/* * The MIT License * * Copyright (c) 2016-2021 JOML * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ package com.jozufozu.flywheel.repack.joml; import java.nio.ByteBuffer; import java.nio.IntBuffer; /** * Interface to a read-only view of a 3-dimensional vector of integers. * * @author Kai Burjack */ public interface Vector3ic { /** * @return the value of the x component */ int x(); /** * @return the value of the y component */ int y(); /** * @return the value of the z component */ int z(); /** * Store this vector into the supplied {@link IntBuffer} at the current * buffer {@link IntBuffer#position() position}. *
* This method will not increment the position of the given IntBuffer. *
* In order to specify the offset into the IntBuffer at which the vector is
* stored, use {@link #get(int, IntBuffer)}, taking the absolute position as
* parameter.
*
* @see #get(int, IntBuffer)
*
* @param buffer
* will receive the values of this vector in x, y, z
order
* @return the passed in buffer
*/
IntBuffer get(IntBuffer buffer);
/**
* Store this vector into the supplied {@link IntBuffer} starting at the
* specified absolute buffer position/index.
*
* This method will not increment the position of the given IntBuffer.
*
* @param index
* the absolute position into the IntBuffer
* @param
* buffer will receive the values of this vector in x, y, z
order
* @return the passed in buffer
*/
IntBuffer get(int index, IntBuffer buffer);
/**
* Store this vector into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
*
* This method will not increment the position of the given ByteBuffer. *
* In order to specify the offset into the ByteBuffer at which the vector is
* stored, use {@link #get(int, ByteBuffer)}, taking the absolute position
* as parameter.
*
* @see #get(int, ByteBuffer)
*
* @param buffer
* will receive the values of this vector in x, y, z
order
* @return the passed in buffer
*/
ByteBuffer get(ByteBuffer buffer);
/**
* Store this vector into the supplied {@link ByteBuffer} starting at the
* specified absolute buffer position/index.
*
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this vector in x, y, z
order
* @return the passed in buffer
*/
ByteBuffer get(int index, ByteBuffer buffer);
/**
* Store this vector at the given off-heap memory address.
*
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`. *
* This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
*
* @param address
* the off-heap address where to store this vector
* @return this
*/
Vector3ic getToAddress(long address);
/**
* Subtract the supplied vector from this one and store the result in
* dest
.
*
* @param v
* the vector to subtract
* @param dest
* will hold the result
* @return dest
*/
Vector3i sub(Vector3ic v, Vector3i dest);
/**
* Decrement the components of this vector by the given values and store the
* result in dest
.
*
* @param x
* the x component to subtract
* @param y
* the y component to subtract
* @param z
* the z component to subtract
* @param dest
* will hold the result
* @return dest
*/
Vector3i sub(int x, int y, int z, Vector3i dest);
/**
* Add the supplied vector to this one and store the result in
* dest
.
*
* @param v
* the vector to add
* @param dest
* will hold the result
* @return dest
*/
Vector3i add(Vector3ic v, Vector3i dest);
/**
* Increment the components of this vector by the given values and store the
* result in dest
.
*
* @param x
* the x component to add
* @param y
* the y component to add
* @param z
* the z component to add
* @param dest
* will hold the result
* @return dest
*/
Vector3i add(int x, int y, int z, Vector3i dest);
/**
* Multiply the components of this vector by the given scalar and store the result in dest
.
*
* @param scalar
* the value to multiply this vector's components by
* @param dest
* will hold the result
* @return dest
*/
Vector3i mul(int scalar, Vector3i dest);
/**
* Multiply the supplied vector by this one and store the result in
* dest
.
*
* @param v
* the vector to multiply
* @param dest
* will hold the result
* @return dest
*/
Vector3i mul(Vector3ic v, Vector3i dest);
/**
* Multiply the components of this vector by the given values and store the
* result in dest
.
*
* @param x
* the x component to multiply
* @param y
* the y component to multiply
* @param z
* the z component to multiply
* @param dest
* will hold the result
* @return dest
*/
Vector3i mul(int x, int y, int z, Vector3i dest);
/**
* Divide all components of this {@link Vector3i} by the given scalar value
* and store the result in dest
.
*
* @param scalar
* the scalar to divide by
* @param dest
* will hold the result
* @return dest
*/
Vector3i div(float scalar, Vector3i dest);
/**
* Divide all components of this {@link Vector3i} by the given scalar value
* and store the result in dest
.
*
* @param scalar
* the scalar to divide by
* @param dest
* will hold the result
* @return dest
*/
Vector3i div(int scalar, Vector3i dest);
/**
* Return the length squared of this vector.
*
* @return the length squared
*/
long lengthSquared();
/**
* Return the length of this vector.
*
* @return the length
*/
double length();
/**
* Return the distance between this Vector and v
.
*
* @param v
* the other vector
* @return the distance
*/
double distance(Vector3ic v);
/**
* Return the distance between this
vector and (x, y, z)
.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return the euclidean distance
*/
double distance(int x, int y, int z);
/**
* Return the grid distance in between (aka 1-Norm, Minkowski or Manhattan distance)
* (x, y)
.
*
* @param v
* the other vector
* @return the grid distance
*/
long gridDistance(Vector3ic v);
/**
* Return the grid distance in between (aka 1-Norm, Minkowski or Manhattan distance)
* (x, y)
.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the y component of the other vector
* @return the grid distance
*/
long gridDistance(int x, int y, int z);
/**
* Return the square of the distance between this vector and v
.
*
* @param v
* the other vector
* @return the squared of the distance
*/
long distanceSquared(Vector3ic v);
/**
* Return the square of the distance between this
vector and (x, y, z)
.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return the square of the distance
*/
long distanceSquared(int x, int y, int z);
/**
* Negate this vector and store the result in dest
.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3i negate(Vector3i dest);
/**
* Set the components of dest
to be the component-wise minimum of this and the other vector.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3i min(Vector3ic v, Vector3i dest);
/**
* Set the components of dest
to be the component-wise maximum of this and the other vector.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3i max(Vector3ic v, Vector3i dest);
/**
* Get the value of the specified component of this vector.
*
* @param component
* the component, within [0..2]
* @return the value
* @throws IllegalArgumentException if component
is not within [0..2]
*/
int get(int component) throws IllegalArgumentException;
/**
* Determine the component with the biggest absolute value.
*
* @return the component index, within [0..2]
*/
int maxComponent();
/**
* Determine the component with the smallest (towards zero) absolute value.
*
* @return the component index, within [0..2]
*/
int minComponent();
/**
* Compute the absolute of each of this vector's components
* and store the result into dest
.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3i absolute(Vector3i dest);
/**
* Compare the vector components of this
vector with the given (x, y, z)
* and return whether all of them are equal.
*
* @param x
* the x component to compare to
* @param y
* the y component to compare to
* @param z
* the z component to compare to
* @return true
if all the vector components are equal
*/
boolean equals(int x, int y, int z);
}