/* * The MIT License * * Copyright (c) 2016-2021 JOML * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ package com.jozufozu.flywheel.repack.joml; /** * A simplex noise algorithm for 2D, 3D and 4D input. *

* It was originally authored by Stefan Gustavson. *

* The original implementation can be found here: http://http://staffwww.itn.liu.se/. */ public class SimplexNoise { private static class Vector3b { byte x, y, z; Vector3b(int x, int y, int z) { super(); this.x = (byte) x; this.y = (byte) y; this.z = (byte) z; } } private static class Vector4b { byte x, y, z, w; Vector4b(int x, int y, int z, int w) { super(); this.x = (byte) x; this.y = (byte) y; this.z = (byte) z; this.w = (byte) w; } } // Kai Burjack: // Use a three-component vector here to save memory. (instead of using 4-component 'Grad' class) // And as the original author mentioned on the 'Grad' class, using a class to store the gradient components // is indeed faster compared to using a simple int[] array... private static final Vector3b[] grad3 = { new Vector3b(1, 1, 0), new Vector3b(-1, 1, 0), new Vector3b(1, -1, 0), new Vector3b(-1, -1, 0), new Vector3b(1, 0, 1), new Vector3b(-1, 0, 1), new Vector3b(1, 0, -1), new Vector3b(-1, 0, -1), new Vector3b(0, 1, 1), new Vector3b(0, -1, 1), new Vector3b(0, 1, -1), new Vector3b(0, -1, -1) }; // Kai Burjack: // As the original author mentioned on the 'Grad' class, using a class to store the gradient components // is indeed faster compared to using a simple int[] array... private static final Vector4b[] grad4 = { new Vector4b(0, 1, 1, 1), new Vector4b(0, 1, 1, -1), new Vector4b(0, 1, -1, 1), new Vector4b(0, 1, -1, -1), new Vector4b(0, -1, 1, 1), new Vector4b(0, -1, 1, -1), new Vector4b(0, -1, -1, 1), new Vector4b(0, -1, -1, -1), new Vector4b(1, 0, 1, 1), new Vector4b(1, 0, 1, -1), new Vector4b(1, 0, -1, 1), new Vector4b(1, 0, -1, -1), new Vector4b(-1, 0, 1, 1), new Vector4b(-1, 0, 1, -1), new Vector4b(-1, 0, -1, 1), new Vector4b(-1, 0, -1, -1), new Vector4b(1, 1, 0, 1), new Vector4b(1, 1, 0, -1), new Vector4b(1, -1, 0, 1), new Vector4b(1, -1, 0, -1), new Vector4b(-1, 1, 0, 1), new Vector4b(-1, 1, 0, -1), new Vector4b(-1, -1, 0, 1), new Vector4b(-1, -1, 0, -1), new Vector4b(1, 1, 1, 0), new Vector4b(1, 1, -1, 0), new Vector4b(1, -1, 1, 0), new Vector4b(1, -1, -1, 0), new Vector4b(-1, 1, 1, 0), new Vector4b(-1, 1, -1, 0), new Vector4b(-1, -1, 1, 0), new Vector4b(-1, -1, -1, 0) }; // Kai Burjack: // Use a byte[] instead of a short[] to save memory private static final byte[] p = { -105, -96, -119, 91, 90, 15, -125, 13, -55, 95, 96, 53, -62, -23, 7, -31, -116, 36, 103, 30, 69, -114, 8, 99, 37, -16, 21, 10, 23, -66, 6, -108, -9, 120, -22, 75, 0, 26, -59, 62, 94, -4, -37, -53, 117, 35, 11, 32, 57, -79, 33, 88, -19, -107, 56, 87, -82, 20, 125, -120, -85, -88, 68, -81, 74, -91, 71, -122, -117, 48, 27, -90, 77, -110, -98, -25, 83, 111, -27, 122, 60, -45, -123, -26, -36, 105, 92, 41, 55, 46, -11, 40, -12, 102, -113, 54, 65, 25, 63, -95, 1, -40, 80, 73, -47, 76, -124, -69, -48, 89, 18, -87, -56, -60, -121, -126, 116, -68, -97, 86, -92, 100, 109, -58, -83, -70, 3, 64, 52, -39, -30, -6, 124, 123, 5, -54, 38, -109, 118, 126, -1, 82, 85, -44, -49, -50, 59, -29, 47, 16, 58, 17, -74, -67, 28, 42, -33, -73, -86, -43, 119, -8, -104, 2, 44, -102, -93, 70, -35, -103, 101, -101, -89, 43, -84, 9, -127, 22, 39, -3, 19, 98, 108, 110, 79, 113, -32, -24, -78, -71, 112, 104, -38, -10, 97, -28, -5, 34, -14, -63, -18, -46, -112, 12, -65, -77, -94, -15, 81, 51, -111, -21, -7, 14, -17, 107, 49, -64, -42, 31, -75, -57, 106, -99, -72, 84, -52, -80, 115, 121, 50, 45, 127, 4, -106, -2, -118, -20, -51, 93, -34, 114, 67, 29, 24, 72, -13, -115, -128, -61, 78, 66, -41, 61, -100, -76 }; // To remove the need for index wrapping, float the permutation table length private static final byte[] perm = new byte[512]; private static final byte[] permMod12 = new byte[512]; static { for (int i = 0; i < 512; i++) { perm[i] = p[i & 255]; permMod12[i] = (byte) ((perm[i]&0xFF) % 12); } } // Skewing and unskewing factors for 2, 3, and 4 dimensions private static final float F2 = 0.3660254037844386f; // <- (float) (0.5f * (Math.sqrt(3.0f) - 1.0f)); private static final float G2 = 0.21132486540518713f; // <- (float) ((3.0f - Math.sqrt(3.0f)) / 6.0f); private static final float F3 = 1.0f / 3.0f; private static final float G3 = 1.0f / 6.0f; private static final float F4 = 0.30901699437494745f; // <- (float) ((Math.sqrt(5.0f) - 1.0f) / 4.0f); private static final float G4 = 0.1381966011250105f; // <- (float) ((5.0f - Math.sqrt(5.0f)) / 20.0f); // This method is a *lot* faster than using (int)Math.floor(x) private static int fastfloor(float x) { int xi = (int) x; return x < xi ? xi - 1 : xi; } private static float dot(Vector3b g, float x, float y) { return g.x * x + g.y * y; } private static float dot(Vector3b g, float x, float y, float z) { return g.x * x + g.y * y + g.z * z; } private static float dot(Vector4b g, float x, float y, float z, float w) { return g.x * x + g.y * y + g.z * z + g.w * w; } /** * Compute 2D simplex noise for the given input vector (x, y). *

* The result is in the range [-1..+1]. * * @param x * the x coordinate * @param y * the y coordinate * @return the noise value (within [-1..+1]) */ public static float noise(float x, float y) { float n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in float s = (x + y) * F2; // Hairy factor for 2D int i = fastfloor(x + s); int j = fastfloor(y + s); float t = (i + j) * G2; float X0 = i - t; // Unskew the cell origin back to (x,y) space float Y0 = j - t; float x0 = x - X0; // The x,y distances from the cell origin float y0 = y - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords float y1 = y0 - j1 + G2; float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords float y2 = y0 - 1.0f + 2.0f * G2; // Work out the hashed gradient indices of the three simplex corners int ii = i & 255; int jj = j & 255; int gi0 = permMod12[ii + perm[jj]&0xFF]&0xFF; int gi1 = permMod12[ii + i1 + perm[jj + j1]&0xFF]&0xFF; int gi2 = permMod12[ii + 1 + perm[jj + 1]&0xFF]&0xFF; // Calculate the contribution from the three corners float t0 = 0.5f - x0 * x0 - y0 * y0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient } float t1 = 0.5f - x1 * x1 - y1 * y1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1); } float t2 = 0.5f - x2 * x2 - y2 * y2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70.0f * (n0 + n1 + n2); } /** * Compute 3D simplex noise for the given input vector (x, y, z). *

* The result is in the range [-1..+1]. * * @param x * the x coordinate * @param y * the y coordinate * @param z * the z coordinate * @return the noise value (within [-1..+1]) */ public static float noise(float x, float y, float z) { float n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D int i = fastfloor(x + s); int j = fastfloor(y + s); int k = fastfloor(z + s); float t = (i + j + k) * G3; float X0 = i - t; // Unskew the cell origin back to (x,y,z) space float Y0 = j - t; float Z0 = k - t; float x0 = x - X0; // The x,y,z distances from the cell origin float y0 = y - Y0; float z0 = z - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0(x, y, z, w). *

* The result is in the range [-1..+1]. * * @param x * the x coordinate * @param y * the y coordinate * @param z * the z coordinate * @param w * the w coordinate * @return the noise value (within [-1..+1]) */ public static float noise(float x, float y, float z, float w) { float n0, n1, n2, n3, n4; // Noise contributions from the five corners // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in float s = (x + y + z + w) * F4; // Factor for 4D skewing int i = fastfloor(x + s); int j = fastfloor(y + s); int k = fastfloor(z + s); int l = fastfloor(w + s); float t = (i + j + k + l) * G4; // Factor for 4D unskewing float X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space float Y0 = j - t; float Z0 = k - t; float W0 = l - t; float x0 = x - X0; // The x,y,z,w distances from the cell origin float y0 = y - Y0; float z0 = z - Z0; float w0 = w - W0; // For the 4D case, the simplex is a 4D shape I won't even try to describe. // To find out which of the 24 possible simplices we're in, we need to // determine the magnitude ordering of x0, y0, z0 and w0. // Six pair-wise comparisons are performed between each possible pair // of the four coordinates, and the results are used to rank the numbers. int rankx = 0; int ranky = 0; int rankz = 0; int rankw = 0; if (x0 > y0) rankx++; else ranky++; if (x0 > z0) rankx++; else rankz++; if (x0 > w0) rankx++; else rankw++; if (y0 > z0) ranky++; else rankz++; if (y0 > w0) ranky++; else rankw++; if (z0 > w0) rankz++; else rankw++; int i1, j1, k1, l1; // The integer offsets for the second simplex corner int i2, j2, k2, l2; // The integer offsets for the third simplex corner int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. // Many values of c will never occur, since e.g. x>y>z>w makes x= 3 ? 1 : 0; j1 = ranky >= 3 ? 1 : 0; k1 = rankz >= 3 ? 1 : 0; l1 = rankw >= 3 ? 1 : 0; // Rank 2 denotes the second largest coordinate. i2 = rankx >= 2 ? 1 : 0; j2 = ranky >= 2 ? 1 : 0; k2 = rankz >= 2 ? 1 : 0; l2 = rankw >= 2 ? 1 : 0; // Rank 1 denotes the second smallest coordinate. i3 = rankx >= 1 ? 1 : 0; j3 = ranky >= 1 ? 1 : 0; k3 = rankz >= 1 ? 1 : 0; l3 = rankw >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to compute that. float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords float y1 = y0 - j1 + G4; float z1 = z0 - k1 + G4; float w1 = w0 - l1 + G4; float x2 = x0 - i2 + 2.0f * G4; // Offsets for third corner in (x,y,z,w) coords float y2 = y0 - j2 + 2.0f * G4; float z2 = z0 - k2 + 2.0f * G4; float w2 = w0 - l2 + 2.0f * G4; float x3 = x0 - i3 + 3.0f * G4; // Offsets for fourth corner in (x,y,z,w) coords float y3 = y0 - j3 + 3.0f * G4; float z3 = z0 - k3 + 3.0f * G4; float w3 = w0 - l3 + 3.0f * G4; float x4 = x0 - 1.0f + 4.0f * G4; // Offsets for last corner in (x,y,z,w) coords float y4 = y0 - 1.0f + 4.0f * G4; float z4 = z0 - 1.0f + 4.0f * G4; float w4 = w0 - 1.0f + 4.0f * G4; // Work out the hashed gradient indices of the five simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int ll = l & 255; int gi0 = (perm[ii + perm[jj + perm[kk + perm[ll]&0xFF]&0xFF]&0xFF]&0xFF) % 32; int gi1 = (perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]&0xFF]&0xFF]&0xFF]&0xFF) % 32; int gi2 = (perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]&0xFF]&0xFF]&0xFF]&0xFF) % 32; int gi3 = (perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]&0xFF]&0xFF]&0xFF]&0xFF) % 32; int gi4 = (perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]&0xFF]&0xFF]&0xFF]&0xFF) % 32; // Calculate the contribution from the five corners float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); } float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); } float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); } float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; if (t3 < 0.0f) n3 = 0.0f; else { t3 *= t3; n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); } float t4 = 0.6f - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; if (t4 < 0.0f) n4 = 0.0f; else { t4 *= t4; n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); } // Sum up and scale the result to cover the range [-1,1] return 27.0f * (n0 + n1 + n2 + n3 + n4); } }