/* * The MIT License * * Copyright (c) 2015-2021 Richard Greenlees * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ package com.jozufozu.flywheel.repack.joml; import java.io.Externalizable; import java.io.IOException; import java.io.ObjectInput; import java.io.ObjectOutput; import java.nio.ByteBuffer; import java.nio.IntBuffer; import java.text.DecimalFormat; import java.text.NumberFormat; /** * Contains the definition of a Vector comprising 4 ints and associated * transformations. * * @author Richard Greenlees * @author Kai Burjack * @author Hans Uhlig */ public class Vector4i implements Externalizable, Cloneable, Vector4ic { private static final long serialVersionUID = 1L; /** * The x component of the vector. */ public int x; /** * The y component of the vector. */ public int y; /** * The z component of the vector. */ public int z; /** * The w component of the vector. */ public int w; /** * Create a new {@link Vector4i} of (0, 0, 0, 1). */ public Vector4i() { this.w = 1; } /** * Create a new {@link Vector4i} with the same values as v. * * @param v * the {@link Vector4ic} to copy the values from */ public Vector4i(Vector4ic v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = v.w(); } /** * Create a new {@link Vector4i} with the first three components from the * given v and the given w. * * @param v * the {@link Vector3ic} * @param w * the w component */ public Vector4i(Vector3ic v, int w) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = w; } /** * Create a new {@link Vector4i} with the first two components from the * given v and the given z, and w. * * @param v * the {@link Vector2ic} * @param z * the z component * @param w * the w component */ public Vector4i(Vector2ic v, int z, int w) { this.x = v.x(); this.y = v.y(); this.z = z; this.w = w; } /** * Create a new {@link Vector4i} with the first three components from the * given v and the given w and round using the given {@link RoundingMode}. * * @param v * the {@link Vector3fc} to copy the values from * @param w * the w component * @param mode * the {@link RoundingMode} to use */ public Vector4i(Vector3fc v, float w, int mode) { x = Math.roundUsing(v.x(), mode); y = Math.roundUsing(v.y(), mode); z = Math.roundUsing(v.z(), mode); w = Math.roundUsing(w, mode); } /** * Create a new {@link Vector4i} and initialize its components to the rounded value of * the given vector. * * @param v * the {@link Vector4fc} to round and copy the values from * @param mode * the {@link RoundingMode} to use */ public Vector4i(Vector4fc v, int mode) { x = Math.roundUsing(v.x(), mode); y = Math.roundUsing(v.y(), mode); z = Math.roundUsing(v.z(), mode); w = Math.roundUsing(v.w(), mode); } /** * Create a new {@link Vector4i} and initialize its components to the rounded value of * the given vector. * * @param v * the {@link Vector4dc} to round and copy the values from * @param mode * the {@link RoundingMode} to use */ public Vector4i(Vector4dc v, int mode) { x = Math.roundUsing(v.x(), mode); y = Math.roundUsing(v.y(), mode); z = Math.roundUsing(v.z(), mode); w = Math.roundUsing(v.w(), mode); } /** * Create a new {@link Vector4i} and initialize all four components with the * given value. * * @param s * scalar value of all four components */ public Vector4i(int s) { this.x = s; this.y = s; this.z = s; this.w = s; } /** * Create a new {@link Vector4i} with the given component values. * * @param x * the x component * @param y * the y component * @param z * the z component * @param w * the w component */ public Vector4i(int x, int y, int z, int w) { this.x = x; this.y = y; this.z = z; this.w = w; } /** * Create a new {@link Vector4i} and initialize its four components from the first * four elements of the given array. * * @param xyzw * the array containing at least four elements */ public Vector4i(int[] xyzw) { this.x = xyzw[0]; this.y = xyzw[1]; this.z = xyzw[2]; this.w = xyzw[3]; } /** * Create a new {@link Vector4i} and read this vector from the supplied * {@link ByteBuffer} at the current buffer * {@link ByteBuffer#position() position}. *

* This method will not increment the position of the given ByteBuffer. *

* In order to specify the offset into the ByteBuffer at which the vector is * read, use {@link #Vector4i(int, ByteBuffer)}, taking the absolute * position as parameter. * * @see #Vector4i(int, ByteBuffer) * * @param buffer * values will be read in x, y, z, w order */ public Vector4i(ByteBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); } /** * Create a new {@link Vector4i} and read this vector from the supplied * {@link ByteBuffer} starting at the specified absolute buffer * position/index. *

* This method will not increment the position of the given ByteBuffer. * * @param index * the absolute position into the ByteBuffer * @param buffer * values will be read in x, y, z, w order */ public Vector4i(int index, ByteBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); } /** * Create a new {@link Vector4i} and read this vector from the supplied * {@link IntBuffer} at the current buffer * {@link IntBuffer#position() position}. *

* This method will not increment the position of the given IntBuffer. *

* In order to specify the offset into the IntBuffer at which the vector is * read, use {@link #Vector4i(int, IntBuffer)}, taking the absolute position * as parameter. * * @see #Vector4i(int, IntBuffer) * * @param buffer * values will be read in x, y, z, w order */ public Vector4i(IntBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); } /** * Create a new {@link Vector4i} and read this vector from the supplied * {@link IntBuffer} starting at the specified absolute buffer * position/index. *

* This method will not increment the position of the given IntBuffer. * * @param index * the absolute position into the IntBuffer * @param buffer * values will be read in x, y, z, w order */ public Vector4i(int index, IntBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); } public int x() { return this.x; } public int y() { return this.y; } public int z() { return this.z; } public int w() { return this.w; } /** * Set this {@link Vector4i} to the values of the given v. * * @param v * the vector whose values will be copied into this * @return this */ public Vector4i set(Vector4ic v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = v.w(); return this; } /** * Set this {@link Vector4i} to the values of v using {@link RoundingMode#TRUNCATE} rounding. *

* Note that due to the given vector v storing the components * in double-precision, there is the possibility to lose precision. * * @param v * the vector to copy from * @return this */ public Vector4i set(Vector4dc v) { this.x = (int) v.x(); this.y = (int) v.y(); this.z = (int) v.z(); this.w = (int) v.w(); return this; } /** * Set this {@link Vector4i} to the values of v using the given {@link RoundingMode}. *

* Note that due to the given vector v storing the components * in double-precision, there is the possibility to lose precision. * * @param v * the vector to copy from * @param mode * the {@link RoundingMode} to use * @return this */ public Vector4i set(Vector4dc v, int mode) { this.x = Math.roundUsing(v.x(), mode); this.y = Math.roundUsing(v.y(), mode); this.z = Math.roundUsing(v.z(), mode); this.w = Math.roundUsing(v.w(), mode); return this; } /** * Set this {@link Vector4i} to the values of v using the given {@link RoundingMode}. *

* Note that due to the given vector v storing the components * in double-precision, there is the possibility to lose precision. * * @param v * the vector to copy from * @param mode * the {@link RoundingMode} to use * @return this */ public Vector4i set(Vector4fc v, int mode) { this.x = Math.roundUsing(v.x(), mode); this.y = Math.roundUsing(v.y(), mode); this.z = Math.roundUsing(v.z(), mode); this.w = Math.roundUsing(v.w(), mode); return this; } /** * Set the first three components of this to the components of * v and the last component to w. * * @param v * the {@link Vector3ic} to copy * @param w * the w component * @return this */ public Vector4i set(Vector3ic v, int w) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = w; return this; } /** * Sets the first two components of this to the components of given * v and last two components to the given z, and * w. * * @param v * the {@link Vector2ic} * @param z * the z component * @param w * the w component * @return this */ public Vector4i set(Vector2ic v, int z, int w) { this.x = v.x(); this.y = v.y(); this.z = z; this.w = w; return this; } /** * Set the x, y, z, and w components to the supplied value. * * @param s * the value of all four components * @return this */ public Vector4i set(int s) { this.x = s; this.y = s; this.z = s; this.w = s; return this; } /** * Set the x, y, z, and w components to the supplied values. * * @param x * the x component * @param y * the y component * @param z * the z component * @param w * the w component * @return this */ public Vector4i set(int x, int y, int z, int w) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } /** * Set the four components of this vector to the first four elements of the given array. * * @param xyzw * the array containing at least four elements * @return this */ public Vector4i set(int[] xyzw) { this.x = xyzw[0]; this.y = xyzw[1]; this.z = xyzw[2]; this.w = xyzw[3]; return this; } /** * Read this vector from the supplied {@link ByteBuffer} at the current * buffer {@link ByteBuffer#position() position}. *

* This method will not increment the position of the given ByteBuffer. *

* In order to specify the offset into the ByteBuffer at which the vector is * read, use {@link #set(int, ByteBuffer)}, taking the absolute position as * parameter. * * @see #set(int, ByteBuffer) * * @param buffer * values will be read in x, y, z, w order * @return this */ public Vector4i set(ByteBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); return this; } /** * Read this vector from the supplied {@link ByteBuffer} starting at the * specified absolute buffer position/index. *

* This method will not increment the position of the given ByteBuffer. * * @param index * the absolute position into the ByteBuffer * @param buffer * values will be read in x, y, z, w order * @return this */ public Vector4i set(int index, ByteBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); return this; } /** * Read this vector from the supplied {@link IntBuffer} at the current * buffer {@link IntBuffer#position() position}. *

* This method will not increment the position of the given IntBuffer. *

* In order to specify the offset into the IntBuffer at which the vector is * read, use {@link #set(int, IntBuffer)}, taking the absolute position as * parameter. * * @see #set(int, IntBuffer) * * @param buffer * values will be read in x, y, z, w order * @return this */ public Vector4i set(IntBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); return this; } /** * Read this vector from the supplied {@link IntBuffer} starting at the * specified absolute buffer position/index. *

* This method will not increment the position of the given IntBuffer. * * @param index * the absolute position into the IntBuffer * @param buffer * values will be read in x, y, z, w order * @return this */ public Vector4i set(int index, IntBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); return this; } /** * Set the values of this vector by reading 4 integer values from off-heap memory, * starting at the given address. *

* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`. *

* This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process. * * @param address * the off-heap memory address to read the vector values from * @return this */ public Vector4i setFromAddress(long address) { if (Options.NO_UNSAFE) throw new UnsupportedOperationException("Not supported when using joml.nounsafe"); MemUtil.MemUtilUnsafe.get(this, address); return this; } public int get(int component) throws IllegalArgumentException { switch (component) { case 0: return x; case 1: return y; case 2: return z; case 3: return w; default: throw new IllegalArgumentException(); } } public int maxComponent() { int absX = Math.abs(x); int absY = Math.abs(y); int absZ = Math.abs(z); int absW = Math.abs(w); if (absX >= absY && absX >= absZ && absX >= absW) { return 0; } else if (absY >= absZ && absY >= absW) { return 1; } else if (absZ >= absW) { return 2; } return 3; } public int minComponent() { int absX = Math.abs(x); int absY = Math.abs(y); int absZ = Math.abs(z); int absW = Math.abs(w); if (absX < absY && absX < absZ && absX < absW) { return 0; } else if (absY < absZ && absY < absW) { return 1; } else if (absZ < absW) { return 2; } return 3; } /** * Set the value of the specified component of this vector. * * @param component * the component whose value to set, within [0..3] * @param value * the value to set * @return this * @throws IllegalArgumentException if component is not within [0..3] */ public Vector4i setComponent(int component, int value) throws IllegalArgumentException { switch (component) { case 0: x = value; break; case 1: y = value; break; case 2: z = value; break; case 3: w = value; break; default: throw new IllegalArgumentException(); } return this; } public IntBuffer get(IntBuffer buffer) { MemUtil.INSTANCE.put(this, buffer.position(), buffer); return buffer; } public IntBuffer get(int index, IntBuffer buffer) { MemUtil.INSTANCE.put(this, index, buffer); return buffer; } public ByteBuffer get(ByteBuffer buffer) { MemUtil.INSTANCE.put(this, buffer.position(), buffer); return buffer; } public ByteBuffer get(int index, ByteBuffer buffer) { MemUtil.INSTANCE.put(this, index, buffer); return buffer; } public Vector4ic getToAddress(long address) { if (Options.NO_UNSAFE) throw new UnsupportedOperationException("Not supported when using joml.nounsafe"); MemUtil.MemUtilUnsafe.put(this, address); return this; } /** * Subtract the supplied vector from this one. * * @param v * the vector to subtract * @return this */ public Vector4i sub(Vector4ic v) { this.x = this.x - v.x(); this.y = this.y - v.y(); this.z = this.z - v.z(); this.w = this.w - v.w(); return this; } /** * Subtract (x, y, z, w) from this. * * @param x * the x component to subtract * @param y * the y component to subtract * @param z * the z component to subtract * @param w * the w component to subtract * @return this */ public Vector4i sub(int x, int y, int z, int w) { this.x = this.x - x; this.y = this.y - y; this.z = this.z - z; this.w = this.w - w; return this; } public Vector4i sub(Vector4ic v, Vector4i dest) { dest.x = this.x - v.x(); dest.y = this.y - v.y(); dest.z = this.z - v.z(); dest.w = this.w - v.w(); return dest; } public Vector4i sub(int x, int y, int z, int w, Vector4i dest) { dest.x = this.x - x; dest.y = this.y - y; dest.z = this.z - z; dest.w = this.w - w; return dest; } /** * Add the supplied vector to this one. * * @param v * the vector to add * @return this */ public Vector4i add(Vector4ic v) { this.x = this.x + v.x(); this.y = this.y + v.y(); this.z = this.z + v.z(); this.w = this.w + v.w(); return this; } public Vector4i add(Vector4ic v, Vector4i dest) { dest.x = this.x + v.x(); dest.y = this.y + v.y(); dest.z = this.z + v.z(); dest.w = this.w + v.w(); return dest; } /** * Increment the components of this vector by the given values. * * @param x * the x component to add * @param y * the y component to add * @param z * the z component to add * @param w * the w component to add * @return this */ public Vector4i add(int x, int y, int z, int w) { this.x = this.x + x; this.y = this.y + y; this.z = this.z + z; this.w = this.w + w; return this; } public Vector4i add(int x, int y, int z, int w, Vector4i dest) { dest.x = this.x + x; dest.y = this.y + y; dest.z = this.z + z; dest.w = this.w + w; return dest; } /** * Multiply this Vector4i component-wise by another Vector4i. * * @param v * the other vector * @return this */ public Vector4i mul(Vector4ic v) { this.x = x * v.x(); this.y = y * v.y(); this.z = z * v.z(); this.w = w * v.w(); return this; } public Vector4i mul(Vector4ic v, Vector4i dest) { dest.x = x * v.x(); dest.y = y * v.y(); dest.z = z * v.z(); dest.w = w * v.w(); return dest; } /** * Divide this Vector4i component-wise by another Vector4i. * * @param v * the vector to divide by * @return this */ public Vector4i div(Vector4ic v) { this.x = x / v.x(); this.y = y / v.y(); this.z = z / v.z(); this.w = w / v.w(); return this; } public Vector4i div(Vector4ic v, Vector4i dest) { dest.x = x / v.x(); dest.y = y / v.y(); dest.z = z / v.z(); dest.w = w / v.w(); return dest; } /** * Multiply all components of this {@link Vector4i} by the given scalar * value. * * @param scalar * the scalar to multiply by * @return this */ public Vector4i mul(int scalar) { this.x = x * scalar; this.y = y * scalar; this.z = z * scalar; this.w = w * scalar; return this; } public Vector4i mul(int scalar, Vector4i dest) { dest.x = x * scalar; dest.y = y * scalar; dest.z = z * scalar; dest.w = w * scalar; return dest; } /** * Divide all components of this {@link Vector3i} by the given scalar value. * * @param scalar * the scalar to divide by * @return this */ public Vector4i div(float scalar) { float invscalar = 1.0f / scalar; this.x = (int) (x * invscalar); this.y = (int) (y * invscalar); this.z = (int) (z * invscalar); this.w = (int) (w * invscalar); return this; } public Vector4i div(float scalar, Vector4i dest) { float invscalar = 1.0f / scalar; dest.x = (int) (x * invscalar); dest.y = (int) (y * invscalar); dest.z = (int) (z * invscalar); dest.w = (int) (w * invscalar); return dest; } /** * Divide all components of this {@link Vector4i} by the given scalar value. * * @param scalar * the scalar to divide by * @return this */ public Vector4i div(int scalar) { this.x = x / scalar; this.y = y / scalar; this.z = z / scalar; this.w = w / scalar; return this; } public Vector4i div(int scalar, Vector4i dest) { dest.x = x / scalar; dest.y = y / scalar; dest.z = z / scalar; dest.w = w / scalar; return dest; } public long lengthSquared() { return x * x + y * y + z * z + w * w; } /** * Get the length squared of a 4-dimensional single-precision vector. * * @param x The vector's x component * @param y The vector's y component * @param z The vector's z component * @param w The vector's w component * * @return the length squared of the given vector */ public static long lengthSquared(int x, int y, int z, int w) { return x * x + y * y + z * z + w * w; } public double length() { return Math.sqrt(x * x + y * y + z * z + w * w); } /** * Get the length of a 4-dimensional single-precision vector. * * @param x The vector's x component * @param y The vector's y component * @param z The vector's z component * @param w The vector's w component * * @return the length squared of the given vector */ public static double length(int x, int y, int z, int w) { return Math.sqrt(x * x + y * y + z * z + w * w); } public double distance(Vector4ic v) { int dx = this.x - v.x(); int dy = this.y - v.y(); int dz = this.z - v.z(); int dw = this.w - v.w(); return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, Math.fma(dz, dz, dw * dw)))); } public double distance(int x, int y, int z, int w) { int dx = this.x - x; int dy = this.y - y; int dz = this.z - z; int dw = this.w - w; return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, Math.fma(dz, dz, dw * dw)))); } public long gridDistance(Vector4ic v) { return Math.abs(v.x() - x()) + Math.abs(v.y() - y()) + Math.abs(v.z() - z()) + Math.abs(v.w() - w()); } public long gridDistance(int x, int y, int z, int w) { return Math.abs(x - x()) + Math.abs(y - y()) + Math.abs(z - z()) + Math.abs(w - w()); } public int distanceSquared(Vector4ic v) { int dx = this.x - v.x(); int dy = this.y - v.y(); int dz = this.z - v.z(); int dw = this.w - v.w(); return dx * dx + dy * dy + dz * dz + dw * dw; } public int distanceSquared(int x, int y, int z, int w) { int dx = this.x - x; int dy = this.y - y; int dz = this.z - z; int dw = this.w - w; return dx * dx + dy * dy + dz * dz + dw * dw; } /** * Return the distance between (x1, y1, z1, w1) and (x2, y2, z2, w2). * * @param x1 * the x component of the first vector * @param y1 * the y component of the first vector * @param z1 * the z component of the first vector * @param w1 * the w component of the first vector * @param x2 * the x component of the second vector * @param y2 * the y component of the second vector * @param z2 * the z component of the second vector * @param w2 * the 2 component of the second vector * @return the euclidean distance */ public static double distance(int x1, int y1, int z1, int w1, int x2, int y2, int z2, int w2) { int dx = x1 - x2; int dy = y1 - y2; int dz = z1 - z2; int dw = w1 - w2; return Math.sqrt(dx * dx + dy * dy + dz * dz + dw * dw); } /** * Return the squared distance between (x1, y1, z1, w1) and (x2, y2, z2, w2). * * @param x1 * the x component of the first vector * @param y1 * the y component of the first vector * @param z1 * the z component of the first vector * @param w1 * the w component of the first vector * @param x2 * the x component of the second vector * @param y2 * the y component of the second vector * @param z2 * the z component of the second vector * @param w2 * the w component of the second vector * @return the euclidean distance squared */ public static long distanceSquared(int x1, int y1, int z1, int w1, int x2, int y2, int z2, int w2) { int dx = x1 - x2; int dy = y1 - y2; int dz = z1 - z2; int dw = w1 - w2; return dx * dx + dy * dy + dz * dz + dw * dw; } public int dot(Vector4ic v) { return x * v.x() + y * v.y() + z * v.z() + w * v.w(); } /** * Set all components to zero. * * @return this */ public Vector4i zero() { x = 0; y = 0; z = 0; w = 0; return this; } /** * Negate this vector. * * @return this */ public Vector4i negate() { this.x = -x; this.y = -y; this.z = -z; this.w = -w; return this; } public Vector4i negate(Vector4i dest) { dest.x = -x; dest.y = -y; dest.z = -z; dest.w = -w; return dest; } /** * Return a string representation of this vector. *

* This method creates a new {@link DecimalFormat} on every invocation with the format string "0.000E0;-". * * @return the string representation */ public String toString() { return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT)); } /** * Return a string representation of this vector by formatting the vector components with the given {@link NumberFormat}. * * @param formatter * the {@link NumberFormat} used to format the vector components with * @return the string representation */ public String toString(NumberFormat formatter) { return "(" + formatter.format(x) + " " + formatter.format(y) + " " + formatter.format(z) + " " + formatter.format(w) + ")"; } public void writeExternal(ObjectOutput out) throws IOException { out.writeInt(x); out.writeInt(y); out.writeInt(z); out.writeInt(w); } public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { x = in.readInt(); y = in.readInt(); z = in.readInt(); w = in.readInt(); } /** * Set the components of this vector to be the component-wise minimum of this and the other vector. * * @param v * the other vector * @return this */ public Vector4i min(Vector4ic v) { this.x = x < v.x() ? x : v.x(); this.y = y < v.y() ? y : v.y(); this.z = z < v.z() ? z : v.z(); this.w = w < v.w() ? w : v.w(); return this; } public Vector4i min(Vector4ic v, Vector4i dest) { dest.x = x < v.x() ? x : v.x(); dest.y = y < v.y() ? y : v.y(); dest.z = z < v.z() ? z : v.z(); dest.w = w < v.w() ? w : v.w(); return dest; } /** * Set the components of this vector to be the component-wise maximum of this and the other vector. * * @param v * the other vector * @return this */ public Vector4i max(Vector4ic v) { this.x = x > v.x() ? x : v.x(); this.y = y > v.y() ? y : v.y(); this.z = z > v.z() ? z : v.z(); this.w = w > v.w() ? w : v.w(); return this; } public Vector4i max(Vector4ic v, Vector4i dest) { dest.x = x > v.x() ? x : v.x(); dest.y = y > v.y() ? y : v.y(); dest.z = z > v.z() ? z : v.z(); dest.w = w > v.w() ? w : v.w(); return dest; } /** * Compute the absolute of each of this vector's components. * * @return this */ public Vector4i absolute() { this.x = Math.abs(x); this.y = Math.abs(y); this.z = Math.abs(z); this.w = Math.abs(w); return this; } public Vector4i absolute(Vector4i dest) { dest.x = Math.abs(x); dest.y = Math.abs(y); dest.z = Math.abs(z); dest.w = Math.abs(w); return dest; } public int hashCode() { final int prime = 31; int result = 1; result = prime * result + x; result = prime * result + y; result = prime * result + z; result = prime * result + w; return result; } public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } Vector4i other = (Vector4i) obj; if (x != other.x) { return false; } if (y != other.y) { return false; } if (z != other.z) { return false; } if (w != other.w) { return false; } return true; } public boolean equals(int x, int y, int z, int w) { if (this.x != x) return false; if (this.y != y) return false; if (this.z != z) return false; if (this.w != w) return false; return true; } public Object clone() throws CloneNotSupportedException { return super.clone(); } }