/* * The MIT License * * Copyright (c) 2015-2021 Richard Greenlees * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ package com.jozufozu.flywheel.repack.joml; import java.io.Externalizable; import java.io.IOException; import java.io.ObjectInput; import java.io.ObjectOutput; import java.nio.*; import java.text.DecimalFormat; import java.text.NumberFormat; /** * Contains the definition of a Vector comprising 4 doubles and associated transformations. * * @author Richard Greenlees * @author Kai Burjack * @author F. Neurath */ public class Vector4d implements Externalizable, Cloneable, Vector4dc { private static final long serialVersionUID = 1L; /** * The x component of the vector. */ public double x; /** * The y component of the vector. */ public double y; /** * The z component of the vector. */ public double z; /** * The w component of the vector. */ public double w; /** * Create a new {@link Vector4d} of (0, 0, 0, 1). */ public Vector4d() { this.w = 1.0; } /** * Create a new {@link Vector4d} with the same values as v. * * @param v * the {@link Vector4dc} to copy the values from */ public Vector4d(Vector4dc v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = v.w(); } /** * Create a new {@link Vector4d} with the same values as v. * * @param v * the {@link Vector4ic} to copy the values from */ public Vector4d(Vector4ic v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = v.w(); } /** * Create a new {@link Vector4d} with the first three components from the * given v and the given w. * * @param v * the {@link Vector3dc} * @param w * the w component */ public Vector4d(Vector3dc v, double w) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = w; } /** * Create a new {@link Vector4d} with the first three components from the * given v and the given w. * * @param v * the {@link Vector3ic} * @param w * the w component */ public Vector4d(Vector3ic v, double w) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = w; } /** * Create a new {@link Vector4d} with the first two components from the * given v and the given z and w. * * @param v * the {@link Vector2dc} * @param z * the z component * @param w * the w component */ public Vector4d(Vector2dc v, double z, double w) { this.x = v.x(); this.y = v.y(); this.z = z; this.w = w; } /** * Create a new {@link Vector4d} with the first two components from the * given v and the given z and w. * * @param v * the {@link Vector2ic} * @param z * the z component * @param w * the w component */ public Vector4d(Vector2ic v, double z, double w) { this.x = v.x(); this.y = v.y(); this.z = z; this.w = w; } /** * Create a new {@link Vector4d} and initialize all four components with the given value. * * @param d * the value of all four components */ public Vector4d(double d) { this.x = d; this.y = d; this.z = d; this.w = d; } /** * Create a new {@link Vector4d} with the same values as v. * * @param v * the {@link Vector4fc} to copy the values from */ public Vector4d(Vector4fc v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = v.w(); } /** * Create a new {@link Vector4d} with the x, y, and z components from the * given v and the w component from the given w. * * @param v * the {@link Vector3fc} * @param w * the w component */ public Vector4d(Vector3fc v, double w) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = w; } /** * Create a new {@link Vector4d} with the x and y components from the * given v and the z and w components from the given z and w. * * @param v * the {@link Vector2fc} * @param z * the z component * @param w * the w component */ public Vector4d(Vector2fc v, double z, double w) { this.x = v.x(); this.y = v.y(); this.z = z; this.w = w; } /** * Create a new {@link Vector4d} with the given component values. * * @param x * the x component * @param y * the y component * @param z * the z component * @param w * the w component */ public Vector4d(double x, double y, double z, double w) { this.x = x; this.y = y; this.z = z; this.w = w; } /** * Create a new {@link Vector4d} and initialize its four components from the first * four elements of the given array. * * @param xyzw * the array containing at least four elements */ public Vector4d(float[] xyzw) { this.x = xyzw[0]; this.y = xyzw[1]; this.z = xyzw[2]; this.w = xyzw[3]; } /** * Create a new {@link Vector4d} and initialize its four components from the first * four elements of the given array. * * @param xyzw * the array containing at least four elements */ public Vector4d(double[] xyzw) { this.x = xyzw[0]; this.y = xyzw[1]; this.z = xyzw[2]; this.w = xyzw[3]; } /** * Create a new {@link Vector4d} and read this vector from the supplied {@link ByteBuffer} * at the current buffer {@link ByteBuffer#position() position}. *

* This method will not increment the position of the given ByteBuffer. *

* In order to specify the offset into the ByteBuffer at which * the vector is read, use {@link #Vector4d(int, ByteBuffer)}, taking * the absolute position as parameter. * * @param buffer * values will be read in x, y, z, w order * @see #Vector4d(int, ByteBuffer) */ public Vector4d(ByteBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); } /** * Create a new {@link Vector4d} and read this vector from the supplied {@link ByteBuffer} * starting at the specified absolute buffer position/index. *

* This method will not increment the position of the given ByteBuffer. * * @param index the absolute position into the ByteBuffer * @param buffer values will be read in x, y, z, w order */ public Vector4d(int index, ByteBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); } /** * Create a new {@link Vector4d} and read this vector from the supplied {@link DoubleBuffer} * at the current buffer {@link DoubleBuffer#position() position}. *

* This method will not increment the position of the given DoubleBuffer. *

* In order to specify the offset into the DoubleBuffer at which * the vector is read, use {@link #Vector4d(int, DoubleBuffer)}, taking * the absolute position as parameter. * * @param buffer values will be read in x, y, z, w order * @see #Vector4d(int, DoubleBuffer) */ public Vector4d(DoubleBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); } /** * Create a new {@link Vector4d} and read this vector from the supplied {@link DoubleBuffer} * starting at the specified absolute buffer position/index. *

* This method will not increment the position of the given DoubleBuffer. * * @param index the absolute position into the DoubleBuffer * @param buffer values will be read in x, y, z, w order */ public Vector4d(int index, DoubleBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); } public double x() { return this.x; } public double y() { return this.y; } public double z() { return this.z; } public double w() { return this.w; } /** * Set this {@link Vector4d} to the values of the given v. * * @param v * the vector whose values will be copied into this * @return this */ public Vector4d set(Vector4dc v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = v.w(); return this; } /** * Set this {@link Vector4d} to the values of the given v. * * @param v * the vector whose values will be copied into this * @return this */ public Vector4d set(Vector4fc v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = v.w(); return this; } /** * Set this {@link Vector4d} to the values of the given v. * * @param v * the vector whose values will be copied into this * @return this */ public Vector4d set(Vector4ic v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = v.w(); return this; } /** * Set the x, y, and z components of this to the components of * v and the w component to w. * * @param v * the {@link Vector3dc} to copy * @param w * the w component * @return this */ public Vector4d set(Vector3dc v, double w) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = w; return this; } /** * Set the x, y, and z components of this to the components of * v and the w component to w. * * @param v * the {@link Vector3ic} to copy * @param w * the w component * @return this */ public Vector4d set(Vector3ic v, double w) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = w; return this; } /** * Set the x, y, and z components of this to the components of * v and the w component to w. * * @param v * the {@link Vector3fc} to copy * @param w * the w component * @return this */ public Vector4d set(Vector3fc v, double w) { this.x = v.x(); this.y = v.y(); this.z = v.z(); this.w = w; return this; } /** * Set the x and y components from the given v * and the z and w components to the given z and w. * * @param v * the {@link Vector2dc} * @param z * the z component * @param w * the w component * @return this */ public Vector4d set(Vector2dc v, double z, double w) { this.x = v.x(); this.y = v.y(); this.z = z; this.w = w; return this; } /** * Set the x and y components from the given v * and the z and w components to the given z and w. * * @param v * the {@link Vector2ic} * @param z * the z component * @param w * the w component * @return this */ public Vector4d set(Vector2ic v, double z, double w) { this.x = v.x(); this.y = v.y(); this.z = z; this.w = w; return this; } /** * Set the x, y, z, and w components to the supplied value. * * @param d * the value of all four components * @return this */ public Vector4d set(double d) { this.x = d; this.y = d; this.z = d; this.w = d; return this; } /** * Set the x and y components from the given v * and the z and w components to the given z and w. * * @param v * the {@link Vector2fc} * @param z * the z components * @param w * the w components * @return this */ public Vector4d set(Vector2fc v, double z, double w) { this.x = v.x(); this.y = v.y(); this.z = z; this.w = w; return this; } /** * Set the x, y, z, and w components to the supplied values. * * @param x * the x component * @param y * the y component * @param z * the z component * @param w * the w component * @return this */ public Vector4d set(double x, double y, double z, double w) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } /** * Set the x, y, z components to the supplied values. * * @param x * the x component * @param y * the y component * @param z * the z component * @return this */ public Vector4d set(double x, double y, double z) { this.x = x; this.y = y; this.z = z; return this; } /** * Set the four components of this vector to the first four elements of the given array. * * @param xyzw * the array containing at least four elements * @return this */ public Vector4d set(double[] xyzw) { this.x = xyzw[0]; this.y = xyzw[1]; this.z = xyzw[2]; this.w = xyzw[3]; return this; } /** * Set the four components of this vector to the first four elements of the given array. * * @param xyzw * the array containing at least four elements * @return this */ public Vector4d set(float[] xyzw) { this.x = xyzw[0]; this.y = xyzw[1]; this.z = xyzw[2]; this.w = xyzw[3]; return this; } /** * Read this vector from the supplied {@link ByteBuffer} at the current * buffer {@link ByteBuffer#position() position}. *

* This method will not increment the position of the given ByteBuffer. *

* In order to specify the offset into the ByteBuffer at which * the vector is read, use {@link #set(int, ByteBuffer)}, taking * the absolute position as parameter. * * @param buffer * values will be read in x, y, z, w order * @return this * @see #set(int, ByteBuffer) */ public Vector4d set(ByteBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); return this; } /** * Read this vector from the supplied {@link ByteBuffer} starting at the specified * absolute buffer position/index. *

* This method will not increment the position of the given ByteBuffer. * * @param index * the absolute position into the ByteBuffer * @param buffer * values will be read in x, y, z, w order * @return this */ public Vector4d set(int index, ByteBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); return this; } /** * Read this vector from the supplied {@link DoubleBuffer} at the current * buffer {@link DoubleBuffer#position() position}. *

* This method will not increment the position of the given DoubleBuffer. *

* In order to specify the offset into the DoubleBuffer at which * the vector is read, use {@link #set(int, DoubleBuffer)}, taking * the absolute position as parameter. * * @param buffer * values will be read in x, y, z, w order * @return this * @see #set(int, DoubleBuffer) */ public Vector4d set(DoubleBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); return this; } /** * Read this vector from the supplied {@link DoubleBuffer} starting at the specified * absolute buffer position/index. *

* This method will not increment the position of the given DoubleBuffer. * * @param index * the absolute position into the DoubleBuffer * @param buffer * values will be read in x, y, z, w order * @return this */ public Vector4d set(int index, DoubleBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); return this; } /** * Set the values of this vector by reading 4 double values from off-heap memory, * starting at the given address. *

* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`. *

* This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process. * * @param address * the off-heap memory address to read the vector values from * @return this */ public Vector4d setFromAddress(long address) { if (Options.NO_UNSAFE) throw new UnsupportedOperationException("Not supported when using joml.nounsafe"); MemUtil.MemUtilUnsafe.get(this, address); return this; } /** * Set the value of the specified component of this vector. * * @param component * the component whose value to set, within [0..3] * @param value * the value to set * @return this * @throws IllegalArgumentException if component is not within [0..3] */ public Vector4d setComponent(int component, double value) throws IllegalArgumentException { switch (component) { case 0: x = value; break; case 1: y = value; break; case 2: z = value; break; case 3: w = value; break; default: throw new IllegalArgumentException(); } return this; } public ByteBuffer get(ByteBuffer buffer) { MemUtil.INSTANCE.put(this, buffer.position(), buffer); return buffer; } public ByteBuffer get(int index, ByteBuffer buffer) { MemUtil.INSTANCE.put(this, index, buffer); return buffer; } public DoubleBuffer get(DoubleBuffer buffer) { MemUtil.INSTANCE.put(this, buffer.position(), buffer); return buffer; } public DoubleBuffer get(int index, DoubleBuffer buffer) { MemUtil.INSTANCE.put(this, index, buffer); return buffer; } public ByteBuffer getf(ByteBuffer buffer) { MemUtil.INSTANCE.putf(this, buffer.position(), buffer); return buffer; } public ByteBuffer getf(int index, ByteBuffer buffer) { MemUtil.INSTANCE.putf(this, index, buffer); return buffer; } public FloatBuffer get(FloatBuffer buffer) { MemUtil.INSTANCE.put(this, buffer.position(), buffer); return buffer; } public FloatBuffer get(int index, FloatBuffer buffer) { MemUtil.INSTANCE.put(this, index, buffer); return buffer; } public Vector4dc getToAddress(long address) { if (Options.NO_UNSAFE) throw new UnsupportedOperationException("Not supported when using joml.nounsafe"); MemUtil.MemUtilUnsafe.put(this, address); return this; } /** * Subtract the supplied vector from this one. * * @param v * the vector to subtract * @return this */ public Vector4d sub(Vector4dc v) { this.x = x - v.x(); this.y = y - v.y(); this.z = z - v.z(); this.w = w - v.w(); return this; } /** * Subtract the supplied vector from this one and store the result in dest. * * @param v * the vector to subtract * @param dest * will hold the result * @return dest */ public Vector4d sub(Vector4dc v, Vector4d dest) { dest.x = x - v.x(); dest.y = y - v.y(); dest.z = z - v.z(); dest.w = w - v.w(); return dest; } /** * Subtract the supplied vector from this one. * * @param v * the vector to subtract * @return this */ public Vector4d sub(Vector4fc v) { this.x = x - v.x(); this.y = y - v.y(); this.z = z - v.z(); this.w = w - v.w(); return this; } /** * Subtract the supplied vector from this one and store the result in dest. * * @param v * the vector to subtract * @param dest * will hold the result * @return dest */ public Vector4d sub(Vector4fc v, Vector4d dest) { dest.x = x - v.x(); dest.y = y - v.y(); dest.z = z - v.z(); dest.w = w - v.w(); return dest; } /** * Subtract (x, y, z, w) from this. * * @param x * the x component to subtract * @param y * the y component to subtract * @param z * the z component to subtract * @param w * the w component to subtract * @return this */ public Vector4d sub(double x, double y, double z, double w) { this.x = this.x - x; this.y = this.y - y; this.z = this.z - z; this.w = this.w - w; return this; } public Vector4d sub(double x, double y, double z, double w, Vector4d dest) { dest.x = this.x - x; dest.y = this.y - y; dest.z = this.z - z; dest.w = this.w - w; return dest; } /** * Add the supplied vector to this one. * * @param v * the vector to add * @return this */ public Vector4d add(Vector4dc v) { this.x = x + v.x(); this.y = y + v.y(); this.z = z + v.z(); this.w = w + v.w(); return this; } public Vector4d add(Vector4dc v, Vector4d dest) { dest.x = x + v.x(); dest.y = y + v.y(); dest.z = z + v.z(); dest.w = w + v.w(); return dest; } public Vector4d add(Vector4fc v, Vector4d dest) { dest.x = x + v.x(); dest.y = y + v.y(); dest.z = z + v.z(); dest.w = w + v.w(); return dest; } /** * Add (x, y, z, w) to this. * * @param x * the x component to add * @param y * the y component to add * @param z * the z component to add * @param w * the w component to add * @return this */ public Vector4d add(double x, double y, double z, double w) { this.x = this.x + x; this.y = this.y + y; this.z = this.z + z; this.w = this.w + w; return this; } public Vector4d add(double x, double y, double z, double w, Vector4d dest) { dest.x = this.x + x; dest.y = this.y + y; dest.z = this.z + z; dest.w = this.w + w; return dest; } /** * Add the supplied vector to this one. * * @param v * the vector to add * @return this */ public Vector4d add(Vector4fc v) { this.x = x + v.x(); this.y = y + v.y(); this.z = z + v.z(); this.w = w + v.w(); return this; } /** * Add the component-wise multiplication of a * b to this vector. * * @param a * the first multiplicand * @param b * the second multiplicand * @return this */ public Vector4d fma(Vector4dc a, Vector4dc b) { this.x = Math.fma(a.x(), b.x(), x); this.y = Math.fma(a.y(), b.y(), y); this.z = Math.fma(a.z(), b.z(), z); this.w = Math.fma(a.w(), b.w(), w); return this; } /** * Add the component-wise multiplication of a * b to this vector. * * @param a * the first multiplicand * @param b * the second multiplicand * @return this */ public Vector4d fma(double a, Vector4dc b) { this.x = Math.fma(a, b.x(), x); this.y = Math.fma(a, b.y(), y); this.z = Math.fma(a, b.z(), z); this.w = Math.fma(a, b.w(), w); return this; } public Vector4d fma(Vector4dc a, Vector4dc b, Vector4d dest) { dest.x = Math.fma(a.x(), b.x(), x); dest.y = Math.fma(a.y(), b.y(), y); dest.z = Math.fma(a.z(), b.z(), z); dest.w = Math.fma(a.w(), b.w(), w); return dest; } public Vector4d fma(double a, Vector4dc b, Vector4d dest) { dest.x = Math.fma(a, b.x(), x); dest.y = Math.fma(a, b.y(), y); dest.z = Math.fma(a, b.z(), z); dest.w = Math.fma(a, b.w(), w); return dest; } /** * Add the component-wise multiplication of this * a to b * and store the result in this. * * @param a * the multiplicand * @param b * the addend * @return this */ public Vector4d mulAdd(Vector4dc a, Vector4dc b) { this.x = Math.fma(x, a.x(), b.x()); this.y = Math.fma(y, a.y(), b.y()); this.z = Math.fma(z, a.z(), b.z()); return this; } /** * Add the component-wise multiplication of this * a to b * and store the result in this. * * @param a * the multiplicand * @param b * the addend * @return this */ public Vector4d mulAdd(double a, Vector4dc b) { this.x = Math.fma(x, a, b.x()); this.y = Math.fma(y, a, b.y()); this.z = Math.fma(z, a, b.z()); return this; } public Vector4d mulAdd(Vector4dc a, Vector4dc b, Vector4d dest) { dest.x = Math.fma(x, a.x(), b.x()); dest.y = Math.fma(y, a.y(), b.y()); dest.z = Math.fma(z, a.z(), b.z()); return dest; } public Vector4d mulAdd(double a, Vector4dc b, Vector4d dest) { dest.x = Math.fma(x, a, b.x()); dest.y = Math.fma(y, a, b.y()); dest.z = Math.fma(z, a, b.z()); return dest; } /** * Multiply this {@link Vector4d} component-wise by the given {@link Vector4d}. * * @param v * the vector to multiply by * @return this */ public Vector4d mul(Vector4dc v) { this.x = x * v.x(); this.y = y * v.y(); this.z = z * v.z(); this.w = w * v.w(); return this; } public Vector4d mul(Vector4dc v, Vector4d dest) { dest.x = x * v.x(); dest.y = y * v.y(); dest.z = z * v.z(); dest.w = w * v.w(); return dest; } /** * Divide this {@link Vector4d} component-wise by the given {@link Vector4dc}. * * @param v * the vector to divide by * @return this */ public Vector4d div(Vector4dc v) { this.x = x / v.x(); this.y = y / v.y(); this.z = z / v.z(); this.w = w / v.w(); return this; } public Vector4d div(Vector4dc v, Vector4d dest) { dest.x = x / v.x(); dest.y = y / v.y(); dest.z = z / v.z(); dest.w = w / v.w(); return dest; } /** * Multiply this {@link Vector4d} component-wise by the given {@link Vector4fc}. * * @param v * the vector to multiply by * @return this */ public Vector4d mul(Vector4fc v) { this.x = x * v.x(); this.y = y * v.y(); this.z = z * v.z(); this.w = w * v.w(); return this; } public Vector4d mul(Vector4fc v, Vector4d dest) { dest.x = x * v.x(); dest.y = y * v.y(); dest.z = z * v.z(); dest.w = w * v.w(); return dest; } /** * Multiply the given matrix mat with this {@link Vector4d}. * * @param mat * the matrix to multiply by * @return this */ public Vector4d mul(Matrix4dc mat) { if ((mat.properties() & Matrix4fc.PROPERTY_AFFINE) != 0) return mulAffine(mat, this); return mulGeneric(mat, this); } public Vector4d mul(Matrix4dc mat, Vector4d dest) { if ((mat.properties() & Matrix4fc.PROPERTY_AFFINE) != 0) return mulAffine(mat, dest); return mulGeneric(mat, dest); } /** * Multiply the transpose of the given matrix mat with this Vector4f and store the result in * this. * * @param mat * the matrix whose transpose to multiply the vector with * @return this */ public Vector4d mulTranspose(Matrix4dc mat) { if ((mat.properties() & Matrix4dc.PROPERTY_AFFINE) != 0) return mulAffineTranspose(mat, this); return mulGenericTranspose(mat, this); } public Vector4d mulTranspose(Matrix4dc mat, Vector4d dest) { if ((mat.properties() & Matrix4dc.PROPERTY_AFFINE) != 0) return mulAffineTranspose(mat, dest); return mulGenericTranspose(mat, dest); } public Vector4d mulAffine(Matrix4dc mat, Vector4d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))); dest.x = rx; dest.y = ry; dest.z = rz; dest.w = w; return dest; } private Vector4d mulGeneric(Matrix4dc mat, Vector4d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))); double rw = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w))); dest.x = rx; dest.y = ry; dest.z = rz; dest.w = rw; return dest; } public Vector4d mulAffineTranspose(Matrix4dc mat, Vector4d dest) { double x = this.x, y = this.y, z = this.z, w = this.w; dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z)); dest.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z)); dest.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z)); dest.w = Math.fma(mat.m30(), x, Math.fma(mat.m31(), y, mat.m32() * z + w)); return dest; } private Vector4d mulGenericTranspose(Matrix4dc mat, Vector4d dest) { double x = this.x, y = this.y, z = this.z, w = this.w; dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03() * w))); dest.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13() * w))); dest.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23() * w))); dest.w = Math.fma(mat.m30(), x, Math.fma(mat.m31(), y, Math.fma(mat.m32(), z, mat.m33() * w))); return dest; } /** * Multiply the given matrix mat with this Vector4d and store the result in * this. * * @param mat * the matrix to multiply the vector with * @return this */ public Vector4d mul(Matrix4x3dc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))); this.x = rx; this.y = ry; this.z = rz; return this; } public Vector4d mul(Matrix4x3dc mat, Vector4d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))); dest.x = rx; dest.y = ry; dest.z = rz; dest.w = w; return dest; } /** * Multiply the given matrix mat with this Vector4d and store the result in * this. * * @param mat * the matrix to multiply the vector with * @return this */ public Vector4d mul(Matrix4x3fc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))); this.x = rx; this.y = ry; this.z = rz; return this; } public Vector4d mul(Matrix4x3fc mat, Vector4d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))); dest.x = rx; dest.y = ry; dest.z = rz; dest.w = w; return dest; } /** * Multiply the given matrix mat with this {@link Vector4d}. * * @param mat * the matrix to multiply by * @return this */ public Vector4d mul(Matrix4fc mat) { if ((mat.properties() & Matrix4fc.PROPERTY_AFFINE) != 0) return mulAffine(mat, this); return mulGeneric(mat, this); } public Vector4d mul(Matrix4fc mat, Vector4d dest) { if ((mat.properties() & Matrix4fc.PROPERTY_AFFINE) != 0) return mulAffine(mat, dest); return mulGeneric(mat, dest); } private Vector4d mulAffine(Matrix4fc mat, Vector4d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))); dest.x = rx; dest.y = ry; dest.z = rz; dest.w = w; return dest; } private Vector4d mulGeneric(Matrix4fc mat, Vector4d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))); double rw = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w))); dest.x = rx; dest.y = ry; dest.z = rz; dest.w = rw; return dest; } public Vector4d mulProject(Matrix4dc mat, Vector4d dest) { double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w))); double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))) * invW; double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))) * invW; double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))) * invW; dest.x = rx; dest.y = ry; dest.z = rz; dest.w = 1.0; return dest; } /** * Multiply the given matrix mat with this Vector4d, perform perspective division. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector4d mulProject(Matrix4dc mat) { double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w))); double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))) * invW; double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))) * invW; double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))) * invW; this.x = rx; this.y = ry; this.z = rz; this.w = 1.0; return this; } public Vector3d mulProject(Matrix4dc mat, Vector3d dest) { double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w))); double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))) * invW; double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))) * invW; double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))) * invW; dest.x = rx; dest.y = ry; dest.z = rz; return dest; } /** * Multiply this Vector4d by the given scalar value. * * @param scalar * the scalar to multiply by * @return this */ public Vector4d mul(double scalar) { this.x = x * scalar; this.y = y * scalar; this.z = z * scalar; this.w = w * scalar; return this; } public Vector4d mul(double scalar, Vector4d dest) { dest.x = x * scalar; dest.y = y * scalar; dest.z = z * scalar; dest.w = w * scalar; return dest; } /** * Divide this Vector4d by the given scalar value. * * @param scalar * the scalar to divide by * @return this */ public Vector4d div(double scalar) { double inv = 1.0 / scalar; this.x = x * inv; this.y = y * inv; this.z = z * inv; this.w = w * inv; return this; } public Vector4d div(double scalar, Vector4d dest) { double inv = 1.0 / scalar; dest.x = x * inv; dest.y = y * inv; dest.z = z * inv; dest.w = w * inv; return dest; } /** * Transform this vector by the given quaternion quat and store the result in this. * * @see Quaterniond#transform(Vector4d) * * @param quat * the quaternion to transform this vector * @return this */ public Vector4d rotate(Quaterniondc quat) { quat.transform(this, this); return this; } public Vector4d rotate(Quaterniondc quat, Vector4d dest) { quat.transform(this, dest); return dest; } /** * Rotate this vector the specified radians around the given rotation axis. * * @param angle * the angle in radians * @param x * the x component of the rotation axis * @param y * the y component of the rotation axis * @param z * the z component of the rotation axis * @return this */ public Vector4d rotateAxis(double angle, double x, double y, double z) { if (y == 0.0 && z == 0.0 && Math.absEqualsOne(x)) return rotateX(x * angle, this); else if (x == 0.0 && z == 0.0 && Math.absEqualsOne(y)) return rotateY(y * angle, this); else if (x == 0.0 && y == 0.0 && Math.absEqualsOne(z)) return rotateZ(z * angle, this); return rotateAxisInternal(angle, x, y, z, this); } public Vector4d rotateAxis(double angle, double aX, double aY, double aZ, Vector4d dest) { if (aY == 0.0 && aZ == 0.0 && Math.absEqualsOne(aX)) return rotateX(aX * angle, dest); else if (aX == 0.0 && aZ == 0.0 && Math.absEqualsOne(aY)) return rotateY(aY * angle, dest); else if (aX == 0.0 && aY == 0.0 && Math.absEqualsOne(aZ)) return rotateZ(aZ * angle, dest); return rotateAxisInternal(angle, aX, aY, aZ, dest); } private Vector4d rotateAxisInternal(double angle, double aX, double aY, double aZ, Vector4d dest) { double hangle = angle * 0.5; double sinAngle = Math.sin(hangle); double qx = aX * sinAngle, qy = aY * sinAngle, qz = aZ * sinAngle; double qw = Math.cosFromSin(sinAngle, hangle); double w2 = qw * qw, x2 = qx * qx, y2 = qy * qy, z2 = qz * qz, zw = qz * qw; double xy = qx * qy, xz = qx * qz, yw = qy * qw, yz = qy * qz, xw = qx * qw; double nx = (w2 + x2 - z2 - y2) * x + (-zw + xy - zw + xy) * y + (yw + xz + xz + yw) * z; double ny = (xy + zw + zw + xy) * x + ( y2 - z2 + w2 - x2) * y + (yz + yz - xw - xw) * z; double nz = (xz - yw + xz - yw) * x + ( yz + yz + xw + xw) * y + (z2 - y2 - x2 + w2) * z; dest.x = nx; dest.y = ny; dest.z = nz; return dest; } /** * Rotate this vector the specified radians around the X axis. * * @param angle * the angle in radians * @return this */ public Vector4d rotateX(double angle) { double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); double y = this.y * cos - this.z * sin; double z = this.y * sin + this.z * cos; this.y = y; this.z = z; return this; } public Vector4d rotateX(double angle, Vector4d dest) { double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); double y = this.y * cos - this.z * sin; double z = this.y * sin + this.z * cos; dest.x = this.x; dest.y = y; dest.z = z; dest.w = this.w; return dest; } /** * Rotate this vector the specified radians around the Y axis. * * @param angle * the angle in radians * @return this */ public Vector4d rotateY(double angle) { double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); double x = this.x * cos + this.z * sin; double z = -this.x * sin + this.z * cos; this.x = x; this.z = z; return this; } public Vector4d rotateY(double angle, Vector4d dest) { double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); double x = this.x * cos + this.z * sin; double z = -this.x * sin + this.z * cos; dest.x = x; dest.y = this.y; dest.z = z; dest.w = this.w; return dest; } /** * Rotate this vector the specified radians around the Z axis. * * @param angle * the angle in radians * @return this */ public Vector4d rotateZ(double angle) { double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); double x = this.x * cos - this.y * sin; double y = this.x * sin + this.y * cos; this.x = x; this.y = y; return this; } public Vector4d rotateZ(double angle, Vector4d dest) { double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); double x = this.x * cos - this.y * sin; double y = this.x * sin + this.y * cos; dest.x = x; dest.y = y; dest.z = this.z; dest.w = this.w; return dest; } public double lengthSquared() { return Math.fma(x, x, Math.fma(y, y, Math.fma(z, z, w * w))); } /** * Get the length squared of a 4-dimensional double-precision vector. * * @param x The vector's x component * @param y The vector's y component * @param z The vector's z component * @param w The vector's w component * * @return the length squared of the given vector * * @author F. Neurath */ public static double lengthSquared(double x, double y, double z, double w) { return Math.fma(x, x, Math.fma(y, y, Math.fma(z, z, w * w))); } public double length() { return Math.sqrt(Math.fma(x, x, Math.fma(y, y, Math.fma(z, z, w * w)))); } /** * Get the length of a 4-dimensional double-precision vector. * * @param x The vector's x component * @param y The vector's y component * @param z The vector's z component * @param w The vector's w component * * @return the length of the given vector * * @author F. Neurath */ public static double length(double x, double y, double z, double w) { return Math.sqrt(Math.fma(x, x, Math.fma(y, y, Math.fma(z, z, w * w)))); } /** * Normalizes this vector. * * @return this */ public Vector4d normalize() { double invLength = 1.0 / length(); this.x = x * invLength; this.y = y * invLength; this.z = z * invLength; this.w = w * invLength; return this; } public Vector4d normalize(Vector4d dest) { double invLength = 1.0 / length(); dest.x = x * invLength; dest.y = y * invLength; dest.z = z * invLength; dest.w = w * invLength; return dest; } /** * Scale this vector to have the given length. * * @param length * the desired length * @return this */ public Vector4d normalize(double length) { double invLength = 1.0 / length() * length; this.x = x * invLength; this.y = y * invLength; this.z = z * invLength; this.w = w * invLength; return this; } public Vector4d normalize(double length, Vector4d dest) { double invLength = 1.0 / length() * length; dest.x = x * invLength; dest.y = y * invLength; dest.z = z * invLength; dest.w = w * invLength; return dest; } /** * Normalize this vector by computing only the norm of (x, y, z). * * @return this */ public Vector4d normalize3() { double invLength = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))); this.x = x * invLength; this.y = y * invLength; this.z = z * invLength; this.w = w * invLength; return this; } public Vector4d normalize3(Vector4d dest) { double invLength = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))); dest.x = x * invLength; dest.y = y * invLength; dest.z = z * invLength; dest.w = w * invLength; return dest; } public double distance(Vector4dc v) { double dx = this.x - v.x(); double dy = this.y - v.y(); double dz = this.z - v.z(); double dw = this.w - v.w(); return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, Math.fma(dz, dz, dw * dw)))); } public double distance(double x, double y, double z, double w) { double dx = this.x - x; double dy = this.y - y; double dz = this.z - z; double dw = this.w - w; return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, Math.fma(dz, dz, dw * dw)))); } public double distanceSquared(Vector4dc v) { double dx = this.x - v.x(); double dy = this.y - v.y(); double dz = this.z - v.z(); double dw = this.w - v.w(); return Math.fma(dx, dx, Math.fma(dy, dy, Math.fma(dz, dz, dw * dw))); } public double distanceSquared(double x, double y, double z, double w) { double dx = this.x - x; double dy = this.y - y; double dz = this.z - z; double dw = this.w - w; return Math.fma(dx, dx, Math.fma(dy, dy, Math.fma(dz, dz, dw * dw))); } /** * Return the distance between (x1, y1, z1, w1) and (x2, y2, z2, w2). * * @param x1 * the x component of the first vector * @param y1 * the y component of the first vector * @param z1 * the z component of the first vector * @param w1 * the w component of the first vector * @param x2 * the x component of the second vector * @param y2 * the y component of the second vector * @param z2 * the z component of the second vector * @param w2 * the 2 component of the second vector * @return the euclidean distance */ public static double distance(double x1, double y1, double z1, double w1, double x2, double y2, double z2, double w2) { double dx = x1 - x2; double dy = y1 - y2; double dz = z1 - z2; double dw = w1 - w2; return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, Math.fma(dz, dz, dw * dw)))); } /** * Return the squared distance between (x1, y1, z1, w1) and (x2, y2, z2, w2). * * @param x1 * the x component of the first vector * @param y1 * the y component of the first vector * @param z1 * the z component of the first vector * @param w1 * the w component of the first vector * @param x2 * the x component of the second vector * @param y2 * the y component of the second vector * @param z2 * the z component of the second vector * @param w2 * the w component of the second vector * @return the euclidean distance squared */ public static double distanceSquared(double x1, double y1, double z1, double w1, double x2, double y2, double z2, double w2) { double dx = x1 - x2; double dy = y1 - y2; double dz = z1 - z2; double dw = w1 - w2; return Math.fma(dx, dx, Math.fma(dy, dy, Math.fma(dz, dz, dw * dw))); } public double dot(Vector4dc v) { return Math.fma(this.x, v.x(), Math.fma(this.y, v.y(), Math.fma(this.z, v.z(), this.w * v.w()))); } public double dot(double x, double y, double z, double w) { return Math.fma(this.x, x, Math.fma(this.y, y, Math.fma(this.z, z, this.w * w))); } public double angleCos(Vector4dc v) { double length1Squared = Math.fma(x, x, Math.fma(y, y, Math.fma(z, z, w * w))); double length2Squared = Math.fma(v.x(), v.x(), Math.fma(v.y(), v.y(), Math.fma(v.z(), v.z(), v.w() * v.w()))); double dot = Math.fma(x, v.x(), Math.fma(y, v.y(), Math.fma(z, v.z(), w * v.w()))); return dot / Math.sqrt(length1Squared * length2Squared); } public double angle(Vector4dc v) { double cos = angleCos(v); // This is because sometimes cos goes above 1 or below -1 because of lost precision cos = cos < 1 ? cos : 1; cos = cos > -1 ? cos : -1; return Math.acos(cos); } /** * Set all components to zero. * * @return this */ public Vector4d zero() { this.x = 0; this.y = 0; this.z = 0; this.w = 0; return this; } /** * Negate this vector. * * @return this */ public Vector4d negate() { this.x = -x; this.y = -y; this.z = -z; this.w = -w; return this; } public Vector4d negate(Vector4d dest) { dest.x = -x; dest.y = -y; dest.z = -z; dest.w = -w; return dest; } /** * Set the components of this vector to be the component-wise minimum of this and the other vector. * * @param v * the other vector * @return this */ public Vector4d min(Vector4dc v) { this.x = x < v.x() ? x : v.x(); this.y = y < v.y() ? y : v.y(); this.z = z < v.z() ? z : v.z(); this.w = w < v.w() ? w : v.w(); return this; } public Vector4d min(Vector4dc v, Vector4d dest) { dest.x = x < v.x() ? x : v.x(); dest.y = y < v.y() ? y : v.y(); dest.z = z < v.z() ? z : v.z(); dest.w = w < v.w() ? w : v.w(); return dest; } /** * Set the components of this vector to be the component-wise maximum of this and the other vector. * * @param v * the other vector * @return this */ public Vector4d max(Vector4dc v) { this.x = x > v.x() ? x : v.x(); this.y = y > v.y() ? y : v.y(); this.z = z > v.z() ? z : v.z(); this.w = w > v.w() ? w : v.w(); return this; } public Vector4d max(Vector4dc v, Vector4d dest) { dest.x = x > v.x() ? x : v.x(); dest.y = y > v.y() ? y : v.y(); dest.z = z > v.z() ? z : v.z(); dest.w = w > v.w() ? w : v.w(); return dest; } /** * Return a string representation of this vector. *

* This method creates a new {@link DecimalFormat} on every invocation with the format string "0.000E0;-". * * @return the string representation */ public String toString() { return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT)); } /** * Return a string representation of this vector by formatting the vector components with the given {@link NumberFormat}. * * @param formatter * the {@link NumberFormat} used to format the vector components with * @return the string representation */ public String toString(NumberFormat formatter) { return "(" + Runtime.format(x, formatter) + " " + Runtime.format(y, formatter) + " " + Runtime.format(z, formatter) + " " + Runtime.format(w, formatter) + ")"; } public void writeExternal(ObjectOutput out) throws IOException { out.writeDouble(x); out.writeDouble(y); out.writeDouble(z); out.writeDouble(w); } public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { x = in.readDouble(); y = in.readDouble(); z = in.readDouble(); w = in.readDouble(); } public int hashCode() { final int prime = 31; int result = 1; long temp; temp = Double.doubleToLongBits(w); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(x); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(y); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(z); result = prime * result + (int) (temp ^ (temp >>> 32)); return result; } public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Vector4d other = (Vector4d) obj; if (Double.doubleToLongBits(w) != Double.doubleToLongBits(other.w)) return false; if (Double.doubleToLongBits(x) != Double.doubleToLongBits(other.x)) return false; if (Double.doubleToLongBits(y) != Double.doubleToLongBits(other.y)) return false; if (Double.doubleToLongBits(z) != Double.doubleToLongBits(other.z)) return false; return true; } public boolean equals(Vector4dc v, double delta) { if (this == v) return true; if (v == null) return false; if (!(v instanceof Vector4dc)) return false; if (!Runtime.equals(x, v.x(), delta)) return false; if (!Runtime.equals(y, v.y(), delta)) return false; if (!Runtime.equals(z, v.z(), delta)) return false; if (!Runtime.equals(w, v.w(), delta)) return false; return true; } public boolean equals(double x, double y, double z, double w) { if (Double.doubleToLongBits(this.x) != Double.doubleToLongBits(x)) return false; if (Double.doubleToLongBits(this.y) != Double.doubleToLongBits(y)) return false; if (Double.doubleToLongBits(this.z) != Double.doubleToLongBits(z)) return false; if (Double.doubleToLongBits(this.w) != Double.doubleToLongBits(w)) return false; return true; } public Vector4d smoothStep(Vector4dc v, double t, Vector4d dest) { double t2 = t * t; double t3 = t2 * t; dest.x = (x + x - v.x() - v.x()) * t3 + (3.0 * v.x() - 3.0 * x) * t2 + x * t + x; dest.y = (y + y - v.y() - v.y()) * t3 + (3.0 * v.y() - 3.0 * y) * t2 + y * t + y; dest.z = (z + z - v.z() - v.z()) * t3 + (3.0 * v.z() - 3.0 * z) * t2 + z * t + z; dest.w = (w + w - v.w() - v.w()) * t3 + (3.0 * v.w() - 3.0 * w) * t2 + w * t + w; return dest; } public Vector4d hermite(Vector4dc t0, Vector4dc v1, Vector4dc t1, double t, Vector4d dest) { double t2 = t * t; double t3 = t2 * t; dest.x = (x + x - v1.x() - v1.x() + t1.x() + t0.x()) * t3 + (3.0 * v1.x() - 3.0 * x - t0.x() - t0.x() - t1.x()) * t2 + x * t + x; dest.y = (y + y - v1.y() - v1.y() + t1.y() + t0.y()) * t3 + (3.0 * v1.y() - 3.0 * y - t0.y() - t0.y() - t1.y()) * t2 + y * t + y; dest.z = (z + z - v1.z() - v1.z() + t1.z() + t0.z()) * t3 + (3.0 * v1.z() - 3.0 * z - t0.z() - t0.z() - t1.z()) * t2 + z * t + z; dest.w = (w + w - v1.w() - v1.w() + t1.w() + t0.w()) * t3 + (3.0 * v1.w() - 3.0 * w - t0.w() - t0.w() - t1.w()) * t2 + w * t + w; return dest; } /** * Linearly interpolate this and other using the given interpolation factor t * and store the result in this. *

* If t is 0.0 then the result is this. If the interpolation factor is 1.0 * then the result is other. * * @param other * the other vector * @param t * the interpolation factor between 0.0 and 1.0 * @return this */ public Vector4d lerp(Vector4dc other, double t) { this.x = Math.fma(other.x() - x, t, x); this.y = Math.fma(other.y() - y, t, y); this.z = Math.fma(other.z() - z, t, z); this.w = Math.fma(other.w() - w, t, w); return this; } public Vector4d lerp(Vector4dc other, double t, Vector4d dest) { dest.x = Math.fma(other.x() - x, t, x); dest.y = Math.fma(other.y() - y, t, y); dest.z = Math.fma(other.z() - z, t, z); dest.w = Math.fma(other.w() - w, t, w); return dest; } public double get(int component) throws IllegalArgumentException { switch (component) { case 0: return x; case 1: return y; case 2: return z; case 3: return w; default: throw new IllegalArgumentException(); } } public Vector4i get(int mode, Vector4i dest) { dest.x = Math.roundUsing(this.x(), mode); dest.y = Math.roundUsing(this.y(), mode); dest.z = Math.roundUsing(this.z(), mode); dest.w = Math.roundUsing(this.w(), mode); return dest; } public Vector4f get(Vector4f dest) { dest.x = (float) this.x(); dest.y = (float) this.y(); dest.z = (float) this.z(); dest.w = (float) this.w(); return dest; } public Vector4d get(Vector4d dest) { dest.x = this.x(); dest.y = this.y(); dest.z = this.z(); dest.w = this.w(); return dest; } public int maxComponent() { double absX = Math.abs(x); double absY = Math.abs(y); double absZ = Math.abs(z); double absW = Math.abs(w); if (absX >= absY && absX >= absZ && absX >= absW) { return 0; } else if (absY >= absZ && absY >= absW) { return 1; } else if (absZ >= absW) { return 2; } return 3; } public int minComponent() { double absX = Math.abs(x); double absY = Math.abs(y); double absZ = Math.abs(z); double absW = Math.abs(w); if (absX < absY && absX < absZ && absX < absW) { return 0; } else if (absY < absZ && absY < absW) { return 1; } else if (absZ < absW) { return 2; } return 3; } /** * Set each component of this vector to the largest (closest to positive * infinity) {@code double} value that is less than or equal to that * component and is equal to a mathematical integer. * * @return this */ public Vector4d floor() { this.x = Math.floor(x); this.y = Math.floor(y); this.z = Math.floor(z); this.w = Math.floor(w); return this; } public Vector4d floor(Vector4d dest) { dest.x = Math.floor(x); dest.y = Math.floor(y); dest.z = Math.floor(z); dest.w = Math.floor(w); return dest; } /** * Set each component of this vector to the smallest (closest to negative * infinity) {@code double} value that is greater than or equal to that * component and is equal to a mathematical integer. * * @return this */ public Vector4d ceil() { this.x = Math.ceil(x); this.y = Math.ceil(y); this.z = Math.ceil(z); this.w = Math.ceil(w); return this; } public Vector4d ceil(Vector4d dest) { dest.x = Math.ceil(x); dest.y = Math.ceil(y); dest.z = Math.ceil(z); dest.w = Math.ceil(w); return dest; } /** * Set each component of this vector to the closest double that is equal to * a mathematical integer, with ties rounding to positive infinity. * * @return this */ public Vector4d round() { this.x = Math.round(x); this.y = Math.round(y); this.z = Math.round(z); this.w = Math.round(w); return this; } public Vector4d round(Vector4d dest) { dest.x = Math.round(x); dest.y = Math.round(y); dest.z = Math.round(z); dest.w = Math.round(w); return dest; } public boolean isFinite() { return Math.isFinite(x) && Math.isFinite(y) && Math.isFinite(z) && Math.isFinite(w); } /** * Compute the absolute of each of this vector's components. * * @return this */ public Vector4d absolute() { this.x = Math.abs(x); this.y = Math.abs(y); this.z = Math.abs(z); this.w = Math.abs(w); return this; } public Vector4d absolute(Vector4d dest) { dest.x = Math.abs(x); dest.y = Math.abs(y); dest.z = Math.abs(z); dest.w = Math.abs(w); return dest; } public Object clone() throws CloneNotSupportedException { return super.clone(); } }