/* * The MIT License * * Copyright (c) 2015-2021 Richard Greenlees * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ package com.jozufozu.flywheel.repack.joml; import java.io.Externalizable; import java.io.IOException; import java.io.ObjectInput; import java.io.ObjectOutput; import java.nio.ByteBuffer; import java.nio.FloatBuffer; import java.text.DecimalFormat; import java.text.NumberFormat; /** * Contains the definition of a Vector comprising 3 floats and associated * transformations. * * @author Richard Greenlees * @author Kai Burjack * @author F. Neurath */ public class Vector3f implements Externalizable, Cloneable, Vector3fc { private static final long serialVersionUID = 1L; /** * The x component of the vector. */ public float x; /** * The y component of the vector. */ public float y; /** * The z component of the vector. */ public float z; /** * Create a new {@link Vector3f} of <code>(0, 0, 0)</code>. */ public Vector3f() { } /** * Create a new {@link Vector3f} and initialize all three components with the given value. * * @param d * the value of all three components */ public Vector3f(float d) { this.x = d; this.y = d; this.z = d; } /** * Create a new {@link Vector3f} with the given component values. * * @param x * the value of x * @param y * the value of y * @param z * the value of z */ public Vector3f(float x, float y, float z) { this.x = x; this.y = y; this.z = z; } /** * Create a new {@link Vector3f} with the same values as <code>v</code>. * * @param v * the {@link Vector3fc} to copy the values from */ public Vector3f(Vector3fc v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); } /** * Create a new {@link Vector3f} with the same values as <code>v</code>. * * @param v * the {@link Vector3ic} to copy the values from */ public Vector3f(Vector3ic v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); } /** * Create a new {@link Vector3f} with the first two components from the * given <code>v</code> and the given <code>z</code> * * @param v * the {@link Vector2fc} to copy the values from * @param z * the z component */ public Vector3f(Vector2fc v, float z) { this.x = v.x(); this.y = v.y(); this.z = z; } /** * Create a new {@link Vector3f} with the first two components from the * given <code>v</code> and the given <code>z</code> * * @param v * the {@link Vector2ic} to copy the values from * @param z * the z component */ public Vector3f(Vector2ic v, float z) { this.x = v.x(); this.y = v.y(); this.z = z; } /** * Create a new {@link Vector3f} and initialize its three components from the first * three elements of the given array. * * @param xyz * the array containing at least three elements */ public Vector3f(float[] xyz) { this.x = xyz[0]; this.y = xyz[1]; this.z = xyz[2]; } /** * Create a new {@link Vector3f} and read this vector from the supplied {@link ByteBuffer} * at the current buffer {@link ByteBuffer#position() position}. * <p> * This method will not increment the position of the given ByteBuffer. * <p> * In order to specify the offset into the ByteBuffer at which * the vector is read, use {@link #Vector3f(int, ByteBuffer)}, taking * the absolute position as parameter. * * @param buffer values will be read in <code>x, y, z</code> order * @see #Vector3f(int, ByteBuffer) */ public Vector3f(ByteBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); } /** * Create a new {@link Vector3f} and read this vector from the supplied {@link ByteBuffer} * starting at the specified absolute buffer position/index. * <p> * This method will not increment the position of the given ByteBuffer. * * @param index the absolute position into the ByteBuffer * @param buffer values will be read in <code>x, y, z</code> order */ public Vector3f(int index, ByteBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); } /** * Create a new {@link Vector3f} and read this vector from the supplied {@link FloatBuffer} * at the current buffer {@link FloatBuffer#position() position}. * <p> * This method will not increment the position of the given FloatBuffer. * <p> * In order to specify the offset into the FloatBuffer at which * the vector is read, use {@link #Vector3f(int, FloatBuffer)}, taking * the absolute position as parameter. * * @param buffer values will be read in <code>x, y, z</code> order * @see #Vector3f(int, FloatBuffer) */ public Vector3f(FloatBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); } /** * Create a new {@link Vector3f} and read this vector from the supplied {@link FloatBuffer} * starting at the specified absolute buffer position/index. * <p> * This method will not increment the position of the given FloatBuffer. * * @param index the absolute position into the FloatBuffer * @param buffer values will be read in <code>x, y, z</code> order */ public Vector3f(int index, FloatBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); } public float x() { return this.x; } public float y() { return this.y; } public float z() { return this.z; } /** * Set the x, y and z components to match the supplied vector. * * @param v * contains the values of x, y and z to set * @return this */ public Vector3f set(Vector3fc v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); return this; } /** * Set the x, y and z components to match the supplied vector. * <p> * Note that due to the given vector <code>v</code> storing the components in double-precision, * there is the possibility to lose precision. * * @param v * contains the values of x, y and z to set * @return this */ public Vector3f set(Vector3dc v) { this.x = (float) v.x(); this.y = (float) v.y(); this.z = (float) v.z(); return this; } /** * Set the x, y and z components to match the supplied vector. * * @param v * contains the values of x, y and z to set * @return this */ public Vector3f set(Vector3ic v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); return this; } /** * Set the first two components from the given <code>v</code> * and the z component from the given <code>z</code> * * @param v * the {@link Vector2fc} to copy the values from * @param z * the z component * @return this */ public Vector3f set(Vector2fc v, float z) { this.x = v.x(); this.y = v.y(); this.z = z; return this; } /** * Set the first two components from the given <code>v</code> * and the z component from the given <code>z</code> * * @param v * the {@link Vector2dc} to copy the values from * @param z * the z component * @return this */ public Vector3f set(Vector2dc v, float z) { this.x = (float) v.x(); this.y = (float) v.y(); this.z = z; return this; } /** * Set the first two components from the given <code>v</code> * and the z component from the given <code>z</code> * * @param v * the {@link Vector2ic} to copy the values from * @param z * the z component * @return this */ public Vector3f set(Vector2ic v, float z) { this.x = v.x(); this.y = v.y(); this.z = z; return this; } /** * Set the x, y, and z components to the supplied value. * * @param d * the value of all three components * @return this */ public Vector3f set(float d) { this.x = d; this.y = d; this.z = d; return this; } /** * Set the x, y and z components to the supplied values. * * @param x * the x component * @param y * the y component * @param z * the z component * @return this */ public Vector3f set(float x, float y, float z) { this.x = x; this.y = y; this.z = z; return this; } /** * Set the x, y, and z components to the supplied value. * * @param d * the value of all three components * @return this */ public Vector3f set(double d) { this.x = (float) d; this.y = (float) d; this.z = (float) d; return this; } /** * Set the x, y and z components to the supplied values. * * @param x * the x component * @param y * the y component * @param z * the z component * @return this */ public Vector3f set(double x, double y, double z) { this.x = (float) x; this.y = (float) y; this.z = (float) z; return this; } /** * Set the three components of this vector to the first three elements of the given array. * * @param xyz * the array containing at least three elements * @return this */ public Vector3f set(float[] xyz) { this.x = xyz[0]; this.y = xyz[1]; this.z = xyz[2]; return this; } /** * Read this vector from the supplied {@link ByteBuffer} at the current * buffer {@link ByteBuffer#position() position}. * <p> * This method will not increment the position of the given ByteBuffer. * <p> * In order to specify the offset into the ByteBuffer at which * the vector is read, use {@link #set(int, ByteBuffer)}, taking * the absolute position as parameter. * * @param buffer * values will be read in <code>x, y, z</code> order * @return this * @see #set(int, ByteBuffer) */ public Vector3f set(ByteBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); return this; } /** * Read this vector from the supplied {@link ByteBuffer} starting at the specified * absolute buffer position/index. * <p> * This method will not increment the position of the given ByteBuffer. * * @param index * the absolute position into the ByteBuffer * @param buffer * values will be read in <code>x, y, z</code> order * @return this */ public Vector3f set(int index, ByteBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); return this; } /** * Read this vector from the supplied {@link FloatBuffer} at the current * buffer {@link FloatBuffer#position() position}. * <p> * This method will not increment the position of the given FloatBuffer. * <p> * In order to specify the offset into the FloatBuffer at which * the vector is read, use {@link #set(int, FloatBuffer)}, taking * the absolute position as parameter. * * @param buffer * values will be read in <code>x, y, z</code> order * @return this * @see #set(int, FloatBuffer) */ public Vector3f set(FloatBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); return this; } /** * Read this vector from the supplied {@link FloatBuffer} starting at the specified * absolute buffer position/index. * <p> * This method will not increment the position of the given FloatBuffer. * * @param index * the absolute position into the FloatBuffer * @param buffer * values will be read in <code>x, y, z</code> order * @return this */ public Vector3f set(int index, FloatBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); return this; } /** * Set the values of this vector by reading 3 float values from off-heap memory, * starting at the given address. * <p> * This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`. * <p> * <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em> * * @param address * the off-heap memory address to read the vector values from * @return this */ public Vector3f setFromAddress(long address) { if (Options.NO_UNSAFE) throw new UnsupportedOperationException("Not supported when using joml.nounsafe"); MemUtil.MemUtilUnsafe.get(this, address); return this; } /** * Set the value of the specified component of this vector. * * @param component * the component whose value to set, within <code>[0..2]</code> * @param value * the value to set * @return this * @throws IllegalArgumentException if <code>component</code> is not within <code>[0..2]</code> */ public Vector3f setComponent(int component, float value) throws IllegalArgumentException { switch (component) { case 0: x = value; break; case 1: y = value; break; case 2: z = value; break; default: throw new IllegalArgumentException(); } return this; } public FloatBuffer get(FloatBuffer buffer) { MemUtil.INSTANCE.put(this, buffer.position(), buffer); return buffer; } public FloatBuffer get(int index, FloatBuffer buffer) { MemUtil.INSTANCE.put(this, index, buffer); return buffer; } public ByteBuffer get(ByteBuffer buffer) { MemUtil.INSTANCE.put(this, buffer.position(), buffer); return buffer; } public ByteBuffer get(int index, ByteBuffer buffer) { MemUtil.INSTANCE.put(this, index, buffer); return buffer; } public Vector3fc getToAddress(long address) { if (Options.NO_UNSAFE) throw new UnsupportedOperationException("Not supported when using joml.nounsafe"); MemUtil.MemUtilUnsafe.put(this, address); return this; } /** * Subtract the supplied vector from this one and store the result in <code>this</code>. * * @param v * the vector to subtract * @return this */ public Vector3f sub(Vector3fc v) { this.x = x - v.x(); this.y = y - v.y(); this.z = z - v.z(); return this; } public Vector3f sub(Vector3fc v, Vector3f dest) { dest.x = x - v.x(); dest.y = y - v.y(); dest.z = z - v.z(); return dest; } /** * Decrement the components of this vector by the given values. * * @param x * the x component to subtract * @param y * the y component to subtract * @param z * the z component to subtract * @return this */ public Vector3f sub(float x, float y, float z) { this.x = this.x - x; this.y = this.y - y; this.z = this.z - z; return this; } public Vector3f sub(float x, float y, float z, Vector3f dest) { dest.x = this.x - x; dest.y = this.y - y; dest.z = this.z - z; return dest; } /** * Add the supplied vector to this one. * * @param v * the vector to add * @return this */ public Vector3f add(Vector3fc v) { this.x = this.x + v.x(); this.y = this.y + v.y(); this.z = this.z + v.z(); return this; } public Vector3f add(Vector3fc v, Vector3f dest) { dest.x = this.x + v.x(); dest.y = this.y + v.y(); dest.z = this.z + v.z(); return dest; } /** * Increment the components of this vector by the given values. * * @param x * the x component to add * @param y * the y component to add * @param z * the z component to add * @return this */ public Vector3f add(float x, float y, float z) { this.x = this.x + x; this.y = this.y + y; this.z = this.z + z; return this; } public Vector3f add(float x, float y, float z, Vector3f dest) { dest.x = this.x + x; dest.y = this.y + y; dest.z = this.z + z; return dest; } /** * Add the component-wise multiplication of <code>a * b</code> to this vector. * * @param a * the first multiplicand * @param b * the second multiplicand * @return this */ public Vector3f fma(Vector3fc a, Vector3fc b) { this.x = Math.fma(a.x(), b.x(), x); this.y = Math.fma(a.y(), b.y(), y); this.z = Math.fma(a.z(), b.z(), z); return this; } /** * Add the component-wise multiplication of <code>a * b</code> to this vector. * * @param a * the first multiplicand * @param b * the second multiplicand * @return this */ public Vector3f fma(float a, Vector3fc b) { this.x = Math.fma(a, b.x(), x); this.y = Math.fma(a, b.y(), y); this.z = Math.fma(a, b.z(), z); return this; } public Vector3f fma(Vector3fc a, Vector3fc b, Vector3f dest) { dest.x = Math.fma(a.x(), b.x(), x); dest.y = Math.fma(a.y(), b.y(), y); dest.z = Math.fma(a.z(), b.z(), z); return dest; } public Vector3f fma(float a, Vector3fc b, Vector3f dest) { dest.x = Math.fma(a, b.x(), x); dest.y = Math.fma(a, b.y(), y); dest.z = Math.fma(a, b.z(), z); return dest; } /** * Add the component-wise multiplication of <code>this * a</code> to <code>b</code> * and store the result in <code>this</code>. * * @param a * the multiplicand * @param b * the addend * @return this */ public Vector3f mulAdd(Vector3fc a, Vector3fc b) { this.x = Math.fma(x, a.x(), b.x()); this.y = Math.fma(y, a.y(), b.y()); this.z = Math.fma(z, a.z(), b.z()); return this; } /** * Add the component-wise multiplication of <code>this * a</code> to <code>b</code> * and store the result in <code>this</code>. * * @param a * the multiplicand * @param b * the addend * @return this */ public Vector3f mulAdd(float a, Vector3fc b) { this.x = Math.fma(x, a, b.x()); this.y = Math.fma(y, a, b.y()); this.z = Math.fma(z, a, b.z()); return this; } public Vector3f mulAdd(Vector3fc a, Vector3fc b, Vector3f dest) { dest.x = Math.fma(x, a.x(), b.x()); dest.y = Math.fma(y, a.y(), b.y()); dest.z = Math.fma(z, a.z(), b.z()); return dest; } public Vector3f mulAdd(float a, Vector3fc b, Vector3f dest) { dest.x = Math.fma(x, a, b.x()); dest.y = Math.fma(y, a, b.y()); dest.z = Math.fma(z, a, b.z()); return dest; } /** * Multiply this Vector3f component-wise by another Vector3fc. * * @param v * the vector to multiply by * @return this */ public Vector3f mul(Vector3fc v) { this.x = x * v.x(); this.y = y * v.y(); this.z = z * v.z(); return this; } public Vector3f mul(Vector3fc v, Vector3f dest) { dest.x = x * v.x(); dest.y = y * v.y(); dest.z = z * v.z(); return dest; } /** * Divide this Vector3f component-wise by another Vector3fc. * * @param v * the vector to divide by * @return this */ public Vector3f div(Vector3fc v) { this.x = this.x / v.x(); this.y = this.y / v.y(); this.z = this.z / v.z(); return this; } public Vector3f div(Vector3fc v, Vector3f dest) { dest.x = x / v.x(); dest.y = y / v.y(); dest.z = z / v.z(); return dest; } public Vector3f mulProject(Matrix4fc mat, Vector3f dest) { float x = this.x, y = this.y, z = this.z; float invW = 1.0f / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33()))); dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))) * invW; dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))) * invW; dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))) * invW; return dest; } public Vector3f mulProject(Matrix4fc mat, float w, Vector3f dest) { float x = this.x, y = this.y, z = this.z; float invW = 1.0f / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w))); dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))) * invW; dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))) * invW; dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))) * invW; return dest; } /** * Multiply the given matrix <code>mat</code> with this Vector3f, perform perspective division. * <p> * This method uses <code>w=1.0</code> as the fourth vector component. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3f mulProject(Matrix4fc mat) { float x = this.x, y = this.y, z = this.z; float invW = 1.0f / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33()))); this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))) * invW; this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))) * invW; this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))) * invW; return this; } /** * Multiply the given matrix with this Vector3f and store the result in <code>this</code>. * * @param mat * the matrix * @return this */ public Vector3f mul(Matrix3fc mat) { float lx = x, ly = y, lz = z; this.x = Math.fma(mat.m00(), lx, Math.fma(mat.m10(), ly, mat.m20() * lz)); this.y = Math.fma(mat.m01(), lx, Math.fma(mat.m11(), ly, mat.m21() * lz)); this.z = Math.fma(mat.m02(), lx, Math.fma(mat.m12(), ly, mat.m22() * lz)); return this; } public Vector3f mul(Matrix3fc mat, Vector3f dest) { float lx = x, ly = y, lz = z; dest.x = Math.fma(mat.m00(), lx, Math.fma(mat.m10(), ly, mat.m20() * lz)); dest.y = Math.fma(mat.m01(), lx, Math.fma(mat.m11(), ly, mat.m21() * lz)); dest.z = Math.fma(mat.m02(), lx, Math.fma(mat.m12(), ly, mat.m22() * lz)); return dest; } /** * Multiply the given matrix with this Vector3f and store the result in <code>this</code>. * * @param mat * the matrix * @return this */ public Vector3f mul(Matrix3dc mat) { float lx = x, ly = y, lz = z; this.x = (float) Math.fma(mat.m00(), lx, Math.fma(mat.m10(), ly, mat.m20() * lz)); this.y = (float) Math.fma(mat.m01(), lx, Math.fma(mat.m11(), ly, mat.m21() * lz)); this.z = (float) Math.fma(mat.m02(), lx, Math.fma(mat.m12(), ly, mat.m22() * lz)); return this; } public Vector3f mul(Matrix3dc mat, Vector3f dest) { float lx = x, ly = y, lz = z; dest.x = (float) Math.fma(mat.m00(), lx, Math.fma(mat.m10(), ly, mat.m20() * lz)); dest.y = (float) Math.fma(mat.m01(), lx, Math.fma(mat.m11(), ly, mat.m21() * lz)); dest.z = (float) Math.fma(mat.m02(), lx, Math.fma(mat.m12(), ly, mat.m22() * lz)); return dest; } /** * Multiply the given matrix with this Vector3f and store the result in <code>this</code>. * * @param mat * the matrix * @return this */ public Vector3f mul(Matrix3x2fc mat) { float x = this.x, y = this.y, z = this.z; this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); this.z = z; return this; } public Vector3f mul(Matrix3x2fc mat, Vector3f dest) { float x = this.x, y = this.y, z = this.z; dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); dest.z = z; return dest; } /** * Multiply the transpose of the given matrix with this Vector3f store the result in <code>this</code>. * * @param mat * the matrix * @return this */ public Vector3f mulTranspose(Matrix3fc mat) { float x = this.x, y = this.y, z = this.z; this.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z)); this.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z)); this.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z)); return this; } public Vector3f mulTranspose(Matrix3fc mat, Vector3f dest) { float x = this.x, y = this.y, z = this.z; dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z)); dest.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z)); dest.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z)); return dest; } /** * Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>. * <p> * This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3f mulPosition(Matrix4fc mat) { float x = this.x, y = this.y, z = this.z; this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); return this; } /** * Multiply the given 4x3 matrix <code>mat</code> with <code>this</code>. * <p> * This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3f mulPosition(Matrix4x3fc mat) { float x = this.x, y = this.y, z = this.z; this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); return this; } public Vector3f mulPosition(Matrix4fc mat, Vector3f dest) { float x = this.x, y = this.y, z = this.z; dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); return dest; } public Vector3f mulPosition(Matrix4x3fc mat, Vector3f dest) { float x = this.x, y = this.y, z = this.z; dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); return dest; } /** * Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code>. * <p> * This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>. * * @param mat * the matrix whose transpose to multiply this vector by * @return this */ public Vector3f mulTransposePosition(Matrix4fc mat) { float x = this.x, y = this.y, z = this.z; this.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03()))); this.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13()))); this.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23()))); return this; } public Vector3f mulTransposePosition(Matrix4fc mat, Vector3f dest) { float x = this.x, y = this.y, z = this.z; dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03()))); dest.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13()))); dest.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23()))); return dest; } /** * Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and return the <i>w</i> component * of the resulting 4D vector. * <p> * This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>. * * @param mat * the matrix to multiply this vector by * @return the <i>w</i> component of the resulting 4D vector after multiplication */ public float mulPositionW(Matrix4fc mat) { float x = this.x, y = this.y, z = this.z; float w = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33()))); this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); return w; } public float mulPositionW(Matrix4fc mat, Vector3f dest) { float x = this.x, y = this.y, z = this.z; float w = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33()))); dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); return w; } /** * Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>. * <p> * This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3f mulDirection(Matrix4dc mat) { float x = this.x, y = this.y, z = this.z; this.x = (float) Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); this.y = (float) Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); this.z = (float) Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); return this; } /** * Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>. * <p> * This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3f mulDirection(Matrix4fc mat) { float x = this.x, y = this.y, z = this.z; this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); return this; } /** * Multiply the given 4x3 matrix <code>mat</code> with <code>this</code>. * <p> * This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3f mulDirection(Matrix4x3fc mat) { float x = this.x, y = this.y, z = this.z; this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); return this; } public Vector3f mulDirection(Matrix4dc mat, Vector3f dest) { float x = this.x, y = this.y, z = this.z; dest.x = (float) Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); dest.y = (float) Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); dest.z = (float) Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); return dest; } public Vector3f mulDirection(Matrix4fc mat, Vector3f dest) { float x = this.x, y = this.y, z = this.z; dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); return dest; } public Vector3f mulDirection(Matrix4x3fc mat, Vector3f dest) { float x = this.x, y = this.y, z = this.z; dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); return dest; } /** * Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code>. * <p> * This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>. * * @param mat * the matrix whose transpose to multiply this vector by * @return this */ public Vector3f mulTransposeDirection(Matrix4fc mat) { float x = this.x, y = this.y, z = this.z; this.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z)); this.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z)); this.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z)); return this; } public Vector3f mulTransposeDirection(Matrix4fc mat, Vector3f dest) { float x = this.x, y = this.y, z = this.z; dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z)); dest.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z)); dest.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z)); return dest; } /** * Multiply all components of this {@link Vector3f} by the given scalar * value. * * @param scalar * the scalar to multiply this vector by * @return this */ public Vector3f mul(float scalar) { this.x = this.x * scalar; this.y = this.y * scalar; this.z = this.z * scalar; return this; } public Vector3f mul(float scalar, Vector3f dest) { dest.x = this.x * scalar; dest.y = this.y * scalar; dest.z = this.z * scalar; return dest; } /** * Multiply the components of this Vector3f by the given scalar values and store the result in <code>this</code>. * * @param x * the x component to multiply this vector by * @param y * the y component to multiply this vector by * @param z * the z component to multiply this vector by * @return this */ public Vector3f mul(float x, float y, float z) { this.x = this.x * x; this.y = this.y * y; this.z = this.z * z; return this; } public Vector3f mul(float x, float y, float z, Vector3f dest) { dest.x = this.x * x; dest.y = this.y * y; dest.z = this.z * z; return dest; } /** * Divide all components of this {@link Vector3f} by the given scalar * value. * * @param scalar * the scalar to divide by * @return this */ public Vector3f div(float scalar) { float inv = 1.0f / scalar; this.x = this.x * inv; this.y = this.y * inv; this.z = this.z * inv; return this; } public Vector3f div(float scalar, Vector3f dest) { float inv = 1.0f / scalar; dest.x = this.x * inv; dest.y = this.y * inv; dest.z = this.z * inv; return dest; } /** * Divide the components of this Vector3f by the given scalar values and store the result in <code>this</code>. * * @param x * the x component to divide this vector by * @param y * the y component to divide this vector by * @param z * the z component to divide this vector by * @return this */ public Vector3f div(float x, float y, float z) { this.x = this.x / x; this.y = this.y / y; this.z = this.z / z; return this; } public Vector3f div(float x, float y, float z, Vector3f dest) { dest.x = this.x / x; dest.y = this.y / y; dest.z = this.z / z; return dest; } /** * Rotate this vector by the given quaternion <code>quat</code> and store the result in <code>this</code>. * * @see Quaternionfc#transform(Vector3f) * * @param quat * the quaternion to rotate this vector * @return this */ public Vector3f rotate(Quaternionfc quat) { return quat.transform(this, this); } public Vector3f rotate(Quaternionfc quat, Vector3f dest) { return quat.transform(this, dest); } public Quaternionf rotationTo(Vector3fc toDir, Quaternionf dest) { return dest.rotationTo(this, toDir); } public Quaternionf rotationTo(float toDirX, float toDirY, float toDirZ, Quaternionf dest) { return dest.rotationTo(x, y, z, toDirX, toDirY, toDirZ); } /** * Rotate this vector the specified radians around the given rotation axis. * * @param angle * the angle in radians * @param x * the x component of the rotation axis * @param y * the y component of the rotation axis * @param z * the z component of the rotation axis * @return this */ public Vector3f rotateAxis(float angle, float x, float y, float z) { if (y == 0.0f && z == 0.0f && Math.absEqualsOne(x)) return rotateX(x * angle, this); else if (x == 0.0f && z == 0.0f && Math.absEqualsOne(y)) return rotateY(y * angle, this); else if (x == 0.0f && y == 0.0f && Math.absEqualsOne(z)) return rotateZ(z * angle, this); return rotateAxisInternal(angle, x, y, z, this); } public Vector3f rotateAxis(float angle, float aX, float aY, float aZ, Vector3f dest) { if (aY == 0.0f && aZ == 0.0f && Math.absEqualsOne(aX)) return rotateX(aX * angle, dest); else if (aX == 0.0f && aZ == 0.0f && Math.absEqualsOne(aY)) return rotateY(aY * angle, dest); else if (aX == 0.0f && aY == 0.0f && Math.absEqualsOne(aZ)) return rotateZ(aZ * angle, dest); return rotateAxisInternal(angle, aX, aY, aZ, dest); } private Vector3f rotateAxisInternal(float angle, float aX, float aY, float aZ, Vector3f dest) { float hangle = angle * 0.5f; float sinAngle = Math.sin(hangle); float qx = aX * sinAngle, qy = aY * sinAngle, qz = aZ * sinAngle; float qw = Math.cosFromSin(sinAngle, hangle); float w2 = qw * qw, x2 = qx * qx, y2 = qy * qy, z2 = qz * qz, zw = qz * qw; float xy = qx * qy, xz = qx * qz, yw = qy * qw, yz = qy * qz, xw = qx * qw; float x = this.x, y = this.y, z = this.z; dest.x = (w2 + x2 - z2 - y2) * x + (-zw + xy - zw + xy) * y + (yw + xz + xz + yw) * z; dest.y = (xy + zw + zw + xy) * x + ( y2 - z2 + w2 - x2) * y + (yz + yz - xw - xw) * z; dest.z = (xz - yw + xz - yw) * x + ( yz + yz + xw + xw) * y + (z2 - y2 - x2 + w2) * z; return dest; } /** * Rotate this vector the specified radians around the X axis. * * @param angle * the angle in radians * @return this */ public Vector3f rotateX(float angle) { float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); float y = this.y * cos - this.z * sin; float z = this.y * sin + this.z * cos; this.y = y; this.z = z; return this; } public Vector3f rotateX(float angle, Vector3f dest) { float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); float y = this.y * cos - this.z * sin; float z = this.y * sin + this.z * cos; dest.x = this.x; dest.y = y; dest.z = z; return dest; } /** * Rotate this vector the specified radians around the Y axis. * * @param angle * the angle in radians * @return this */ public Vector3f rotateY(float angle) { float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); float x = this.x * cos + this.z * sin; float z = -this.x * sin + this.z * cos; this.x = x; this.z = z; return this; } public Vector3f rotateY(float angle, Vector3f dest) { float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); float x = this.x * cos + this.z * sin; float z = -this.x * sin + this.z * cos; dest.x = x; dest.y = this.y; dest.z = z; return dest; } /** * Rotate this vector the specified radians around the Z axis. * * @param angle * the angle in radians * @return this */ public Vector3f rotateZ(float angle) { float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); float x = this.x * cos - this.y * sin; float y = this.x * sin + this.y * cos; this.x = x; this.y = y; return this; } public Vector3f rotateZ(float angle, Vector3f dest) { float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); float x = this.x * cos - this.y * sin; float y = this.x * sin + this.y * cos; dest.x = x; dest.y = y; dest.z = this.z; return dest; } public float lengthSquared() { return Math.fma(x, x, Math.fma(y, y, z * z)); } /** * Get the length squared of a 3-dimensional single-precision vector. * * @param x The vector's x component * @param y The vector's y component * @param z The vector's z component * * @return the length squared of the given vector * * @author F. Neurath */ public static float lengthSquared(float x, float y, float z) { return Math.fma(x, x, Math.fma(y, y, z * z)); } public float length() { return Math.sqrt(Math.fma(x, x, Math.fma(y, y, z * z))); } /** * Get the length of a 3-dimensional single-precision vector. * * @param x The vector's x component * @param y The vector's y component * @param z The vector's z component * * @return the length of the given vector * * @author F. Neurath */ public static float length(float x, float y, float z) { return Math.sqrt(Math.fma(x, x, Math.fma(y, y, z * z))); } /** * Normalize this vector. * * @return this */ public Vector3f normalize() { float scalar = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))); this.x = this.x * scalar; this.y = this.y * scalar; this.z = this.z * scalar; return this; } public Vector3f normalize(Vector3f dest) { float scalar = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))); dest.x = this.x * scalar; dest.y = this.y * scalar; dest.z = this.z * scalar; return dest; } /** * Scale this vector to have the given length. * * @param length * the desired length * @return this */ public Vector3f normalize(float length) { float scalar = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))) * length; this.x = this.x * scalar; this.y = this.y * scalar; this.z = this.z * scalar; return this; } public Vector3f normalize(float length, Vector3f dest) { float scalar = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))) * length; dest.x = this.x * scalar; dest.y = this.y * scalar; dest.z = this.z * scalar; return dest; } /** * Set this vector to be the cross product of itself and <code>v</code>. * * @param v * the other vector * @return this */ public Vector3f cross(Vector3fc v) { float rx = Math.fma(y, v.z(), -z * v.y()); float ry = Math.fma(z, v.x(), -x * v.z()); float rz = Math.fma(x, v.y(), -y * v.x()); this.x = rx; this.y = ry; this.z = rz; return this; } /** * Set this vector to be the cross product of itself and <code>(x, y, z)</code>. * * @param x * the x component of the other vector * @param y * the y component of the other vector * @param z * the z component of the other vector * @return this */ public Vector3f cross(float x, float y, float z) { float rx = Math.fma(this.y, z, -this.z * y); float ry = Math.fma(this.z, x, -this.x * z); float rz = Math.fma(this.x, y, -this.y * x); this.x = rx; this.y = ry; this.z = rz; return this; } public Vector3f cross(Vector3fc v, Vector3f dest) { float rx = Math.fma(y, v.z(), -z * v.y()); float ry = Math.fma(z, v.x(), -x * v.z()); float rz = Math.fma(x, v.y(), -y * v.x()); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } public Vector3f cross(float x, float y, float z, Vector3f dest) { float rx = Math.fma(this.y, z, -this.z * y); float ry = Math.fma(this.z, x, -this.x * z); float rz = Math.fma(this.x, y, -this.y * x); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } public float distance(Vector3fc v) { float dx = this.x - v.x(); float dy = this.y - v.y(); float dz = this.z - v.z(); return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, dz * dz))); } public float distance(float x, float y, float z) { float dx = this.x - x; float dy = this.y - y; float dz = this.z - z; return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, dz * dz))); } public float distanceSquared(Vector3fc v) { float dx = this.x - v.x(); float dy = this.y - v.y(); float dz = this.z - v.z(); return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz)); } public float distanceSquared(float x, float y, float z) { float dx = this.x - x; float dy = this.y - y; float dz = this.z - z; return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz)); } /** * Return the distance between <code>(x1, y1, z1)</code> and <code>(x2, y2, z2)</code>. * * @param x1 * the x component of the first vector * @param y1 * the y component of the first vector * @param z1 * the z component of the first vector * @param x2 * the x component of the second vector * @param y2 * the y component of the second vector * @param z2 * the z component of the second vector * @return the euclidean distance */ public static float distance(float x1, float y1, float z1, float x2, float y2, float z2) { return Math.sqrt(distanceSquared(x1, y1, z1, x2, y2, z2)); } /** * Return the squared distance between <code>(x1, y1, z1)</code> and <code>(x2, y2, z2)</code>. * * @param x1 * the x component of the first vector * @param y1 * the y component of the first vector * @param z1 * the z component of the first vector * @param x2 * the x component of the second vector * @param y2 * the y component of the second vector * @param z2 * the z component of the second vector * @return the euclidean distance squared */ public static float distanceSquared(float x1, float y1, float z1, float x2, float y2, float z2) { float dx = x1 - x2; float dy = y1 - y2; float dz = z1 - z2; return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz)); } public float dot(Vector3fc v) { return Math.fma(this.x, v.x(), Math.fma(this.y, v.y(), this.z * v.z())); } public float dot(float x, float y, float z) { return Math.fma(this.x, x, Math.fma(this.y, y, this.z * z)); } public float angleCos(Vector3fc v) { float x = this.x, y = this.y, z = this.z; float length1Squared = Math.fma(x, x, Math.fma(y, y, z * z)); float length2Squared = Math.fma(v.x(), v.x(), Math.fma(v.y(), v.y(), v.z() * v.z())); float dot = Math.fma(x, v.x(), Math.fma(y, v.y(), z * v.z())); return dot / (float)Math.sqrt(length1Squared * length2Squared); } public float angle(Vector3fc v) { float cos = angleCos(v); // This is because sometimes cos goes above 1 or below -1 because of lost precision cos = cos < 1 ? cos : 1; cos = cos > -1 ? cos : -1; return Math.acos(cos); } public float angleSigned(Vector3fc v, Vector3fc n) { return angleSigned(v.x(), v.y(), v.z(), n.x(), n.y(), n.z()); } public float angleSigned(float x, float y, float z, float nx, float ny, float nz) { float tx = this.x, ty = this.y, tz = this.z; return Math.atan2( (ty * z - tz * y) * nx + (tz * x - tx * z) * ny + (tx * y - ty * x) * nz, tx * x + ty * y + tz * z); } /** * Set the components of this vector to be the component-wise minimum of this and the other vector. * * @param v * the other vector * @return this */ public Vector3f min(Vector3fc v) { float x = this.x, y = this.y, z = this.z; this.x = x < v.x() ? x : v.x(); this.y = y < v.y() ? y : v.y(); this.z = z < v.z() ? z : v.z(); return this; } public Vector3f min(Vector3fc v, Vector3f dest) { float x = this.x, y = this.y, z = this.z; dest.x = x < v.x() ? x : v.x(); dest.y = y < v.y() ? y : v.y(); dest.z = z < v.z() ? z : v.z(); return dest; } /** * Set the components of this vector to be the component-wise maximum of this and the other vector. * * @param v * the other vector * @return this */ public Vector3f max(Vector3fc v) { float x = this.x, y = this.y, z = this.z; this.x = x > v.x() ? x : v.x(); this.y = y > v.y() ? y : v.y(); this.z = z > v.z() ? z : v.z(); return this; } public Vector3f max(Vector3fc v, Vector3f dest) { float x = this.x, y = this.y, z = this.z; dest.x = x > v.x() ? x : v.x(); dest.y = y > v.y() ? y : v.y(); dest.z = z > v.z() ? z : v.z(); return dest; } /** * Set all components to zero. * * @return this */ public Vector3f zero() { this.x = 0; this.y = 0; this.z = 0; return this; } /** * Return a string representation of this vector. * <p> * This method creates a new {@link DecimalFormat} on every invocation with the format string "<code>0.000E0;-</code>". * * @return the string representation */ public String toString() { return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT)); } /** * Return a string representation of this vector by formatting the vector components with the given {@link NumberFormat}. * * @param formatter * the {@link NumberFormat} used to format the vector components with * @return the string representation */ public String toString(NumberFormat formatter) { return "(" + Runtime.format(x, formatter) + " " + Runtime.format(y, formatter) + " " + Runtime.format(z, formatter) + ")"; } public void writeExternal(ObjectOutput out) throws IOException { out.writeFloat(x); out.writeFloat(y); out.writeFloat(z); } public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { set(in.readFloat(), in.readFloat(), in.readFloat()); } /** * Negate this vector. * * @return this */ public Vector3f negate() { this.x = -x; this.y = -y; this.z = -z; return this; } public Vector3f negate(Vector3f dest) { dest.x = -x; dest.y = -y; dest.z = -z; return dest; } /** * Set <code>this</code> vector's components to their respective absolute values. * * @return this */ public Vector3f absolute() { this.x = Math.abs(this.x); this.y = Math.abs(this.y); this.z = Math.abs(this.z); return this; } public Vector3f absolute(Vector3f dest) { dest.x = Math.abs(this.x); dest.y = Math.abs(this.y); dest.z = Math.abs(this.z); return dest; } public int hashCode() { final int prime = 31; int result = 1; result = prime * result + Float.floatToIntBits(x); result = prime * result + Float.floatToIntBits(y); result = prime * result + Float.floatToIntBits(z); return result; } public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Vector3f other = (Vector3f) obj; if (Float.floatToIntBits(x) != Float.floatToIntBits(other.x)) return false; if (Float.floatToIntBits(y) != Float.floatToIntBits(other.y)) return false; if (Float.floatToIntBits(z) != Float.floatToIntBits(other.z)) return false; return true; } public boolean equals(Vector3fc v, float delta) { if (this == v) return true; if (v == null) return false; if (!(v instanceof Vector3fc)) return false; if (!Runtime.equals(x, v.x(), delta)) return false; if (!Runtime.equals(y, v.y(), delta)) return false; if (!Runtime.equals(z, v.z(), delta)) return false; return true; } public boolean equals(float x, float y, float z) { if (Float.floatToIntBits(this.x) != Float.floatToIntBits(x)) return false; if (Float.floatToIntBits(this.y) != Float.floatToIntBits(y)) return false; if (Float.floatToIntBits(this.z) != Float.floatToIntBits(z)) return false; return true; } /** * Reflect this vector about the given <code>normal</code> vector. * * @param normal * the vector to reflect about * @return this */ public Vector3f reflect(Vector3fc normal) { float x = normal.x(); float y = normal.y(); float z = normal.z(); float dot = Math.fma(this.x, x, Math.fma(this.y, y, this.z * z)); this.x = this.x - (dot + dot) * x; this.y = this.y - (dot + dot) * y; this.z = this.z - (dot + dot) * z; return this; } /** * Reflect this vector about the given normal vector. * * @param x * the x component of the normal * @param y * the y component of the normal * @param z * the z component of the normal * @return this */ public Vector3f reflect(float x, float y, float z) { float dot = Math.fma(this.x, x, Math.fma(this.y, y, this.z * z)); this.x = this.x - (dot + dot) * x; this.y = this.y - (dot + dot) * y; this.z = this.z - (dot + dot) * z; return this; } public Vector3f reflect(Vector3fc normal, Vector3f dest) { return reflect(normal.x(), normal.y(), normal.z(), dest); } public Vector3f reflect(float x, float y, float z, Vector3f dest) { float dot = this.dot(x, y, z); dest.x = this.x - (dot + dot) * x; dest.y = this.y - (dot + dot) * y; dest.z = this.z - (dot + dot) * z; return dest; } /** * Compute the half vector between this and the other vector. * * @param other * the other vector * @return this */ public Vector3f half(Vector3fc other) { return this.set(this).add(other.x(), other.y(), other.z()).normalize(); } /** * Compute the half vector between this and the vector <code>(x, y, z)</code>. * * @param x * the x component of the other vector * @param y * the y component of the other vector * @param z * the z component of the other vector * @return this */ public Vector3f half(float x, float y, float z) { return half(x, y, z, this); } public Vector3f half(Vector3fc other, Vector3f dest) { return half(other.x(), other.y(), other.z(), dest); } public Vector3f half(float x, float y, float z, Vector3f dest) { return dest.set(this).add(x, y, z).normalize(); } public Vector3f smoothStep(Vector3fc v, float t, Vector3f dest) { float x = this.x, y = this.y, z = this.z; float t2 = t * t; float t3 = t2 * t; dest.x = (x + x - v.x() - v.x()) * t3 + (3.0f * v.x() - 3.0f * x) * t2 + x * t + x; dest.y = (y + y - v.y() - v.y()) * t3 + (3.0f * v.y() - 3.0f * y) * t2 + y * t + y; dest.z = (z + z - v.z() - v.z()) * t3 + (3.0f * v.z() - 3.0f * z) * t2 + z * t + z; return dest; } public Vector3f hermite(Vector3fc t0, Vector3fc v1, Vector3fc t1, float t, Vector3f dest) { float x = this.x, y = this.y, z = this.z; float t2 = t * t; float t3 = t2 * t; dest.x = (x + x - v1.x() - v1.x() + t1.x() + t0.x()) * t3 + (3.0f * v1.x() - 3.0f * x - t0.x() - t0.x() - t1.x()) * t2 + x * t + x; dest.y = (y + y - v1.y() - v1.y() + t1.y() + t0.y()) * t3 + (3.0f * v1.y() - 3.0f * y - t0.y() - t0.y() - t1.y()) * t2 + y * t + y; dest.z = (z + z - v1.z() - v1.z() + t1.z() + t0.z()) * t3 + (3.0f * v1.z() - 3.0f * z - t0.z() - t0.z() - t1.z()) * t2 + z * t + z; return dest; } /** * Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code> * and store the result in <code>this</code>. * <p> * If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code> * then the result is <code>other</code>. * * @param other * the other vector * @param t * the interpolation factor between 0.0 and 1.0 * @return this */ public Vector3f lerp(Vector3fc other, float t) { return lerp(other, t, this); } public Vector3f lerp(Vector3fc other, float t, Vector3f dest) { dest.x = Math.fma(other.x() - x, t, x); dest.y = Math.fma(other.y() - y, t, y); dest.z = Math.fma(other.z() - z, t, z); return dest; } public float get(int component) throws IllegalArgumentException { switch (component) { case 0: return x; case 1: return y; case 2: return z; default: throw new IllegalArgumentException(); } } public Vector3i get(int mode, Vector3i dest) { dest.x = Math.roundUsing(this.x(), mode); dest.y = Math.roundUsing(this.y(), mode); dest.z = Math.roundUsing(this.z(), mode); return dest; } public Vector3f get(Vector3f dest) { dest.x = this.x(); dest.y = this.y(); dest.z = this.z(); return dest; } public Vector3d get(Vector3d dest) { dest.x = this.x(); dest.y = this.y(); dest.z = this.z(); return dest; } public int maxComponent() { float absX = Math.abs(x); float absY = Math.abs(y); float absZ = Math.abs(z); if (absX >= absY && absX >= absZ) { return 0; } else if (absY >= absZ) { return 1; } return 2; } public int minComponent() { float absX = Math.abs(x); float absY = Math.abs(y); float absZ = Math.abs(z); if (absX < absY && absX < absZ) { return 0; } else if (absY < absZ) { return 1; } return 2; } public Vector3f orthogonalize(Vector3fc v, Vector3f dest) { /* * http://lolengine.net/blog/2013/09/21/picking-orthogonal-vector-combing-coconuts */ float rx, ry, rz; if (Math.abs(v.x()) > Math.abs(v.z())) { rx = -v.y(); ry = v.x(); rz = 0.0f; } else { rx = 0.0f; ry = -v.z(); rz = v.y(); } float invLen = Math.invsqrt(rx * rx + ry * ry + rz * rz); dest.x = rx * invLen; dest.y = ry * invLen; dest.z = rz * invLen; return dest; } /** * Transform <code>this</code> vector so that it is orthogonal to the given vector <code>v</code> and normalize the result. * <p> * Reference: <a href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">Gram–Schmidt process</a> * * @param v * the reference vector which the result should be orthogonal to * @return this */ public Vector3f orthogonalize(Vector3fc v) { return orthogonalize(v, this); } public Vector3f orthogonalizeUnit(Vector3fc v, Vector3f dest) { return orthogonalize(v, dest); } /** * Transform <code>this</code> vector so that it is orthogonal to the given unit vector <code>v</code> and normalize the result. * <p> * The vector <code>v</code> is assumed to be a {@link #normalize() unit} vector. * <p> * Reference: <a href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">Gram–Schmidt process</a> * * @param v * the reference unit vector which the result should be orthogonal to * @return this */ public Vector3f orthogonalizeUnit(Vector3fc v) { return orthogonalizeUnit(v, this); } /** * Set each component of this vector to the largest (closest to positive * infinity) {@code float} value that is less than or equal to that * component and is equal to a mathematical integer. * * @return this */ public Vector3f floor() { return floor(this); } public Vector3f floor(Vector3f dest) { dest.x = Math.floor(x); dest.y = Math.floor(y); dest.z = Math.floor(z); return dest; } /** * Set each component of this vector to the smallest (closest to negative * infinity) {@code float} value that is greater than or equal to that * component and is equal to a mathematical integer. * * @return this */ public Vector3f ceil() { return ceil(this); } public Vector3f ceil(Vector3f dest) { dest.x = Math.ceil(x); dest.y = Math.ceil(y); dest.z = Math.ceil(z); return dest; } /** * Set each component of this vector to the closest float that is equal to * a mathematical integer, with ties rounding to positive infinity. * * @return this */ public Vector3f round() { return round(this); } public Vector3f round(Vector3f dest) { dest.x = Math.round(x); dest.y = Math.round(y); dest.z = Math.round(z); return dest; } public boolean isFinite() { return Math.isFinite(x) && Math.isFinite(y) && Math.isFinite(z); } public Object clone() throws CloneNotSupportedException { return super.clone(); } }