/* * The MIT License * * Copyright (c) 2016-2021 JOML * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ package com.jozufozu.flywheel.repack.joml.sampling; import java.nio.FloatBuffer; import com.jozufozu.flywheel.repack.joml.Math; /** * Generates various convolution kernels. * * @author Kai Burjack */ public class Convolution { /** * Generate a Gaussian convolution kernel with the given number of rows and columns, and store * the factors in row-major order in dest. * * @param rows * the number of rows (must be an odd number) * @param cols * the number of columns (must be an odd number) * @param sigma * the standard deviation of the filter kernel values * @param dest * will hold the kernel factors in row-major order */ public static void gaussianKernel(int rows, int cols, float sigma, FloatBuffer dest) { if ((rows & 1) == 0) { throw new IllegalArgumentException("rows must be an odd number"); } if ((cols & 1) == 0) { throw new IllegalArgumentException("cols must be an odd number"); } if (dest == null) { throw new IllegalArgumentException("dest must not be null"); } if (dest.remaining() < rows * cols) { throw new IllegalArgumentException("dest must have at least " + (rows * cols) + " remaining values"); } float sum = 0.0f; int pos = dest.position(); for (int i = 0, y = -(rows - 1) / 2; y <= (rows - 1) / 2; y++) { for (int x = -(cols - 1) / 2; x <= (cols - 1) / 2; x++, i++) { float k = (float) Math.exp(-(y * y + x * x) / (2.0 * sigma * sigma)); dest.put(pos + i, k); sum += k; } } for (int i = 0; i < rows * cols; i++) { dest.put(pos + i, dest.get(pos + i) / sum); } } /** * Generate a Gaussian convolution kernel with the given number of rows and columns, and store * the factors in row-major order in dest. * * @param rows * the number of rows (must be an odd number) * @param cols * the number of columns (must be an odd number) * @param sigma * the standard deviation of the filter kernel values * @param dest * will hold the kernel factors in row-major order */ public static void gaussianKernel(int rows, int cols, float sigma, float[] dest) { if ((rows & 1) == 0) { throw new IllegalArgumentException("rows must be an odd number"); } if ((cols & 1) == 0) { throw new IllegalArgumentException("cols must be an odd number"); } if (dest == null) { throw new IllegalArgumentException("dest must not be null"); } if (dest.length < rows * cols) { throw new IllegalArgumentException("dest must have a size of at least " + (rows * cols)); } float sum = 0.0f; for (int i = 0, y = -(rows - 1) / 2; y <= (rows - 1) / 2; y++) { for (int x = -(cols - 1) / 2; x <= (cols - 1) / 2; x++, i++) { float k = (float) Math.exp(-(y * y + x * x) / (2.0 * sigma * sigma)); dest[i] = k; sum += k; } } for (int i = 0; i < rows * cols; i++) { dest[i] = dest[i] / sum; } } }