion);
|
||||
for (T t : list) {
|
||||
taskExecutor.execute(() -> {
|
||||
action.accept(t, context);
|
||||
synchronizer.decrementAndEventuallyRun();
|
||||
});
|
||||
}
|
||||
} else {
|
||||
dispatchChunks(taskExecutor, context, onCompletion, list, action);
|
||||
}
|
||||
}
|
||||
|
||||
public static int getChunkSize(TaskExecutor taskExecutor, int totalSize) {
|
||||
return MoreMath.ceilingDiv(totalSize, taskExecutor.getThreadCount() * 32);
|
||||
}
|
||||
|
||||
static <C, T> void dispatchChunks(TaskExecutor taskExecutor, C context, Runnable onCompletion, List<T> list, BiConsumer<T, C> action) {
|
||||
final int size = list.size();
|
||||
final int chunkSize = getChunkSize(taskExecutor, size);
|
||||
|
||||
var synchronizer = new Synchronizer(MoreMath.ceilingDiv(size, chunkSize), onCompletion);
|
||||
var synchronizer = new Synchronizer(MoreMath.ceilingDiv(size, sliceSize), onCompletion);
|
||||
int remaining = size;
|
||||
|
||||
while (remaining > 0) {
|
||||
int end = remaining;
|
||||
remaining -= chunkSize;
|
||||
remaining -= sliceSize;
|
||||
int start = Math.max(remaining, 0);
|
||||
|
||||
var subList = list.subList(start, end);
|
||||
taskExecutor.execute(() -> processList(context, synchronizer, subList, action));
|
||||
taskExecutor.execute(() -> {
|
||||
for (T t : subList) {
|
||||
action.accept(t, context);
|
||||
}
|
||||
synchronizer.decrementAndEventuallyRun();
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static <C, T> void processList(C context, Runnable onCompletion, List<T> list, BiConsumer<T, C> action) {
|
||||
for (var t : list) {
|
||||
action.accept(t, context);
|
||||
}
|
||||
public static <C, T> void distributeSlices(TaskExecutor taskExecutor, C context, Runnable onCompletion, List<T> list, BiConsumer<List<T>, C> action) {
|
||||
final int size = list.size();
|
||||
|
||||
if (size == 0) {
|
||||
onCompletion.run();
|
||||
return;
|
||||
}
|
||||
|
||||
final int sliceSize = sliceSize(taskExecutor, size);
|
||||
|
||||
if (size <= sliceSize) {
|
||||
action.accept(list, context);
|
||||
onCompletion.run();
|
||||
} else if (sliceSize == 1) {
|
||||
var synchronizer = new Synchronizer(size, onCompletion);
|
||||
for (T t : list) {
|
||||
taskExecutor.execute(() -> {
|
||||
action.accept(Collections.singletonList(t), context);
|
||||
synchronizer.decrementAndEventuallyRun();
|
||||
});
|
||||
}
|
||||
} else {
|
||||
var synchronizer = new Synchronizer(MoreMath.ceilingDiv(size, sliceSize), onCompletion);
|
||||
int remaining = size;
|
||||
|
||||
while (remaining > 0) {
|
||||
int end = remaining;
|
||||
remaining -= sliceSize;
|
||||
int start = Math.max(remaining, 0);
|
||||
|
||||
var subList = list.subList(start, end);
|
||||
taskExecutor.execute(() -> {
|
||||
action.accept(subList, context);
|
||||
synchronizer.decrementAndEventuallyRun();
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public static int sliceSize(TaskExecutor taskExecutor, int totalSize) {
|
||||
return MoreMath.ceilingDiv(totalSize, taskExecutor.getThreadCount() * 32);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -31,12 +31,22 @@ public class WaitGroup {
|
|||
}
|
||||
}
|
||||
|
||||
public void await() {
|
||||
// TODO: comprehensive performance tracking for tasks
|
||||
/**
|
||||
* Spins for up to the given number of nanoseconds before returning.
|
||||
*
|
||||
* @param nsTimeout How long to wait for the counter to reach 0.
|
||||
* @return {@code true} if the counter reached 0, {@code false} if the timeout was reached.
|
||||
*/
|
||||
public boolean await(int nsTimeout) {
|
||||
long startTime = System.nanoTime();
|
||||
while (counter.get() > 0) {
|
||||
if (System.nanoTime() - startTime > nsTimeout) {
|
||||
return false;
|
||||
}
|
||||
// spin in place to avoid sleeping the main thread
|
||||
Thread.onSpinWait();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
public void _reset() {
|
||||
|
|
|
@ -1,8 +1,5 @@
|
|||
package com.jozufozu.flywheel.lib.vertex;
|
||||
|
||||
import static org.joml.Math.fma;
|
||||
import static org.joml.Math.invsqrt;
|
||||
|
||||
import com.jozufozu.flywheel.api.vertex.MutableVertexList;
|
||||
import com.jozufozu.flywheel.lib.math.MatrixUtil;
|
||||
import com.mojang.math.Matrix3f;
|
||||
|
@ -18,6 +15,9 @@ public final class VertexTransformations {
|
|||
vertexList.z(index, MatrixUtil.transformPositionZ(matrix, x, y, z));
|
||||
}
|
||||
|
||||
/**
|
||||
* Assumes the matrix preserves scale.
|
||||
*/
|
||||
public static void transformNormal(MutableVertexList vertexList, int index, Matrix3f matrix) {
|
||||
float nx = vertexList.normalX(index);
|
||||
float ny = vertexList.normalY(index);
|
||||
|
@ -25,13 +25,14 @@ public final class VertexTransformations {
|
|||
float tnx = MatrixUtil.transformNormalX(matrix, nx, ny, nz);
|
||||
float tny = MatrixUtil.transformNormalY(matrix, nx, ny, nz);
|
||||
float tnz = MatrixUtil.transformNormalZ(matrix, nx, ny, nz);
|
||||
float sqrLength = fma(tnx, tnx, fma(tny, tny, tnz * tnz));
|
||||
if (sqrLength != 0) {
|
||||
float f = invsqrt(sqrLength);
|
||||
tnx *= f;
|
||||
tny *= f;
|
||||
tnz *= f;
|
||||
}
|
||||
// seems to be the case that sqrLength is always ~1.0
|
||||
// float sqrLength = fma(tnx, tnx, fma(tny, tny, tnz * tnz));
|
||||
// if (sqrLength != 0) {
|
||||
// float f = invsqrt(sqrLength);
|
||||
// tnx *= f;
|
||||
// tny *= f;
|
||||
// tnz *= f;
|
||||
// }
|
||||
vertexList.normalX(index, tnx);
|
||||
vertexList.normalY(index, tny);
|
||||
vertexList.normalZ(index, tnz);
|
||||
|
|
Loading…
Reference in a new issue