/* * The MIT License * * Copyright (c) 2015-2021 Kai Burjack * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ package com.jozufozu.flywheel.repack.joml; import java.io.Externalizable; import java.io.IOException; import java.io.ObjectInput; import java.io.ObjectOutput; import java.text.DecimalFormat; import java.text.NumberFormat; /** * Represents a 3D rotation of a given radians about an axis represented as an * unit 3D vector. * <p> * This class uses double-precision components. * * @author Kai Burjack */ public class AxisAngle4d implements Externalizable, Cloneable { private static final long serialVersionUID = 1L; /** * The angle in radians. */ public double angle; /** * The x-component of the rotation axis. */ public double x; /** * The y-component of the rotation axis. */ public double y; /** * The z-component of the rotation axis. */ public double z; /** * Create a new {@link AxisAngle4d} with zero rotation about <code>(0, 0, 1)</code>. */ public AxisAngle4d() { z = 1.0; } /** * Create a new {@link AxisAngle4d} with the same values of <code>a</code>. * * @param a * the AngleAxis4d to copy the values from */ public AxisAngle4d(AxisAngle4d a) { x = a.x; y = a.y; z = a.z; angle = (a.angle < 0.0 ? Math.PI + Math.PI + a.angle % (Math.PI + Math.PI) : a.angle) % (Math.PI + Math.PI); } /** * Create a new {@link AxisAngle4d} with the same values of <code>a</code>. * * @param a * the AngleAxis4f to copy the values from */ public AxisAngle4d(AxisAngle4f a) { x = a.x; y = a.y; z = a.z; angle = (a.angle < 0.0 ? Math.PI + Math.PI + a.angle % (Math.PI + Math.PI) : a.angle) % (Math.PI + Math.PI); } /** * Create a new {@link AxisAngle4d} from the given {@link Quaternionfc}. * <p> * Reference: <a href= * "http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/" * >http://www.euclideanspace.com</a> * * @param q * the quaternion from which to create the new AngleAxis4f */ public AxisAngle4d(Quaternionfc q) { float acos = Math.safeAcos(q.w()); float invSqrt = Math.invsqrt(1.0f - q.w() * q.w()); if (Float.isInfinite(invSqrt)) { this.x = 0.0; this.y = 0.0; this.z = 1.0; } else { this.x = q.x() * invSqrt; this.y = q.y() * invSqrt; this.z = q.z() * invSqrt; } this.angle = acos + acos; } /** * Create a new {@link AxisAngle4d} from the given {@link Quaterniondc}. * <p> * Reference: <a href= * "http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/" * >http://www.euclideanspace.com</a> * * @param q * the quaternion from which to create the new AngleAxis4d */ public AxisAngle4d(Quaterniondc q) { double acos = Math.safeAcos(q.w()); double invSqrt = Math.invsqrt(1.0 - q.w() * q.w()); if (Double.isInfinite(invSqrt)) { this.x = 0.0; this.y = 0.0; this.z = 1.0; } else { this.x = q.x() * invSqrt; this.y = q.y() * invSqrt; this.z = q.z() * invSqrt; } this.angle = acos + acos; } /** * Create a new {@link AxisAngle4d} with the given values. * * @param angle * the angle in radians * @param x * the x-coordinate of the rotation axis * @param y * the y-coordinate of the rotation axis * @param z * the z-coordinate of the rotation axis */ public AxisAngle4d(double angle, double x, double y, double z) { this.x = x; this.y = y; this.z = z; this.angle = (angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI); } /** * Create a new {@link AxisAngle4d} with the given values. * * @param angle the angle in radians * @param v the rotation axis as a {@link Vector3dc} */ public AxisAngle4d(double angle, Vector3dc v) { this(angle, v.x(), v.y(), v.z()); } /** * Create a new {@link AxisAngle4d} with the given values. * * @param angle the angle in radians * @param v the rotation axis as a {@link Vector3f} */ public AxisAngle4d(double angle, Vector3f v) { this(angle, v.x, v.y, v.z); } /** * Set this {@link AxisAngle4d} to the values of <code>a</code>. * * @param a * the AngleAxis4f to copy the values from * @return this */ public AxisAngle4d set(AxisAngle4d a) { x = a.x; y = a.y; z = a.z; angle = (a.angle < 0.0 ? Math.PI + Math.PI + a.angle % (Math.PI + Math.PI) : a.angle) % (Math.PI + Math.PI); return this; } /** * Set this {@link AxisAngle4d} to the values of <code>a</code>. * * @param a * the AngleAxis4f to copy the values from * @return this */ public AxisAngle4d set(AxisAngle4f a) { x = a.x; y = a.y; z = a.z; angle = (a.angle < 0.0 ? Math.PI + Math.PI + a.angle % (Math.PI + Math.PI) : a.angle) % (Math.PI + Math.PI); return this; } /** * Set this {@link AxisAngle4d} to the given values. * * @param angle * the angle in radians * @param x * the x-coordinate of the rotation axis * @param y * the y-coordinate of the rotation axis * @param z * the z-coordinate of the rotation axis * @return this */ public AxisAngle4d set(double angle, double x, double y, double z) { this.x = x; this.y = y; this.z = z; this.angle = (angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI); return this; } /** * Set this {@link AxisAngle4d} to the given values. * * @param angle * the angle in radians * @param v * the rotation axis as a {@link Vector3dc} * @return this */ public AxisAngle4d set(double angle, Vector3dc v) { return set(angle, v.x(), v.y(), v.z()); } /** * Set this {@link AxisAngle4d} to the given values. * * @param angle * the angle in radians * @param v * the rotation axis as a {@link Vector3f} * @return this */ public AxisAngle4d set(double angle, Vector3f v) { return set(angle, v.x, v.y, v.z); } /** * Set this {@link AxisAngle4d} to be equivalent to the given * {@link Quaternionfc}. * * @param q * the quaternion to set this AngleAxis4d from * @return this */ public AxisAngle4d set(Quaternionfc q) { float acos = Math.safeAcos(q.w()); float invSqrt = Math.invsqrt(1.0f - q.w() * q.w()); if (Float.isInfinite(invSqrt)) { this.x = 0.0; this.y = 0.0; this.z = 1.0; } else { this.x = q.x() * invSqrt; this.y = q.y() * invSqrt; this.z = q.z() * invSqrt; } this.angle = acos + acos; return this; } /** * Set this {@link AxisAngle4d} to be equivalent to the given * {@link Quaterniondc}. * * @param q * the quaternion to set this AngleAxis4d from * @return this */ public AxisAngle4d set(Quaterniondc q) { double acos = Math.safeAcos(q.w()); double invSqrt = Math.invsqrt(1.0f - q.w() * q.w()); if (Double.isInfinite(invSqrt)) { this.x = 0.0; this.y = 0.0; this.z = 1.0; } else { this.x = q.x() * invSqrt; this.y = q.y() * invSqrt; this.z = q.z() * invSqrt; } this.angle = acos + acos; return this; } /** * Set this {@link AxisAngle4d} to be equivalent to the rotation * of the given {@link Matrix3fc}. * <p> * Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a> * * @param m * the Matrix3fc to set this AngleAxis4d from * @return this */ public AxisAngle4d set(Matrix3fc m) { double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02(); double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12(); double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22(); double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02()); double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12()); double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22()); nm00 *= lenX; nm01 *= lenX; nm02 *= lenX; nm10 *= lenY; nm11 *= lenY; nm12 *= lenY; nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ; double epsilon = 1E-4, epsilon2 = 1E-3; if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) { if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2 && Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) { x = 0; y = 0; z = 1; angle = 0; return this; } angle = Math.PI; double xx = (nm00 + 1) / 2; double yy = (nm11 + 1) / 2; double zz = (nm22 + 1) / 2; double xy = (nm10 + nm01) / 4; double xz = (nm20 + nm02) / 4; double yz = (nm21 + nm12) / 4; if ((xx > yy) && (xx > zz)) { x = Math.sqrt(xx); y = xy / x; z = xz / x; } else if (yy > zz) { y = Math.sqrt(yy); x = xy / y; z = yz / y; } else { z = Math.sqrt(zz); x = xz / z; y = yz / z; } return this; } double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10)); angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2); x = (nm12 - nm21) / s; y = (nm20 - nm02) / s; z = (nm01 - nm10) / s; return this; } /** * Set this {@link AxisAngle4d} to be equivalent to the rotation * of the given {@link Matrix3dc}. * <p> * Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a> * * @param m * the Matrix3dc to set this AngleAxis4d from * @return this */ public AxisAngle4d set(Matrix3dc m) { double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02(); double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12(); double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22(); double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02()); double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12()); double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22()); nm00 *= lenX; nm01 *= lenX; nm02 *= lenX; nm10 *= lenY; nm11 *= lenY; nm12 *= lenY; nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ; double epsilon = 1E-4, epsilon2 = 1E-3; if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) { if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2 && Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) { x = 0; y = 0; z = 1; angle = 0; return this; } angle = Math.PI; double xx = (nm00 + 1) / 2; double yy = (nm11 + 1) / 2; double zz = (nm22 + 1) / 2; double xy = (nm10 + nm01) / 4; double xz = (nm20 + nm02) / 4; double yz = (nm21 + nm12) / 4; if ((xx > yy) && (xx > zz)) { x = Math.sqrt(xx); y = xy / x; z = xz / x; } else if (yy > zz) { y = Math.sqrt(yy); x = xy / y; z = yz / y; } else { z = Math.sqrt(zz); x = xz / z; y = yz / z; } return this; } double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10)); angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2); x = (nm12 - nm21) / s; y = (nm20 - nm02) / s; z = (nm01 - nm10) / s; return this; } /** * Set this {@link AxisAngle4d} to be equivalent to the rotational component * of the given {@link Matrix4fc}. * <p> * Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a> * * @param m * the Matrix4fc to set this AngleAxis4d from * @return this */ public AxisAngle4d set(Matrix4fc m) { double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02(); double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12(); double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22(); double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02()); double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12()); double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22()); nm00 *= lenX; nm01 *= lenX; nm02 *= lenX; nm10 *= lenY; nm11 *= lenY; nm12 *= lenY; nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ; double epsilon = 1E-4, epsilon2 = 1E-3; if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) { if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2 && Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) { x = 0; y = 0; z = 1; angle = 0; return this; } angle = Math.PI; double xx = (nm00 + 1) / 2; double yy = (nm11 + 1) / 2; double zz = (nm22 + 1) / 2; double xy = (nm10 + nm01) / 4; double xz = (nm20 + nm02) / 4; double yz = (nm21 + nm12) / 4; if ((xx > yy) && (xx > zz)) { x = Math.sqrt(xx); y = xy / x; z = xz / x; } else if (yy > zz) { y = Math.sqrt(yy); x = xy / y; z = yz / y; } else { z = Math.sqrt(zz); x = xz / z; y = yz / z; } return this; } double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10)); angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2); x = (nm12 - nm21) / s; y = (nm20 - nm02) / s; z = (nm01 - nm10) / s; return this; } /** * Set this {@link AxisAngle4d} to be equivalent to the rotational component * of the given {@link Matrix4x3fc}. * <p> * Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a> * * @param m * the Matrix4x3fc to set this AngleAxis4d from * @return this */ public AxisAngle4d set(Matrix4x3fc m) { double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02(); double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12(); double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22(); double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02()); double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12()); double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22()); nm00 *= lenX; nm01 *= lenX; nm02 *= lenX; nm10 *= lenY; nm11 *= lenY; nm12 *= lenY; nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ; double epsilon = 1E-4, epsilon2 = 1E-3; if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) { if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2 && Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) { x = 0; y = 0; z = 1; angle = 0; return this; } angle = Math.PI; double xx = (nm00 + 1) / 2; double yy = (nm11 + 1) / 2; double zz = (nm22 + 1) / 2; double xy = (nm10 + nm01) / 4; double xz = (nm20 + nm02) / 4; double yz = (nm21 + nm12) / 4; if ((xx > yy) && (xx > zz)) { x = Math.sqrt(xx); y = xy / x; z = xz / x; } else if (yy > zz) { y = Math.sqrt(yy); x = xy / y; z = yz / y; } else { z = Math.sqrt(zz); x = xz / z; y = yz / z; } return this; } double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10)); angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2); x = (nm12 - nm21) / s; y = (nm20 - nm02) / s; z = (nm01 - nm10) / s; return this; } /** * Set this {@link AxisAngle4d} to be equivalent to the rotational component * of the given {@link Matrix4dc}. * <p> * Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a> * * @param m * the Matrix4dc to set this AngleAxis4d from * @return this */ public AxisAngle4d set(Matrix4dc m) { double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02(); double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12(); double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22(); double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02()); double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12()); double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22()); nm00 *= lenX; nm01 *= lenX; nm02 *= lenX; nm10 *= lenY; nm11 *= lenY; nm12 *= lenY; nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ; double epsilon = 1E-4, epsilon2 = 1E-3; if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) { if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2 && Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) { x = 0; y = 0; z = 1; angle = 0; return this; } angle = Math.PI; double xx = (nm00 + 1) / 2; double yy = (nm11 + 1) / 2; double zz = (nm22 + 1) / 2; double xy = (nm10 + nm01) / 4; double xz = (nm20 + nm02) / 4; double yz = (nm21 + nm12) / 4; if ((xx > yy) && (xx > zz)) { x = Math.sqrt(xx); y = xy / x; z = xz / x; } else if (yy > zz) { y = Math.sqrt(yy); x = xy / y; z = yz / y; } else { z = Math.sqrt(zz); x = xz / z; y = yz / z; } return this; } double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10)); angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2); x = (nm12 - nm21) / s; y = (nm20 - nm02) / s; z = (nm01 - nm10) / s; return this; } /** * Set the given {@link Quaternionf} to be equivalent to this {@link AxisAngle4d} rotation. * * @see Quaternionf#set(AxisAngle4d) * * @param q * the quaternion to set * @return q */ public Quaternionf get(Quaternionf q) { return q.set(this); } /** * Set the given {@link Quaterniond} to be equivalent to this {@link AxisAngle4d} rotation. * * @see Quaterniond#set(AxisAngle4d) * * @param q * the quaternion to set * @return q */ public Quaterniond get(Quaterniond q) { return q.set(this); } /** * Set the given {@link Matrix4f} to a rotation transformation equivalent to this {@link AxisAngle4d}. * * @see Matrix4f#set(AxisAngle4d) * * @param m * the matrix to set * @return m */ public Matrix4f get(Matrix4f m) { return m.set(this); } /** * Set the given {@link Matrix3f} to a rotation transformation equivalent to this {@link AxisAngle4d}. * * @see Matrix3f#set(AxisAngle4d) * * @param m * the matrix to set * @return m */ public Matrix3f get(Matrix3f m) { return m.set(this); } /** * Set the given {@link Matrix4d} to a rotation transformation equivalent to this {@link AxisAngle4d}. * * @see Matrix4f#set(AxisAngle4d) * * @param m * the matrix to set * @return m */ public Matrix4d get(Matrix4d m) { return m.set(this); } /** * Set the given {@link Matrix3d} to a rotation transformation equivalent to this {@link AxisAngle4d}. * * @see Matrix3f#set(AxisAngle4d) * * @param m * the matrix to set * @return m */ public Matrix3d get(Matrix3d m) { return m.set(this); } /** * Set the given {@link AxisAngle4d} to this {@link AxisAngle4d}. * * @param dest * will hold the result * @return dest */ public AxisAngle4d get(AxisAngle4d dest) { return dest.set(this); } /** * Set the given {@link AxisAngle4f} to this {@link AxisAngle4d}. * * @param dest * will hold the result * @return dest */ public AxisAngle4f get(AxisAngle4f dest) { return dest.set(this); } public void writeExternal(ObjectOutput out) throws IOException { out.writeDouble(angle); out.writeDouble(x); out.writeDouble(y); out.writeDouble(z); } public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { angle = in.readDouble(); x = in.readDouble(); y = in.readDouble(); z = in.readDouble(); } /** * Normalize the axis vector. * * @return this */ public AxisAngle4d normalize() { double invLength = Math.invsqrt(x * x + y * y + z * z); x *= invLength; y *= invLength; z *= invLength; return this; } /** * Increase the rotation angle by the given amount. * <p> * This method also takes care of wrapping around. * * @param ang * the angle increase * @return this */ public AxisAngle4d rotate(double ang) { angle += ang; angle = (angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI); return this; } /** * Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}. * * @param v * the vector to transform * @return v */ public Vector3d transform(Vector3d v) { return transform(v, v); } /** * Transform the given vector by the rotation transformation described by this {@link AxisAngle4d} * and store the result in <code>dest</code>. * * @param v * the vector to transform * @param dest * will hold the result * @return dest */ public Vector3d transform(Vector3dc v, Vector3d dest) { double sin = Math.sin(angle); double cos = Math.cosFromSin(sin, angle); double dot = x * v.x() + y * v.y() + z * v.z(); dest.set(v.x() * cos + sin * (y * v.z() - z * v.y()) + (1.0 - cos) * dot * x, v.y() * cos + sin * (z * v.x() - x * v.z()) + (1.0 - cos) * dot * y, v.z() * cos + sin * (x * v.y() - y * v.x()) + (1.0 - cos) * dot * z); return dest; } /** * Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}. * * @param v * the vector to transform * @return v */ public Vector3f transform(Vector3f v) { return transform(v, v); } /** * Transform the given vector by the rotation transformation described by this {@link AxisAngle4d} * and store the result in <code>dest</code>. * * @param v * the vector to transform * @param dest * will hold the result * @return dest */ public Vector3f transform(Vector3fc v, Vector3f dest) { double sin = Math.sin(angle); double cos = Math.cosFromSin(sin, angle); double dot = x * v.x() + y * v.y() + z * v.z(); dest.set((float) (v.x() * cos + sin * (y * v.z() - z * v.y()) + (1.0 - cos) * dot * x), (float) (v.y() * cos + sin * (z * v.x() - x * v.z()) + (1.0 - cos) * dot * y), (float) (v.z() * cos + sin * (x * v.y() - y * v.x()) + (1.0 - cos) * dot * z)); return dest; } /** * Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}. * * @param v * the vector to transform * @return v */ public Vector4d transform(Vector4d v) { return transform(v, v); } /** * Transform the given vector by the rotation transformation described by this {@link AxisAngle4d} * and store the result in <code>dest</code>. * * @param v * the vector to transform * @param dest * will hold the result * @return dest */ public Vector4d transform(Vector4dc v, Vector4d dest) { double sin = Math.sin(angle); double cos = Math.cosFromSin(sin, angle); double dot = x * v.x() + y * v.y() + z * v.z(); dest.set(v.x() * cos + sin * (y * v.z() - z * v.y()) + (1.0 - cos) * dot * x, v.y() * cos + sin * (z * v.x() - x * v.z()) + (1.0 - cos) * dot * y, v.z() * cos + sin * (x * v.y() - y * v.x()) + (1.0 - cos) * dot * z, dest.w); return dest; } /** * Return a string representation of this {@link AxisAngle4d}. * <p> * This method creates a new {@link DecimalFormat} on every invocation with the format string "<code> 0.000E0;-</code>". * * @return the string representation */ public String toString() { return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT)); } /** * Return a string representation of this {@link AxisAngle4d} by formatting the components with the given {@link NumberFormat}. * * @param formatter * the {@link NumberFormat} used to format the vector components with * @return the string representation */ public String toString(NumberFormat formatter) { return "(" + Runtime.format(x, formatter) + " " + Runtime.format(y, formatter) + " " + Runtime.format(z, formatter) + " <| " + Runtime.format(angle, formatter) + ")"; } public int hashCode() { final int prime = 31; int result = 1; long temp; temp = Double.doubleToLongBits((angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI)); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(x); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(y); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(z); result = prime * result + (int) (temp ^ (temp >>> 32)); return result; } public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; AxisAngle4d other = (AxisAngle4d) obj; if (Double.doubleToLongBits((angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI)) != Double.doubleToLongBits((other.angle < 0.0 ? Math.PI + Math.PI + other.angle % (Math.PI + Math.PI) : other.angle) % (Math.PI + Math.PI))) return false; if (Double.doubleToLongBits(x) != Double.doubleToLongBits(other.x)) return false; if (Double.doubleToLongBits(y) != Double.doubleToLongBits(other.y)) return false; if (Double.doubleToLongBits(z) != Double.doubleToLongBits(other.z)) return false; return true; } public Object clone() throws CloneNotSupportedException { return super.clone(); } }