/* * The MIT License * * Copyright (c) 2015-2021 Richard Greenlees * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ package com.jozufozu.flywheel.repack.joml; import java.io.Externalizable; import java.io.IOException; import java.io.ObjectInput; import java.io.ObjectOutput; import java.text.DecimalFormat; import java.text.NumberFormat; /** * Quaternion of 4 double-precision floats which can represent rotation and uniform scaling. * * @author Richard Greenlees * @author Kai Burjack */ public class Quaterniond implements Externalizable, Cloneable, Quaterniondc { private static final long serialVersionUID = 1L; /** * The first component of the vector part. */ public double x; /** * The second component of the vector part. */ public double y; /** * The third component of the vector part. */ public double z; /** * The real/scalar part of the quaternion. */ public double w; /** * Create a new {@link Quaterniond} and initialize it with (x=0, y=0, z=0, w=1), * where (x, y, z) is the vector part of the quaternion and w is the real/scalar part. */ public Quaterniond() { this.w = 1.0; } /** * Create a new {@link Quaterniond} and initialize its components to the given values. * * @param x * the first component of the imaginary part * @param y * the second component of the imaginary part * @param z * the third component of the imaginary part * @param w * the real part */ public Quaterniond(double x, double y, double z, double w) { this.x = x; this.y = y; this.z = z; this.w = w; } /** * Create a new {@link Quaterniond} and initialize its components to the same values as the given {@link Quaterniondc}. * * @param source * the {@link Quaterniondc} to take the component values from */ public Quaterniond(Quaterniondc source) { x = source.x(); y = source.y(); z = source.z(); w = source.w(); } /** * Create a new {@link Quaterniond} and initialize its components to the same values as the given {@link Quaternionfc}. * * @param source * the {@link Quaternionfc} to take the component values from */ public Quaterniond(Quaternionfc source) { x = source.x(); y = source.y(); z = source.z(); w = source.w(); } /** * Create a new {@link Quaterniond} and initialize it to represent the same rotation as the given {@link AxisAngle4f}. * * @param axisAngle * the axis-angle to initialize this quaternion with */ public Quaterniond(AxisAngle4f axisAngle) { double s = Math.sin(axisAngle.angle * 0.5); x = axisAngle.x * s; y = axisAngle.y * s; z = axisAngle.z * s; w = Math.cosFromSin(s, axisAngle.angle * 0.5); } /** * Create a new {@link Quaterniond} and initialize it to represent the same rotation as the given {@link AxisAngle4d}. * * @param axisAngle * the axis-angle to initialize this quaternion with */ public Quaterniond(AxisAngle4d axisAngle) { double s = Math.sin(axisAngle.angle * 0.5); x = axisAngle.x * s; y = axisAngle.y * s; z = axisAngle.z * s; w = Math.cosFromSin(s, axisAngle.angle * 0.5); } /** * @return the first component of the vector part */ public double x() { return this.x; } /** * @return the second component of the vector part */ public double y() { return this.y; } /** * @return the third component of the vector part */ public double z() { return this.z; } /** * @return the real/scalar part of the quaternion */ public double w() { return this.w; } /** * Normalize this quaternion. * * @return this */ public Quaterniond normalize() { double invNorm = Math.invsqrt(lengthSquared()); x *= invNorm; y *= invNorm; z *= invNorm; w *= invNorm; return this; } public Quaterniond normalize(Quaterniond dest) { double invNorm = Math.invsqrt(lengthSquared()); dest.x = x * invNorm; dest.y = y * invNorm; dest.z = z * invNorm; dest.w = w * invNorm; return dest; } /** * Add the quaternion (x, y, z, w) to this quaternion. * * @param x * the x component of the vector part * @param y * the y component of the vector part * @param z * the z component of the vector part * @param w * the real/scalar component * @return this */ public Quaterniond add(double x, double y, double z, double w) { return add(x, y, z, w, this); } public Quaterniond add(double x, double y, double z, double w, Quaterniond dest) { dest.x = this.x + x; dest.y = this.y + y; dest.z = this.z + z; dest.w = this.w + w; return dest; } /** * Add q2 to this quaternion. * * @param q2 * the quaternion to add to this * @return this */ public Quaterniond add(Quaterniondc q2) { x += q2.x(); y += q2.y(); z += q2.z(); w += q2.w(); return this; } public Quaterniond add(Quaterniondc q2, Quaterniond dest) { dest.x = x + q2.x(); dest.y = y + q2.y(); dest.z = z + q2.z(); dest.w = w + q2.w(); return dest; } public double dot(Quaterniondc otherQuat) { return this.x * otherQuat.x() + this.y * otherQuat.y() + this.z * otherQuat.z() + this.w * otherQuat.w(); } public double angle() { return 2.0 * Math.safeAcos(w); } public Matrix3d get(Matrix3d dest) { return dest.set(this); } public Matrix3f get(Matrix3f dest) { return dest.set(this); } public Matrix4d get(Matrix4d dest) { return dest.set(this); } public Matrix4f get(Matrix4f dest) { return dest.set(this); } public AxisAngle4f get(AxisAngle4f dest) { double x = this.x; double y = this.y; double z = this.z; double w = this.w; if (w > 1.0) { double invNorm = Math.invsqrt(lengthSquared()); x *= invNorm; y *= invNorm; z *= invNorm; w *= invNorm; } dest.angle = (float) (2.0 * Math.acos(w)); double s = Math.sqrt(1.0 - w * w); if (s < 0.001) { dest.x = (float) x; dest.y = (float) y; dest.z = (float) z; } else { s = 1.0 / s; dest.x = (float) (x * s); dest.y = (float) (y * s); dest.z = (float) (z * s); } return dest; } public AxisAngle4d get(AxisAngle4d dest) { double x = this.x; double y = this.y; double z = this.z; double w = this.w; if (w > 1.0) { double invNorm = Math.invsqrt(lengthSquared()); x *= invNorm; y *= invNorm; z *= invNorm; w *= invNorm; } dest.angle = 2.0 * Math.acos(w); double s = Math.sqrt(1.0 - w * w); if (s < 0.001) { dest.x = x; dest.y = y; dest.z = z; } else { s = 1.0 / s; dest.x = x * s; dest.y = y * s; dest.z = z * s; } return dest; } /** * Set the given {@link Quaterniond} to the values of this. * * @see #set(Quaterniondc) * * @param dest * the {@link Quaterniond} to set * @return the passed in destination */ public Quaterniond get(Quaterniond dest) { return dest.set(this); } /** * Set the given {@link Quaternionf} to the values of this. * * @see #set(Quaterniondc) * * @param dest * the {@link Quaternionf} to set * @return the passed in destination */ public Quaternionf get(Quaternionf dest) { return dest.set(this); } /** * Set this quaternion to the new values. * * @param x * the new value of x * @param y * the new value of y * @param z * the new value of z * @param w * the new value of w * @return this */ public Quaterniond set(double x, double y, double z, double w) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } /** * Set this quaternion to be a copy of q. * * @param q * the {@link Quaterniondc} to copy * @return this */ public Quaterniond set(Quaterniondc q) { x = q.x(); y = q.y(); z = q.z(); w = q.w(); return this; } /** * Set this quaternion to be a copy of q. * * @param q * the {@link Quaternionfc} to copy * @return this */ public Quaterniond set(Quaternionfc q) { x = q.x(); y = q.y(); z = q.z(); w = q.w(); return this; } /** * Set this {@link Quaterniond} to be equivalent to the given * {@link AxisAngle4f}. * * @param axisAngle * the {@link AxisAngle4f} * @return this */ public Quaterniond set(AxisAngle4f axisAngle) { return setAngleAxis(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z); } /** * Set this {@link Quaterniond} to be equivalent to the given * {@link AxisAngle4d}. * * @param axisAngle * the {@link AxisAngle4d} * @return this */ public Quaterniond set(AxisAngle4d axisAngle) { return setAngleAxis(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z); } /** * Set this quaternion to a rotation equivalent to the supplied axis and * angle (in radians). *

* This method assumes that the given rotation axis (x, y, z) is already normalized * * @param angle * the angle in radians * @param x * the x-component of the normalized rotation axis * @param y * the y-component of the normalized rotation axis * @param z * the z-component of the normalized rotation axis * @return this */ public Quaterniond setAngleAxis(double angle, double x, double y, double z) { double s = Math.sin(angle * 0.5); this.x = x * s; this.y = y * s; this.z = z * s; this.w = Math.cosFromSin(s, angle * 0.5); return this; } /** * Set this quaternion to be a representation of the supplied axis and * angle (in radians). * * @param angle * the angle in radians * @param axis * the rotation axis * @return this */ public Quaterniond setAngleAxis(double angle, Vector3dc axis) { return setAngleAxis(angle, axis.x(), axis.y(), axis.z()); } private void setFromUnnormalized(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22) { double nm00 = m00, nm01 = m01, nm02 = m02; double nm10 = m10, nm11 = m11, nm12 = m12; double nm20 = m20, nm21 = m21, nm22 = m22; double lenX = Math.invsqrt(m00 * m00 + m01 * m01 + m02 * m02); double lenY = Math.invsqrt(m10 * m10 + m11 * m11 + m12 * m12); double lenZ = Math.invsqrt(m20 * m20 + m21 * m21 + m22 * m22); nm00 *= lenX; nm01 *= lenX; nm02 *= lenX; nm10 *= lenY; nm11 *= lenY; nm12 *= lenY; nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ; setFromNormalized(nm00, nm01, nm02, nm10, nm11, nm12, nm20, nm21, nm22); } private void setFromNormalized(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22) { double t; double tr = m00 + m11 + m22; if (tr >= 0.0) { t = Math.sqrt(tr + 1.0); w = t * 0.5; t = 0.5 / t; x = (m12 - m21) * t; y = (m20 - m02) * t; z = (m01 - m10) * t; } else { if (m00 >= m11 && m00 >= m22) { t = Math.sqrt(m00 - (m11 + m22) + 1.0); x = t * 0.5; t = 0.5 / t; y = (m10 + m01) * t; z = (m02 + m20) * t; w = (m12 - m21) * t; } else if (m11 > m22) { t = Math.sqrt(m11 - (m22 + m00) + 1.0); y = t * 0.5; t = 0.5 / t; z = (m21 + m12) * t; x = (m10 + m01) * t; w = (m20 - m02) * t; } else { t = Math.sqrt(m22 - (m00 + m11) + 1.0); z = t * 0.5; t = 0.5 / t; x = (m02 + m20) * t; y = (m21 + m12) * t; w = (m01 - m10) * t; } } } /** * Set this quaternion to be a representation of the rotational component of the given matrix. *

* This method assumes that the first three columns of the upper left 3x3 submatrix are no unit vectors. * * @param mat * the matrix whose rotational component is used to set this quaternion * @return this */ public Quaterniond setFromUnnormalized(Matrix4fc mat) { setFromUnnormalized(mat.m00(), mat.m01(), mat.m02(), mat.m10(), mat.m11(), mat.m12(), mat.m20(), mat.m21(), mat.m22()); return this; } /** * Set this quaternion to be a representation of the rotational component of the given matrix. *

* This method assumes that the first three columns of the upper left 3x3 submatrix are no unit vectors. * * @param mat * the matrix whose rotational component is used to set this quaternion * @return this */ public Quaterniond setFromUnnormalized(Matrix4x3fc mat) { setFromUnnormalized(mat.m00(), mat.m01(), mat.m02(), mat.m10(), mat.m11(), mat.m12(), mat.m20(), mat.m21(), mat.m22()); return this; } /** * Set this quaternion to be a representation of the rotational component of the given matrix. *

* This method assumes that the first three columns of the upper left 3x3 submatrix are no unit vectors. * * @param mat * the matrix whose rotational component is used to set this quaternion * @return this */ public Quaterniond setFromUnnormalized(Matrix4x3dc mat) { setFromUnnormalized(mat.m00(), mat.m01(), mat.m02(), mat.m10(), mat.m11(), mat.m12(), mat.m20(), mat.m21(), mat.m22()); return this; } /** * Set this quaternion to be a representation of the rotational component of the given matrix. *

* This method assumes that the first three columns of the upper left 3x3 submatrix are unit vectors. * * @param mat * the matrix whose rotational component is used to set this quaternion * @return this */ public Quaterniond setFromNormalized(Matrix4fc mat) { setFromNormalized(mat.m00(), mat.m01(), mat.m02(), mat.m10(), mat.m11(), mat.m12(), mat.m20(), mat.m21(), mat.m22()); return this; } /** * Set this quaternion to be a representation of the rotational component of the given matrix. *

* This method assumes that the first three columns of the upper left 3x3 submatrix are unit vectors. * * @param mat * the matrix whose rotational component is used to set this quaternion * @return this */ public Quaterniond setFromNormalized(Matrix4x3fc mat) { setFromNormalized(mat.m00(), mat.m01(), mat.m02(), mat.m10(), mat.m11(), mat.m12(), mat.m20(), mat.m21(), mat.m22()); return this; } /** * Set this quaternion to be a representation of the rotational component of the given matrix. *

* This method assumes that the first three columns of the upper left 3x3 submatrix are unit vectors. * * @param mat * the matrix whose rotational component is used to set this quaternion * @return this */ public Quaterniond setFromNormalized(Matrix4x3dc mat) { setFromNormalized(mat.m00(), mat.m01(), mat.m02(), mat.m10(), mat.m11(), mat.m12(), mat.m20(), mat.m21(), mat.m22()); return this; } /** * Set this quaternion to be a representation of the rotational component of the given matrix. *

* This method assumes that the first three columns of the upper left 3x3 submatrix are no unit vectors. * * @param mat * the matrix whose rotational component is used to set this quaternion * @return this */ public Quaterniond setFromUnnormalized(Matrix4dc mat) { setFromUnnormalized(mat.m00(), mat.m01(), mat.m02(), mat.m10(), mat.m11(), mat.m12(), mat.m20(), mat.m21(), mat.m22()); return this; } /** * Set this quaternion to be a representation of the rotational component of the given matrix. *

* This method assumes that the first three columns of the upper left 3x3 submatrix are unit vectors. * * @param mat * the matrix whose rotational component is used to set this quaternion * @return this */ public Quaterniond setFromNormalized(Matrix4dc mat) { setFromNormalized(mat.m00(), mat.m01(), mat.m02(), mat.m10(), mat.m11(), mat.m12(), mat.m20(), mat.m21(), mat.m22()); return this; } /** * Set this quaternion to be a representation of the rotational component of the given matrix. *

* This method assumes that the first three columns of the upper left 3x3 submatrix are no unit vectors. * * @param mat * the matrix whose rotational component is used to set this quaternion * @return this */ public Quaterniond setFromUnnormalized(Matrix3fc mat) { setFromUnnormalized(mat.m00(), mat.m01(), mat.m02(), mat.m10(), mat.m11(), mat.m12(), mat.m20(), mat.m21(), mat.m22()); return this; } /** * Set this quaternion to be a representation of the rotational component of the given matrix. *

* This method assumes that the first three columns of the upper left 3x3 submatrix are unit vectors. * * @param mat * the matrix whose rotational component is used to set this quaternion * @return this */ public Quaterniond setFromNormalized(Matrix3fc mat) { setFromNormalized(mat.m00(), mat.m01(), mat.m02(), mat.m10(), mat.m11(), mat.m12(), mat.m20(), mat.m21(), mat.m22()); return this; } /** * Set this quaternion to be a representation of the rotational component of the given matrix. *

* This method assumes that the first three columns of the upper left 3x3 submatrix are no unit vectors. * * @param mat * the matrix whose rotational component is used to set this quaternion * @return this */ public Quaterniond setFromUnnormalized(Matrix3dc mat) { setFromUnnormalized(mat.m00(), mat.m01(), mat.m02(), mat.m10(), mat.m11(), mat.m12(), mat.m20(), mat.m21(), mat.m22()); return this; } /** * Set this quaternion to be a representation of the rotational component of the given matrix. * * @param mat * the matrix whose rotational component is used to set this quaternion * @return this */ public Quaterniond setFromNormalized(Matrix3dc mat) { setFromNormalized(mat.m00(), mat.m01(), mat.m02(), mat.m10(), mat.m11(), mat.m12(), mat.m20(), mat.m21(), mat.m22()); return this; } /** * Set this quaternion to be a representation of the supplied axis and * angle (in radians). * * @param axis * the rotation axis * @param angle * the angle in radians * @return this */ public Quaterniond fromAxisAngleRad(Vector3dc axis, double angle) { return fromAxisAngleRad(axis.x(), axis.y(), axis.z(), angle); } /** * Set this quaternion to be a representation of the supplied axis and * angle (in radians). * * @param axisX * the x component of the rotation axis * @param axisY * the y component of the rotation axis * @param axisZ * the z component of the rotation axis * @param angle * the angle in radians * @return this */ public Quaterniond fromAxisAngleRad(double axisX, double axisY, double axisZ, double angle) { double hangle = angle / 2.0; double sinAngle = Math.sin(hangle); double vLength = Math.sqrt(axisX * axisX + axisY * axisY + axisZ * axisZ); x = axisX / vLength * sinAngle; y = axisY / vLength * sinAngle; z = axisZ / vLength * sinAngle; w = Math.cosFromSin(sinAngle, hangle); return this; } /** * Set this quaternion to be a representation of the supplied axis and * angle (in degrees). * * @param axis * the rotation axis * @param angle * the angle in degrees * @return this */ public Quaterniond fromAxisAngleDeg(Vector3dc axis, double angle) { return fromAxisAngleRad(axis.x(), axis.y(), axis.z(), Math.toRadians(angle)); } /** * Set this quaternion to be a representation of the supplied axis and * angle (in degrees). * * @param axisX * the x component of the rotation axis * @param axisY * the y component of the rotation axis * @param axisZ * the z component of the rotation axis * @param angle * the angle in radians * @return this */ public Quaterniond fromAxisAngleDeg(double axisX, double axisY, double axisZ, double angle) { return fromAxisAngleRad(axisX, axisY, axisZ, Math.toRadians(angle)); } /** * Multiply this quaternion by q. *

* If T is this and Q is the given * quaternion, then the resulting quaternion R is: *

* R = T * Q *

* So, this method uses post-multiplication like the matrix classes, resulting in a * vector to be transformed by Q first, and then by T. * * @param q * the quaternion to multiply this by * @return this */ public Quaterniond mul(Quaterniondc q) { return mul(q, this); } public Quaterniond mul(Quaterniondc q, Quaterniond dest) { return mul(q.x(), q.y(), q.z(), q.w(), dest); } /** * Multiply this quaternion by the quaternion represented via (qx, qy, qz, qw). *

* If T is this and Q is the given * quaternion, then the resulting quaternion R is: *

* R = T * Q *

* So, this method uses post-multiplication like the matrix classes, resulting in a * vector to be transformed by Q first, and then by T. * * @param qx * the x component of the quaternion to multiply this by * @param qy * the y component of the quaternion to multiply this by * @param qz * the z component of the quaternion to multiply this by * @param qw * the w component of the quaternion to multiply this by * @return this */ public Quaterniond mul(double qx, double qy, double qz, double qw) { return mul(qx, qy, qz, qw, this); } public Quaterniond mul(double qx, double qy, double qz, double qw, Quaterniond dest) { return dest.set(Math.fma(w, qx, Math.fma(x, qw, Math.fma(y, qz, -z * qy))), Math.fma(w, qy, Math.fma(-x, qz, Math.fma(y, qw, z * qx))), Math.fma(w, qz, Math.fma(x, qy, Math.fma(-y, qx, z * qw))), Math.fma(w, qw, Math.fma(-x, qx, Math.fma(-y, qy, -z * qz)))); } /** * Pre-multiply this quaternion by q. *

* If T is this and Q is the given quaternion, then the resulting quaternion R is: *

* R = Q * T *

* So, this method uses pre-multiplication, resulting in a vector to be transformed by T first, and then by Q. * * @param q * the quaternion to pre-multiply this by * @return this */ public Quaterniond premul(Quaterniondc q) { return premul(q, this); } public Quaterniond premul(Quaterniondc q, Quaterniond dest) { return premul(q.x(), q.y(), q.z(), q.w(), dest); } /** * Pre-multiply this quaternion by the quaternion represented via (qx, qy, qz, qw). *

* If T is this and Q is the given quaternion, then the resulting quaternion R is: *

* R = Q * T *

* So, this method uses pre-multiplication, resulting in a vector to be transformed by T first, and then by Q. * * @param qx * the x component of the quaternion to multiply this by * @param qy * the y component of the quaternion to multiply this by * @param qz * the z component of the quaternion to multiply this by * @param qw * the w component of the quaternion to multiply this by * @return this */ public Quaterniond premul(double qx, double qy, double qz, double qw) { return premul(qx, qy, qz, qw, this); } public Quaterniond premul(double qx, double qy, double qz, double qw, Quaterniond dest) { return dest.set(Math.fma(qw, x, Math.fma(qx, w, Math.fma(qy, z, -qz * y))), Math.fma(qw, y, Math.fma(-qx, z, Math.fma(qy, w, qz * x))), Math.fma(qw, z, Math.fma(qx, y, Math.fma(-qy, x, qz * w))), Math.fma(qw, w, Math.fma(-qx, x, Math.fma(-qy, y, -qz * z)))); } public Vector3d transform(Vector3d vec){ return transform(vec.x, vec.y, vec.z, vec); } public Vector3d transformInverse(Vector3d vec){ return transformInverse(vec.x, vec.y, vec.z, vec); } public Vector3d transformUnit(Vector3d vec){ return transformUnit(vec.x, vec.y, vec.z, vec); } public Vector3d transformInverseUnit(Vector3d vec){ return transformInverseUnit(vec.x, vec.y, vec.z, vec); } public Vector3d transformPositiveX(Vector3d dest) { double ww = w * w; double xx = x * x; double yy = y * y; double zz = z * z; double zw = z * w; double xy = x * y; double xz = x * z; double yw = y * w; dest.x = ww + xx - zz - yy; dest.y = xy + zw + zw + xy; dest.z = xz - yw + xz - yw; return dest; } public Vector4d transformPositiveX(Vector4d dest) { double ww = w * w; double xx = x * x; double yy = y * y; double zz = z * z; double zw = z * w; double xy = x * y; double xz = x * z; double yw = y * w; dest.x = ww + xx - zz - yy; dest.y = xy + zw + zw + xy; dest.z = xz - yw + xz - yw; return dest; } public Vector3d transformUnitPositiveX(Vector3d dest) { double yy = y * y; double zz = z * z; double xy = x * y; double xz = x * z; double yw = y * w; double zw = z * w; dest.x = 1.0 - yy - yy - zz - zz; dest.y = xy + zw + xy + zw; dest.z = xz - yw + xz - yw; return dest; } public Vector4d transformUnitPositiveX(Vector4d dest) { double yy = y * y; double zz = z * z; double xy = x * y; double xz = x * z; double yw = y * w; double zw = z * w; dest.x = 1.0 - yy - yy - zz - zz; dest.y = xy + zw + xy + zw; dest.z = xz - yw + xz - yw; return dest; } public Vector3d transformPositiveY(Vector3d dest) { double ww = w * w; double xx = x * x; double yy = y * y; double zz = z * z; double zw = z * w; double xy = x * y; double yz = y * z; double xw = x * w; dest.x = -zw + xy - zw + xy; dest.y = yy - zz + ww - xx; dest.z = yz + yz + xw + xw; return dest; } public Vector4d transformPositiveY(Vector4d dest) { double ww = w * w; double xx = x * x; double yy = y * y; double zz = z * z; double zw = z * w; double xy = x * y; double yz = y * z; double xw = x * w; dest.x = -zw + xy - zw + xy; dest.y = yy - zz + ww - xx; dest.z = yz + yz + xw + xw; return dest; } public Vector4d transformUnitPositiveY(Vector4d dest) { double xx = x * x; double zz = z * z; double xy = x * y; double yz = y * z; double xw = x * w; double zw = z * w; dest.x = xy - zw + xy - zw; dest.y = 1.0 - xx - xx - zz - zz; dest.z = yz + yz + xw + xw; return dest; } public Vector3d transformUnitPositiveY(Vector3d dest) { double xx = x * x; double zz = z * z; double xy = x * y; double yz = y * z; double xw = x * w; double zw = z * w; dest.x = xy - zw + xy - zw; dest.y = 1.0 - xx - xx - zz - zz; dest.z = yz + yz + xw + xw; return dest; } public Vector3d transformPositiveZ(Vector3d dest) { double ww = w * w; double xx = x * x; double yy = y * y; double zz = z * z; double xz = x * z; double yw = y * w; double yz = y * z; double xw = x * w; dest.x = yw + xz + xz + yw; dest.y = yz + yz - xw - xw; dest.z = zz - yy - xx + ww; return dest; } public Vector4d transformPositiveZ(Vector4d dest) { double ww = w * w; double xx = x * x; double yy = y * y; double zz = z * z; double xz = x * z; double yw = y * w; double yz = y * z; double xw = x * w; dest.x = yw + xz + xz + yw; dest.y = yz + yz - xw - xw; dest.z = zz - yy - xx + ww; return dest; } public Vector4d transformUnitPositiveZ(Vector4d dest) { double xx = x * x; double yy = y * y; double xz = x * z; double yz = y * z; double xw = x * w; double yw = y * w; dest.x = xz + yw + xz + yw; dest.y = yz + yz - xw - xw; dest.z = 1.0 - xx - xx - yy - yy; return dest; } public Vector3d transformUnitPositiveZ(Vector3d dest) { double xx = x * x; double yy = y * y; double xz = x * z; double yz = y * z; double xw = x * w; double yw = y * w; dest.x = xz + yw + xz + yw; dest.y = yz + yz - xw - xw; dest.z = 1.0 - xx - xx - yy - yy; return dest; } public Vector4d transform(Vector4d vec){ return transform(vec, vec); } public Vector4d transformInverse(Vector4d vec){ return transformInverse(vec, vec); } public Vector3d transform(Vector3dc vec, Vector3d dest) { return transform(vec.x(), vec.y(), vec.z(), dest); } public Vector3d transformInverse(Vector3dc vec, Vector3d dest) { return transformInverse(vec.x(), vec.y(), vec.z(), dest); } public Vector3d transform(double x, double y, double z, Vector3d dest) { double xx = this.x * this.x, yy = this.y * this.y, zz = this.z * this.z, ww = this.w * this.w; double xy = this.x * this.y, xz = this.x * this.z, yz = this.y * this.z, xw = this.x * this.w; double zw = this.z * this.w, yw = this.y * this.w, k = 1 / (xx + yy + zz + ww); return dest.set(Math.fma((xx - yy - zz + ww) * k, x, Math.fma(2 * (xy - zw) * k, y, (2 * (xz + yw) * k) * z)), Math.fma(2 * (xy + zw) * k, x, Math.fma((yy - xx - zz + ww) * k, y, (2 * (yz - xw) * k) * z)), Math.fma(2 * (xz - yw) * k, x, Math.fma(2 * (yz + xw) * k, y, ((zz - xx - yy + ww) * k) * z))); } public Vector3d transformInverse(double x, double y, double z, Vector3d dest) { double n = 1.0 / Math.fma(this.x, this.x, Math.fma(this.y, this.y, Math.fma(this.z, this.z, this.w * this.w))); double qx = this.x * n, qy = this.y * n, qz = this.z * n, qw = this.w * n; double xx = qx * qx, yy = qy * qy, zz = qz * qz, ww = qw * qw; double xy = qx * qy, xz = qx * qz, yz = qy * qz, xw = qx * qw; double zw = qz * qw, yw = qy * qw, k = 1 / (xx + yy + zz + ww); return dest.set(Math.fma((xx - yy - zz + ww) * k, x, Math.fma(2 * (xy + zw) * k, y, (2 * (xz - yw) * k) * z)), Math.fma(2 * (xy - zw) * k, x, Math.fma((yy - xx - zz + ww) * k, y, (2 * (yz + xw) * k) * z)), Math.fma(2 * (xz + yw) * k, x, Math.fma(2 * (yz - xw) * k, y, ((zz - xx - yy + ww) * k) * z))); } public Vector4d transform(Vector4dc vec, Vector4d dest) { return transform(vec.x(), vec.y(), vec.z(), dest); } public Vector4d transformInverse(Vector4dc vec, Vector4d dest) { return transformInverse(vec.x(), vec.y(), vec.z(), dest); } public Vector4d transform(double x, double y, double z, Vector4d dest) { double xx = this.x * this.x, yy = this.y * this.y, zz = this.z * this.z, ww = this.w * this.w; double xy = this.x * this.y, xz = this.x * this.z, yz = this.y * this.z, xw = this.x * this.w; double zw = this.z * this.w, yw = this.y * this.w, k = 1 / (xx + yy + zz + ww); return dest.set(Math.fma((xx - yy - zz + ww) * k, x, Math.fma(2 * (xy - zw) * k, y, (2 * (xz + yw) * k) * z)), Math.fma(2 * (xy + zw) * k, x, Math.fma((yy - xx - zz + ww) * k, y, (2 * (yz - xw) * k) * z)), Math.fma(2 * (xz - yw) * k, x, Math.fma(2 * (yz + xw) * k, y, ((zz - xx - yy + ww) * k) * z)), dest.w); } public Vector4d transformInverse(double x, double y, double z, Vector4d dest) { double n = 1.0 / Math.fma(this.x, this.x, Math.fma(this.y, this.y, Math.fma(this.z, this.z, this.w * this.w))); double qx = this.x * n, qy = this.y * n, qz = this.z * n, qw = this.w * n; double xx = qx * qx, yy = qy * qy, zz = qz * qz, ww = qw * qw; double xy = qx * qy, xz = qx * qz, yz = qy * qz, xw = qx * qw; double zw = qz * qw, yw = qy * qw, k = 1 / (xx + yy + zz + ww); return dest.set(Math.fma((xx - yy - zz + ww) * k, x, Math.fma(2 * (xy + zw) * k, y, (2 * (xz - yw) * k) * z)), Math.fma(2 * (xy - zw) * k, x, Math.fma((yy - xx - zz + ww) * k, y, (2 * (yz + xw) * k) * z)), Math.fma(2 * (xz + yw) * k, x, Math.fma(2 * (yz - xw) * k, y, ((zz - xx - yy + ww) * k) * z))); } public Vector3f transform(Vector3f vec){ return transform(vec.x, vec.y, vec.z, vec); } public Vector3f transformInverse(Vector3f vec){ return transformInverse(vec.x, vec.y, vec.z, vec); } public Vector4d transformUnit(Vector4d vec){ return transformUnit(vec, vec); } public Vector4d transformInverseUnit(Vector4d vec){ return transformInverseUnit(vec, vec); } public Vector3d transformUnit(Vector3dc vec, Vector3d dest) { return transformUnit(vec.x(), vec.y(), vec.z(), dest); } public Vector3d transformInverseUnit(Vector3dc vec, Vector3d dest) { return transformInverseUnit(vec.x(), vec.y(), vec.z(), dest); } public Vector3d transformUnit(double x, double y, double z, Vector3d dest) { double xx = this.x * this.x, xy = this.x * this.y, xz = this.x * this.z; double xw = this.x * this.w, yy = this.y * this.y, yz = this.y * this.z; double yw = this.y * this.w, zz = this.z * this.z, zw = this.z * this.w; return dest.set(Math.fma(Math.fma(-2, yy + zz, 1), x, Math.fma(2 * (xy - zw), y, (2 * (xz + yw)) * z)), Math.fma(2 * (xy + zw), x, Math.fma(Math.fma(-2, xx + zz, 1), y, (2 * (yz - xw)) * z)), Math.fma(2 * (xz - yw), x, Math.fma(2 * (yz + xw), y, Math.fma(-2, xx + yy, 1) * z))); } public Vector3d transformInverseUnit(double x, double y, double z, Vector3d dest) { double xx = this.x * this.x, xy = this.x * this.y, xz = this.x * this.z; double xw = this.x * this.w, yy = this.y * this.y, yz = this.y * this.z; double yw = this.y * this.w, zz = this.z * this.z, zw = this.z * this.w; return dest.set(Math.fma(Math.fma(-2, yy + zz, 1), x, Math.fma(2 * (xy + zw), y, (2 * (xz - yw)) * z)), Math.fma(2 * (xy - zw), x, Math.fma(Math.fma(-2, xx + zz, 1), y, (2 * (yz + xw)) * z)), Math.fma(2 * (xz + yw), x, Math.fma(2 * (yz - xw), y, Math.fma(-2, xx + yy, 1) * z))); } public Vector4d transformUnit(Vector4dc vec, Vector4d dest) { return transformUnit(vec.x(), vec.y(), vec.z(), dest); } public Vector4d transformInverseUnit(Vector4dc vec, Vector4d dest) { return transformInverseUnit(vec.x(), vec.y(), vec.z(), dest); } public Vector4d transformUnit(double x, double y, double z, Vector4d dest) { double xx = this.x * this.x, xy = this.x * this.y, xz = this.x * this.z; double xw = this.x * this.w, yy = this.y * this.y, yz = this.y * this.z; double yw = this.y * this.w, zz = this.z * this.z, zw = this.z * this.w; return dest.set(Math.fma(Math.fma(-2, yy + zz, 1), x, Math.fma(2 * (xy - zw), y, (2 * (xz + yw)) * z)), Math.fma(2 * (xy + zw), x, Math.fma(Math.fma(-2, xx + zz, 1), y, (2 * (yz - xw)) * z)), Math.fma(2 * (xz - yw), x, Math.fma(2 * (yz + xw), y, Math.fma(-2, xx + yy, 1) * z)), dest.w); } public Vector4d transformInverseUnit(double x, double y, double z, Vector4d dest) { double xx = this.x * this.x, xy = this.x * this.y, xz = this.x * this.z; double xw = this.x * this.w, yy = this.y * this.y, yz = this.y * this.z; double yw = this.y * this.w, zz = this.z * this.z, zw = this.z * this.w; return dest.set(Math.fma(Math.fma(-2, yy + zz, 1), x, Math.fma(2 * (xy + zw), y, (2 * (xz - yw)) * z)), Math.fma(2 * (xy - zw), x, Math.fma(Math.fma(-2, xx + zz, 1), y, (2 * (yz + xw)) * z)), Math.fma(2 * (xz + yw), x, Math.fma(2 * (yz - xw), y, Math.fma(-2, xx + yy, 1) * z)), dest.w); } public Vector3f transformUnit(Vector3f vec){ return transformUnit(vec.x, vec.y, vec.z, vec); } public Vector3f transformInverseUnit(Vector3f vec){ return transformInverseUnit(vec.x, vec.y, vec.z, vec); } public Vector3f transformPositiveX(Vector3f dest) { double ww = w * w; double xx = x * x; double yy = y * y; double zz = z * z; double zw = z * w; double xy = x * y; double xz = x * z; double yw = y * w; dest.x = (float) (ww + xx - zz - yy); dest.y = (float) (xy + zw + zw + xy); dest.z = (float) (xz - yw + xz - yw); return dest; } public Vector4f transformPositiveX(Vector4f dest) { double ww = w * w; double xx = x * x; double yy = y * y; double zz = z * z; double zw = z * w; double xy = x * y; double xz = x * z; double yw = y * w; dest.x = (float) (ww + xx - zz - yy); dest.y = (float) (xy + zw + zw + xy); dest.z = (float) (xz - yw + xz - yw); return dest; } public Vector3f transformUnitPositiveX(Vector3f dest) { double yy = y * y; double zz = z * z; double xy = x * y; double xz = x * z; double yw = y * w; double zw = z * w; dest.x = (float) (1.0 - yy - yy - zz - zz); dest.y = (float) (xy + zw + xy + zw); dest.z = (float) (xz - yw + xz - yw); return dest; } public Vector4f transformUnitPositiveX(Vector4f dest) { double yy = y * y; double zz = z * z; double xy = x * y; double xz = x * z; double yw = y * w; double zw = z * w; dest.x = (float) (1.0 - yy - yy - zz - zz); dest.y = (float) (xy + zw + xy + zw); dest.z = (float) (xz - yw + xz - yw); return dest; } public Vector3f transformPositiveY(Vector3f dest) { double ww = w * w; double xx = x * x; double yy = y * y; double zz = z * z; double zw = z * w; double xy = x * y; double yz = y * z; double xw = x * w; dest.x = (float) (-zw + xy - zw + xy); dest.y = (float) (yy - zz + ww - xx); dest.z = (float) (yz + yz + xw + xw); return dest; } public Vector4f transformPositiveY(Vector4f dest) { double ww = w * w; double xx = x * x; double yy = y * y; double zz = z * z; double zw = z * w; double xy = x * y; double yz = y * z; double xw = x * w; dest.x = (float) (-zw + xy - zw + xy); dest.y = (float) (yy - zz + ww - xx); dest.z = (float) (yz + yz + xw + xw); return dest; } public Vector4f transformUnitPositiveY(Vector4f dest) { double xx = x * x; double zz = z * z; double xy = x * y; double yz = y * z; double xw = x * w; double zw = z * w; dest.x = (float) (xy - zw + xy - zw); dest.y = (float) (1.0 - xx - xx - zz - zz); dest.z = (float) (yz + yz + xw + xw); return dest; } public Vector3f transformUnitPositiveY(Vector3f dest) { double xx = x * x; double zz = z * z; double xy = x * y; double yz = y * z; double xw = x * w; double zw = z * w; dest.x = (float) (xy - zw + xy - zw); dest.y = (float) (1.0 - xx - xx - zz - zz); dest.z = (float) (yz + yz + xw + xw); return dest; } public Vector3f transformPositiveZ(Vector3f dest) { double ww = w * w; double xx = x * x; double yy = y * y; double zz = z * z; double xz = x * z; double yw = y * w; double yz = y * z; double xw = x * w; dest.x = (float) (yw + xz + xz + yw); dest.y = (float) (yz + yz - xw - xw); dest.z = (float) (zz - yy - xx + ww); return dest; } public Vector4f transformPositiveZ(Vector4f dest) { double ww = w * w; double xx = x * x; double yy = y * y; double zz = z * z; double xz = x * z; double yw = y * w; double yz = y * z; double xw = x * w; dest.x = (float) (yw + xz + xz + yw); dest.y = (float) (yz + yz - xw - xw); dest.z = (float) (zz - yy - xx + ww); return dest; } public Vector4f transformUnitPositiveZ(Vector4f dest) { double xx = x * x; double yy = y * y; double xz = x * z; double yz = y * z; double xw = x * w; double yw = y * w; dest.x = (float) (xz + yw + xz + yw); dest.y = (float) (yz + yz - xw - xw); dest.z = (float) (1.0 - xx - xx - yy - yy); return dest; } public Vector3f transformUnitPositiveZ(Vector3f dest) { double xx = x * x; double yy = y * y; double xz = x * z; double yz = y * z; double xw = x * w; double yw = y * w; dest.x = (float) (xz + yw + xz + yw); dest.y = (float) (yz + yz - xw - xw); dest.z = (float) (1.0 - xx - xx - yy - yy); return dest; } public Vector4f transform(Vector4f vec){ return transform(vec, vec); } public Vector4f transformInverse(Vector4f vec){ return transformInverse(vec, vec); } public Vector3f transform(Vector3fc vec, Vector3f dest) { return transform(vec.x(), vec.y(), vec.z(), dest); } public Vector3f transformInverse(Vector3fc vec, Vector3f dest) { return transformInverse(vec.x(), vec.y(), vec.z(), dest); } public Vector3f transform(double x, double y, double z, Vector3f dest) { double xx = this.x * this.x, yy = this.y * this.y, zz = this.z * this.z, ww = this.w * this.w; double xy = this.x * this.y, xz = this.x * this.z, yz = this.y * this.z, xw = this.x * this.w; double zw = this.z * this.w, yw = this.y * this.w, k = 1 / (xx + yy + zz + ww); return dest.set(Math.fma((xx - yy - zz + ww) * k, x, Math.fma(2 * (xy - zw) * k, y, (2 * (xz + yw) * k) * z)), Math.fma(2 * (xy + zw) * k, x, Math.fma((yy - xx - zz + ww) * k, y, (2 * (yz - xw) * k) * z)), Math.fma(2 * (xz - yw) * k, x, Math.fma(2 * (yz + xw) * k, y, ((zz - xx - yy + ww) * k) * z))); } public Vector3f transformInverse(double x, double y, double z, Vector3f dest) { double n = 1.0 / Math.fma(this.x, this.x, Math.fma(this.y, this.y, Math.fma(this.z, this.z, this.w * this.w))); double qx = this.x * n, qy = this.y * n, qz = this.z * n, qw = this.w * n; double xx = qx * qx, yy = qy * qy, zz = qz * qz, ww = qw * qw; double xy = qx * qy, xz = qx * qz, yz = qy * qz, xw = qx * qw; double zw = qz * qw, yw = qy * qw, k = 1 / (xx + yy + zz + ww); return dest.set(Math.fma((xx - yy - zz + ww) * k, x, Math.fma(2 * (xy + zw) * k, y, (2 * (xz - yw) * k) * z)), Math.fma(2 * (xy - zw) * k, x, Math.fma((yy - xx - zz + ww) * k, y, (2 * (yz + xw) * k) * z)), Math.fma(2 * (xz + yw) * k, x, Math.fma(2 * (yz - xw) * k, y, ((zz - xx - yy + ww) * k) * z))); } public Vector4f transform(Vector4fc vec, Vector4f dest) { return transform(vec.x(), vec.y(), vec.z(), dest); } public Vector4f transformInverse(Vector4fc vec, Vector4f dest) { return transformInverse(vec.x(), vec.y(), vec.z(), dest); } public Vector4f transform(double x, double y, double z, Vector4f dest) { double xx = this.x * this.x, yy = this.y * this.y, zz = this.z * this.z, ww = this.w * this.w; double xy = this.x * this.y, xz = this.x * this.z, yz = this.y * this.z, xw = this.x * this.w; double zw = this.z * this.w, yw = this.y * this.w, k = 1 / (xx + yy + zz + ww); return dest.set((float) Math.fma((xx - yy - zz + ww) * k, x, Math.fma(2 * (xy - zw) * k, y, (2 * (xz + yw) * k) * z)), (float) Math.fma(2 * (xy + zw) * k, x, Math.fma((yy - xx - zz + ww) * k, y, (2 * (yz - xw) * k) * z)), (float) Math.fma(2 * (xz - yw) * k, x, Math.fma(2 * (yz + xw) * k, y, ((zz - xx - yy + ww) * k) * z)), dest.w); } public Vector4f transformInverse(double x, double y, double z, Vector4f dest) { double n = 1.0 / Math.fma(this.x, this.x, Math.fma(this.y, this.y, Math.fma(this.z, this.z, this.w * this.w))); double qx = this.x * n, qy = this.y * n, qz = this.z * n, qw = this.w * n; double xx = qx * qx, yy = qy * qy, zz = qz * qz, ww = qw * qw; double xy = qx * qy, xz = qx * qz, yz = qy * qz, xw = qx * qw; double zw = qz * qw, yw = qy * qw, k = 1 / (xx + yy + zz + ww); return dest.set(Math.fma((xx - yy - zz + ww) * k, x, Math.fma(2 * (xy + zw) * k, y, (2 * (xz - yw) * k) * z)), Math.fma(2 * (xy - zw) * k, x, Math.fma((yy - xx - zz + ww) * k, y, (2 * (yz + xw) * k) * z)), Math.fma(2 * (xz + yw) * k, x, Math.fma(2 * (yz - xw) * k, y, ((zz - xx - yy + ww) * k) * z)), dest.w); } public Vector4f transformUnit(Vector4f vec){ return transformUnit(vec, vec); } public Vector4f transformInverseUnit(Vector4f vec){ return transformInverseUnit(vec, vec); } public Vector3f transformUnit(Vector3fc vec, Vector3f dest) { return transformUnit(vec.x(), vec.y(), vec.z(), dest); } public Vector3f transformInverseUnit(Vector3fc vec, Vector3f dest) { return transformInverseUnit(vec.x(), vec.y(), vec.z(), dest); } public Vector3f transformUnit(double x, double y, double z, Vector3f dest) { double xx = this.x * this.x, xy = this.x * this.y, xz = this.x * this.z; double xw = this.x * this.w, yy = this.y * this.y, yz = this.y * this.z; double yw = this.y * this.w, zz = this.z * this.z, zw = this.z * this.w; return dest.set((float) Math.fma(Math.fma(-2, yy + zz, 1), x, Math.fma(2 * (xy - zw), y, (2 * (xz + yw)) * z)), (float) Math.fma(2 * (xy + zw), x, Math.fma(Math.fma(-2, xx + zz, 1), y, (2 * (yz - xw)) * z)), (float) Math.fma(2 * (xz - yw), x, Math.fma(2 * (yz + xw), y, Math.fma(-2, xx + yy, 1) * z))); } public Vector3f transformInverseUnit(double x, double y, double z, Vector3f dest) { double xx = this.x * this.x, xy = this.x * this.y, xz = this.x * this.z; double xw = this.x * this.w, yy = this.y * this.y, yz = this.y * this.z; double yw = this.y * this.w, zz = this.z * this.z, zw = this.z * this.w; return dest.set((float) Math.fma(Math.fma(-2, yy + zz, 1), x, Math.fma(2 * (xy + zw), y, (2 * (xz - yw)) * z)), (float) Math.fma(2 * (xy - zw), x, Math.fma(Math.fma(-2, xx + zz, 1), y, (2 * (yz + xw)) * z)), (float) Math.fma(2 * (xz + yw), x, Math.fma(2 * (yz - xw), y, Math.fma(-2, xx + yy, 1) * z))); } public Vector4f transformUnit(Vector4fc vec, Vector4f dest) { return transformUnit(vec.x(), vec.y(), vec.z(), dest); } public Vector4f transformInverseUnit(Vector4fc vec, Vector4f dest) { return transformInverseUnit(vec.x(), vec.y(), vec.z(), dest); } public Vector4f transformUnit(double x, double y, double z, Vector4f dest) { double xx = this.x * this.x, xy = this.x * this.y, xz = this.x * this.z; double xw = this.x * this.w, yy = this.y * this.y, yz = this.y * this.z; double yw = this.y * this.w, zz = this.z * this.z, zw = this.z * this.w; return dest.set((float) Math.fma(Math.fma(-2, yy + zz, 1), x, Math.fma(2 * (xy - zw), y, (2 * (xz + yw)) * z)), (float) Math.fma(2 * (xy + zw), x, Math.fma(Math.fma(-2, xx + zz, 1), y, (2 * (yz - xw)) * z)), (float) Math.fma(2 * (xz - yw), x, Math.fma(2 * (yz + xw), y, Math.fma(-2, xx + yy, 1) * z))); } public Vector4f transformInverseUnit(double x, double y, double z, Vector4f dest) { double xx = this.x * this.x, xy = this.x * this.y, xz = this.x * this.z; double xw = this.x * this.w, yy = this.y * this.y, yz = this.y * this.z; double yw = this.y * this.w, zz = this.z * this.z, zw = this.z * this.w; return dest.set((float) Math.fma(Math.fma(-2, yy + zz, 1), x, Math.fma(2 * (xy + zw), y, (2 * (xz - yw)) * z)), (float) Math.fma(2 * (xy - zw), x, Math.fma(Math.fma(-2, xx + zz, 1), y, (2 * (yz + xw)) * z)), (float) Math.fma(2 * (xz + yw), x, Math.fma(2 * (yz - xw), y, Math.fma(-2, xx + yy, 1) * z))); } public Quaterniond invert(Quaterniond dest) { double invNorm = 1.0 / lengthSquared(); dest.x = -x * invNorm; dest.y = -y * invNorm; dest.z = -z * invNorm; dest.w = w * invNorm; return dest; } /** * Invert this quaternion and {@link #normalize() normalize} it. *

* If this quaternion is already normalized, then {@link #conjugate()} should be used instead. * * @see #conjugate() * * @return this */ public Quaterniond invert() { return invert(this); } public Quaterniond div(Quaterniondc b, Quaterniond dest) { double invNorm = 1.0 / Math.fma(b.x(), b.x(), Math.fma(b.y(), b.y(), Math.fma(b.z(), b.z(), b.w() * b.w()))); double x = -b.x() * invNorm; double y = -b.y() * invNorm; double z = -b.z() * invNorm; double w = b.w() * invNorm; return dest.set(Math.fma(this.w, x, Math.fma(this.x, w, Math.fma(this.y, z, -this.z * y))), Math.fma(this.w, y, Math.fma(-this.x, z, Math.fma(this.y, w, this.z * x))), Math.fma(this.w, z, Math.fma(this.x, y, Math.fma(-this.y, x, this.z * w))), Math.fma(this.w, w, Math.fma(-this.x, x, Math.fma(-this.y, y, -this.z * z)))); } /** * Divide this quaternion by b. *

* The division expressed using the inverse is performed in the following way: *

* this = this * b^-1, where b^-1 is the inverse of b. * * @param b * the {@link Quaterniondc} to divide this by * @return this */ public Quaterniond div(Quaterniondc b) { return div(b, this); } /** * Conjugate this quaternion. * * @return this */ public Quaterniond conjugate() { x = -x; y = -y; z = -z; return this; } public Quaterniond conjugate(Quaterniond dest) { dest.x = -x; dest.y = -y; dest.z = -z; dest.w = w; return dest; } /** * Set this quaternion to the identity. * * @return this */ public Quaterniond identity() { x = 0.0; y = 0.0; z = 0.0; w = 1.0; return this; } public double lengthSquared() { return Math.fma(x, x, Math.fma(y, y, Math.fma(z, z, w * w))); } /** * Set this quaternion from the supplied euler angles (in radians) with rotation order XYZ. *

* This method is equivalent to calling: rotationX(angleX).rotateY(angleY).rotateZ(angleZ) *

* Reference: this stackexchange answer * * @param angleX * the angle in radians to rotate about x * @param angleY * the angle in radians to rotate about y * @param angleZ * the angle in radians to rotate about z * @return this */ public Quaterniond rotationXYZ(double angleX, double angleY, double angleZ) { double sx = Math.sin(angleX * 0.5); double cx = Math.cosFromSin(sx, angleX * 0.5); double sy = Math.sin(angleY * 0.5); double cy = Math.cosFromSin(sy, angleY * 0.5); double sz = Math.sin(angleZ * 0.5); double cz = Math.cosFromSin(sz, angleZ * 0.5); double cycz = cy * cz; double sysz = sy * sz; double sycz = sy * cz; double cysz = cy * sz; w = cx*cycz - sx*sysz; x = sx*cycz + cx*sysz; y = cx*sycz - sx*cysz; z = cx*cysz + sx*sycz; return this; } /** * Set this quaternion from the supplied euler angles (in radians) with rotation order ZYX. *

* This method is equivalent to calling: rotationZ(angleZ).rotateY(angleY).rotateX(angleX) *

* Reference: this stackexchange answer * * @param angleX * the angle in radians to rotate about x * @param angleY * the angle in radians to rotate about y * @param angleZ * the angle in radians to rotate about z * @return this */ public Quaterniond rotationZYX(double angleZ, double angleY, double angleX) { double sx = Math.sin(angleX * 0.5); double cx = Math.cosFromSin(sx, angleX * 0.5); double sy = Math.sin(angleY * 0.5); double cy = Math.cosFromSin(sy, angleY * 0.5); double sz = Math.sin(angleZ * 0.5); double cz = Math.cosFromSin(sz, angleZ * 0.5); double cycz = cy * cz; double sysz = sy * sz; double sycz = sy * cz; double cysz = cy * sz; w = cx*cycz + sx*sysz; x = sx*cycz - cx*sysz; y = cx*sycz + sx*cysz; z = cx*cysz - sx*sycz; return this; } /** * Set this quaternion from the supplied euler angles (in radians) with rotation order YXZ. *

* This method is equivalent to calling: rotationY(angleY).rotateX(angleX).rotateZ(angleZ) *

* Reference: https://en.wikipedia.org * * @param angleY * the angle in radians to rotate about y * @param angleX * the angle in radians to rotate about x * @param angleZ * the angle in radians to rotate about z * @return this */ public Quaterniond rotationYXZ(double angleY, double angleX, double angleZ) { double sx = Math.sin(angleX * 0.5); double cx = Math.cosFromSin(sx, angleX * 0.5); double sy = Math.sin(angleY * 0.5); double cy = Math.cosFromSin(sy, angleY * 0.5); double sz = Math.sin(angleZ * 0.5); double cz = Math.cosFromSin(sz, angleZ * 0.5); double x = cy * sx; double y = sy * cx; double z = sy * sx; double w = cy * cx; this.x = x * cz + y * sz; this.y = y * cz - x * sz; this.z = w * sz - z * cz; this.w = w * cz + z * sz; return this; } /** * Interpolate between this {@link #normalize() unit} quaternion and the specified * target {@link #normalize() unit} quaternion using spherical linear interpolation using the specified interpolation factor alpha. *

* This method resorts to non-spherical linear interpolation when the absolute dot product between this and target is * below 1E-6. * * @param target * the target of the interpolation, which should be reached with alpha = 1.0 * @param alpha * the interpolation factor, within [0..1] * @return this */ public Quaterniond slerp(Quaterniondc target, double alpha) { return slerp(target, alpha, this); } public Quaterniond slerp(Quaterniondc target, double alpha, Quaterniond dest) { double cosom = Math.fma(x, target.x(), Math.fma(y, target.y(), Math.fma(z, target.z(), w * target.w()))); double absCosom = Math.abs(cosom); double scale0, scale1; if (1.0 - absCosom > 1E-6) { double sinSqr = 1.0 - absCosom * absCosom; double sinom = Math.invsqrt(sinSqr); double omega = Math.atan2(sinSqr * sinom, absCosom); scale0 = Math.sin((1.0 - alpha) * omega) * sinom; scale1 = Math.sin(alpha * omega) * sinom; } else { scale0 = 1.0 - alpha; scale1 = alpha; } scale1 = cosom >= 0.0 ? scale1 : -scale1; dest.x = Math.fma(scale0, x, scale1 * target.x()); dest.y = Math.fma(scale0, y, scale1 * target.y()); dest.z = Math.fma(scale0, z, scale1 * target.z()); dest.w = Math.fma(scale0, w, scale1 * target.w()); return dest; } /** * Interpolate between all of the quaternions given in qs via spherical linear interpolation using the specified interpolation factors weights, * and store the result in dest. *

* This method will interpolate between each two successive quaternions via {@link #slerp(Quaterniondc, double)} using their relative interpolation weights. *

* This method resorts to non-spherical linear interpolation when the absolute dot product of any two interpolated quaternions is below 1E-6f. *

* Reference: http://gamedev.stackexchange.com/ * * @param qs * the quaternions to interpolate over * @param weights * the weights of each individual quaternion in qs * @param dest * will hold the result * @return dest */ public static Quaterniondc slerp(Quaterniond[] qs, double[] weights, Quaterniond dest) { dest.set(qs[0]); double w = weights[0]; for (int i = 1; i < qs.length; i++) { double w0 = w; double w1 = weights[i]; double rw1 = w1 / (w0 + w1); w += w1; dest.slerp(qs[i], rw1); } return dest; } /** * Apply scaling to this quaternion, which results in any vector transformed by this quaternion to change * its length by the given factor. * * @param factor * the scaling factor * @return this */ public Quaterniond scale(double factor) { return scale(factor, this); } public Quaterniond scale(double factor, Quaterniond dest) { double sqrt = Math.sqrt(factor); dest.x = sqrt * x; dest.y = sqrt * y; dest.z = sqrt * z; dest.w = sqrt * w; return dest; } /** * Set this quaternion to represent scaling, which results in a transformed vector to change * its length by the given factor. * * @param factor * the scaling factor * @return this */ public Quaterniond scaling(double factor) { double sqrt = Math.sqrt(factor); this.x = 0.0; this.y = 0.0; this.z = 0.0; this.w = sqrt; return this; } /** * Integrate the rotation given by the angular velocity (vx, vy, vz) around the x, y and z axis, respectively, * with respect to the given elapsed time delta dt and add the differentiate rotation to the rotation represented by this quaternion. *

* This method pre-multiplies the rotation given by dt and (vx, vy, vz) by this, so * the angular velocities are always relative to the local coordinate system of the rotation represented by this quaternion. *

* This method is equivalent to calling: rotateLocal(dt * vx, dt * vy, dt * vz) *

* Reference: http://physicsforgames.blogspot.de/ * * @param dt * the delta time * @param vx * the angular velocity around the x axis * @param vy * the angular velocity around the y axis * @param vz * the angular velocity around the z axis * @return this */ public Quaterniond integrate(double dt, double vx, double vy, double vz) { return integrate(dt, vx, vy, vz, this); } public Quaterniond integrate(double dt, double vx, double vy, double vz, Quaterniond dest) { double thetaX = dt * vx * 0.5; double thetaY = dt * vy * 0.5; double thetaZ = dt * vz * 0.5; double thetaMagSq = thetaX * thetaX + thetaY * thetaY + thetaZ * thetaZ; double s; double dqX, dqY, dqZ, dqW; if (thetaMagSq * thetaMagSq / 24.0 < 1E-8) { dqW = 1.0 - thetaMagSq * 0.5; s = 1.0 - thetaMagSq / 6.0; } else { double thetaMag = Math.sqrt(thetaMagSq); double sin = Math.sin(thetaMag); s = sin / thetaMag; dqW = Math.cosFromSin(sin, thetaMag); } dqX = thetaX * s; dqY = thetaY * s; dqZ = thetaZ * s; /* Pre-multiplication */ return dest.set(Math.fma(dqW, x, Math.fma(dqX, w, Math.fma(dqY, z, -dqZ * y))), Math.fma(dqW, y, Math.fma(-dqX, z, Math.fma(dqY, w, dqZ * x))), Math.fma(dqW, z, Math.fma(dqX, y, Math.fma(-dqY, x, dqZ * w))), Math.fma(dqW, w, Math.fma(-dqX, x, Math.fma(-dqY, y, -dqZ * z)))); } /** * Compute a linear (non-spherical) interpolation of this and the given quaternion q * and store the result in this. * * @param q * the other quaternion * @param factor * the interpolation factor. It is between 0.0 and 1.0 * @return this */ public Quaterniond nlerp(Quaterniondc q, double factor) { return nlerp(q, factor, this); } public Quaterniond nlerp(Quaterniondc q, double factor, Quaterniond dest) { double cosom = Math.fma(x, q.x(), Math.fma(y, q.y(), Math.fma(z, q.z(), w * q.w()))); double scale0 = 1.0 - factor; double scale1 = (cosom >= 0.0) ? factor : -factor; dest.x = Math.fma(scale0, x, scale1 * q.x()); dest.y = Math.fma(scale0, y, scale1 * q.y()); dest.z = Math.fma(scale0, z, scale1 * q.z()); dest.w = Math.fma(scale0, w, scale1 * q.w()); double s = Math.invsqrt(Math.fma(dest.x, dest.x, Math.fma(dest.y, dest.y, Math.fma(dest.z, dest.z, dest.w * dest.w)))); dest.x *= s; dest.y *= s; dest.z *= s; dest.w *= s; return dest; } /** * Interpolate between all of the quaternions given in qs via non-spherical linear interpolation using the * specified interpolation factors weights, and store the result in dest. *

* This method will interpolate between each two successive quaternions via {@link #nlerp(Quaterniondc, double)} * using their relative interpolation weights. *

* Reference: http://gamedev.stackexchange.com/ * * @param qs * the quaternions to interpolate over * @param weights * the weights of each individual quaternion in qs * @param dest * will hold the result * @return dest */ public static Quaterniondc nlerp(Quaterniond[] qs, double[] weights, Quaterniond dest) { dest.set(qs[0]); double w = weights[0]; for (int i = 1; i < qs.length; i++) { double w0 = w; double w1 = weights[i]; double rw1 = w1 / (w0 + w1); w += w1; dest.nlerp(qs[i], rw1); } return dest; } public Quaterniond nlerpIterative(Quaterniondc q, double alpha, double dotThreshold, Quaterniond dest) { double q1x = x, q1y = y, q1z = z, q1w = w; double q2x = q.x(), q2y = q.y(), q2z = q.z(), q2w = q.w(); double dot = Math.fma(q1x, q2x, Math.fma(q1y, q2y, Math.fma(q1z, q2z, q1w * q2w))); double absDot = Math.abs(dot); if (1.0 - 1E-6 < absDot) { return dest.set(this); } double alphaN = alpha; while (absDot < dotThreshold) { double scale0 = 0.5; double scale1 = dot >= 0.0 ? 0.5 : -0.5; if (alphaN < 0.5) { q2x = Math.fma(scale0, q2x, scale1 * q1x); q2y = Math.fma(scale0, q2y, scale1 * q1y); q2z = Math.fma(scale0, q2z, scale1 * q1z); q2w = Math.fma(scale0, q2w, scale1 * q1w); float s = (float) Math.invsqrt(Math.fma(q2x, q2x, Math.fma(q2y, q2y, Math.fma(q2z, q2z, q2w * q2w)))); q2x *= s; q2y *= s; q2z *= s; q2w *= s; alphaN = alphaN + alphaN; } else { q1x = Math.fma(scale0, q1x, scale1 * q2x); q1y = Math.fma(scale0, q1y, scale1 * q2y); q1z = Math.fma(scale0, q1z, scale1 * q2z); q1w = Math.fma(scale0, q1w, scale1 * q2w); float s = (float) Math.invsqrt(Math.fma(q1x, q1x, Math.fma(q1y, q1y, Math.fma(q1z, q1z, q1w * q1w)))); q1x *= s; q1y *= s; q1z *= s; q1w *= s; alphaN = alphaN + alphaN - 1.0; } dot = Math.fma(q1x, q2x, Math.fma(q1y, q2y, Math.fma(q1z, q2z, q1w * q2w))); absDot = Math.abs(dot); } double scale0 = 1.0 - alphaN; double scale1 = dot >= 0.0 ? alphaN : -alphaN; double resX = Math.fma(scale0, q1x, scale1 * q2x); double resY = Math.fma(scale0, q1y, scale1 * q2y); double resZ = Math.fma(scale0, q1z, scale1 * q2z); double resW = Math.fma(scale0, q1w, scale1 * q2w); double s = Math.invsqrt(Math.fma(resX, resX, Math.fma(resY, resY, Math.fma(resZ, resZ, resW * resW)))); dest.x = resX * s; dest.y = resY * s; dest.z = resZ * s; dest.w = resW * s; return dest; } /** * Compute linear (non-spherical) interpolations of this and the given quaternion q * iteratively and store the result in this. *

* This method performs a series of small-step nlerp interpolations to avoid doing a costly spherical linear interpolation, like * {@link #slerp(Quaterniondc, double, Quaterniond) slerp}, * by subdividing the rotation arc between this and q via non-spherical linear interpolations as long as * the absolute dot product of this and q is greater than the given dotThreshold parameter. *

* Thanks to @theagentd at http://www.java-gaming.org/ for providing the code. * * @param q * the other quaternion * @param alpha * the interpolation factor, between 0.0 and 1.0 * @param dotThreshold * the threshold for the dot product of this and q above which this method performs another iteration * of a small-step linear interpolation * @return this */ public Quaterniond nlerpIterative(Quaterniondc q, double alpha, double dotThreshold) { return nlerpIterative(q, alpha, dotThreshold, this); } /** * Interpolate between all of the quaternions given in qs via iterative non-spherical linear interpolation using the * specified interpolation factors weights, and store the result in dest. *

* This method will interpolate between each two successive quaternions via {@link #nlerpIterative(Quaterniondc, double, double)} * using their relative interpolation weights. *

* Reference: http://gamedev.stackexchange.com/ * * @param qs * the quaternions to interpolate over * @param weights * the weights of each individual quaternion in qs * @param dotThreshold * the threshold for the dot product of each two interpolated quaternions above which {@link #nlerpIterative(Quaterniondc, double, double)} performs another iteration * of a small-step linear interpolation * @param dest * will hold the result * @return dest */ public static Quaterniond nlerpIterative(Quaterniondc[] qs, double[] weights, double dotThreshold, Quaterniond dest) { dest.set(qs[0]); double w = weights[0]; for (int i = 1; i < qs.length; i++) { double w0 = w; double w1 = weights[i]; double rw1 = w1 / (w0 + w1); w += w1; dest.nlerpIterative(qs[i], rw1, dotThreshold); } return dest; } /** * Apply a rotation to this quaternion that maps the given direction to the positive Z axis. *

* Because there are multiple possibilities for such a rotation, this method will choose the one that ensures the given up direction to remain * parallel to the plane spanned by the up and dir vectors. *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be Q * R. So when transforming a * vector v with the new quaternion by using Q * R * v, the * rotation added by this method will be applied first! *

* Reference: http://answers.unity3d.com * * @see #lookAlong(double, double, double, double, double, double, Quaterniond) * * @param dir * the direction to map to the positive Z axis * @param up * the vector which will be mapped to a vector parallel to the plane * spanned by the given dir and up * @return this */ public Quaterniond lookAlong(Vector3dc dir, Vector3dc up) { return lookAlong(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), this); } public Quaterniond lookAlong(Vector3dc dir, Vector3dc up, Quaterniond dest) { return lookAlong(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), dest); } /** * Apply a rotation to this quaternion that maps the given direction to the positive Z axis. *

* Because there are multiple possibilities for such a rotation, this method will choose the one that ensures the given up direction to remain * parallel to the plane spanned by the up and dir vectors. *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be Q * R. So when transforming a * vector v with the new quaternion by using Q * R * v, the * rotation added by this method will be applied first! *

* Reference: http://answers.unity3d.com * * @see #lookAlong(double, double, double, double, double, double, Quaterniond) * * @param dirX * the x-coordinate of the direction to look along * @param dirY * the y-coordinate of the direction to look along * @param dirZ * the z-coordinate of the direction to look along * @param upX * the x-coordinate of the up vector * @param upY * the y-coordinate of the up vector * @param upZ * the z-coordinate of the up vector * @return this */ public Quaterniond lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ) { return lookAlong(dirX, dirY, dirZ, upX, upY, upZ, this); } public Quaterniond lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Quaterniond dest) { // Normalize direction double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ); double dirnX = -dirX * invDirLength; double dirnY = -dirY * invDirLength; double dirnZ = -dirZ * invDirLength; // left = up x dir double leftX, leftY, leftZ; leftX = upY * dirnZ - upZ * dirnY; leftY = upZ * dirnX - upX * dirnZ; leftZ = upX * dirnY - upY * dirnX; // normalize left double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ); leftX *= invLeftLength; leftY *= invLeftLength; leftZ *= invLeftLength; // up = direction x left double upnX = dirnY * leftZ - dirnZ * leftY; double upnY = dirnZ * leftX - dirnX * leftZ; double upnZ = dirnX * leftY - dirnY * leftX; /* Convert orthonormal basis vectors to quaternion */ double x, y, z, w; double t; double tr = leftX + upnY + dirnZ; if (tr >= 0.0) { t = Math.sqrt(tr + 1.0); w = t * 0.5; t = 0.5 / t; x = (dirnY - upnZ) * t; y = (leftZ - dirnX) * t; z = (upnX - leftY) * t; } else { if (leftX > upnY && leftX > dirnZ) { t = Math.sqrt(1.0 + leftX - upnY - dirnZ); x = t * 0.5; t = 0.5 / t; y = (leftY + upnX) * t; z = (dirnX + leftZ) * t; w = (dirnY - upnZ) * t; } else if (upnY > dirnZ) { t = Math.sqrt(1.0 + upnY - leftX - dirnZ); y = t * 0.5; t = 0.5 / t; x = (leftY + upnX) * t; z = (upnZ + dirnY) * t; w = (leftZ - dirnX) * t; } else { t = Math.sqrt(1.0 + dirnZ - leftX - upnY); z = t * 0.5; t = 0.5 / t; x = (dirnX + leftZ) * t; y = (upnZ + dirnY) * t; w = (upnX - leftY) * t; } } /* Multiply */ return dest.set(Math.fma(this.w, x, Math.fma(this.x, w, Math.fma(this.y, z, -this.z * y))), Math.fma(this.w, y, Math.fma(-this.x, z, Math.fma(this.y, w, this.z * x))), Math.fma(this.w, z, Math.fma(this.x, y, Math.fma(-this.y, x, this.z * w))), Math.fma(this.w, w, Math.fma(-this.x, x, Math.fma(-this.y, y, -this.z * z)))); } /** * Return a string representation of this quaternion. *

* This method creates a new {@link DecimalFormat} on every invocation with the format string "0.000E0;-". * * @return the string representation */ public String toString() { return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT)); } /** * Return a string representation of this quaternion by formatting the components with the given {@link NumberFormat}. * * @param formatter * the {@link NumberFormat} used to format the quaternion components with * @return the string representation */ public String toString(NumberFormat formatter) { return "(" + Runtime.format(x, formatter) + " " + Runtime.format(y, formatter) + " " + Runtime.format(z, formatter) + " " + Runtime.format(w, formatter) + ")"; } public void writeExternal(ObjectOutput out) throws IOException { out.writeDouble(x); out.writeDouble(y); out.writeDouble(z); out.writeDouble(w); } public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { x = in.readDouble(); y = in.readDouble(); z = in.readDouble(); w = in.readDouble(); } public int hashCode() { final int prime = 31; int result = 1; long temp; temp = Double.doubleToLongBits(w); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(x); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(y); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(z); result = prime * result + (int) (temp ^ (temp >>> 32)); return result; } public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Quaterniond other = (Quaterniond) obj; if (Double.doubleToLongBits(w) != Double.doubleToLongBits(other.w)) return false; if (Double.doubleToLongBits(x) != Double.doubleToLongBits(other.x)) return false; if (Double.doubleToLongBits(y) != Double.doubleToLongBits(other.y)) return false; if (Double.doubleToLongBits(z) != Double.doubleToLongBits(other.z)) return false; return true; } /** * Compute the difference between this and the other quaternion * and store the result in this. *

* The difference is the rotation that has to be applied to get from * this rotation to other. If T is this, Q * is other and D is the computed difference, then the following equation holds: *

* T * D = Q *

* It is defined as: D = T^-1 * Q, where T^-1 denotes the {@link #invert() inverse} of T. * * @param other * the other quaternion * @return this */ public Quaterniond difference(Quaterniondc other) { return difference(other, this); } public Quaterniond difference(Quaterniondc other, Quaterniond dest) { double invNorm = 1.0 / lengthSquared(); double x = -this.x * invNorm; double y = -this.y * invNorm; double z = -this.z * invNorm; double w = this.w * invNorm; dest.set(Math.fma(w, other.x(), Math.fma(x, other.w(), Math.fma(y, other.z(), -z * other.y()))), Math.fma(w, other.y(), Math.fma(-x, other.z(), Math.fma(y, other.w(), z * other.x()))), Math.fma(w, other.z(), Math.fma(x, other.y(), Math.fma(-y, other.x(), z * other.w()))), Math.fma(w, other.w(), Math.fma(-x, other.x(), Math.fma(-y, other.y(), -z * other.z())))); return dest; } /** * Set this quaternion to a rotation that rotates the fromDir vector to point along toDir. *

* Since there can be multiple possible rotations, this method chooses the one with the shortest arc. *

* Reference: stackoverflow.com * * @param fromDirX * the x-coordinate of the direction to rotate into the destination direction * @param fromDirY * the y-coordinate of the direction to rotate into the destination direction * @param fromDirZ * the z-coordinate of the direction to rotate into the destination direction * @param toDirX * the x-coordinate of the direction to rotate to * @param toDirY * the y-coordinate of the direction to rotate to * @param toDirZ * the z-coordinate of the direction to rotate to * @return this */ public Quaterniond rotationTo(double fromDirX, double fromDirY, double fromDirZ, double toDirX, double toDirY, double toDirZ) { double fn = Math.invsqrt(Math.fma(fromDirX, fromDirX, Math.fma(fromDirY, fromDirY, fromDirZ * fromDirZ))); double tn = Math.invsqrt(Math.fma(toDirX, toDirX, Math.fma(toDirY, toDirY, toDirZ * toDirZ))); double fx = fromDirX * fn, fy = fromDirY * fn, fz = fromDirZ * fn; double tx = toDirX * tn, ty = toDirY * tn, tz = toDirZ * tn; double dot = fx * tx + fy * ty + fz * tz; double x, y, z, w; if (dot < -1.0 + 1E-6) { x = fy; y = -fx; z = 0.0; w = 0.0; if (x * x + y * y == 0.0) { x = 0.0; y = fz; z = -fy; w = 0.0; } this.x = x; this.y = y; this.z = z; this.w = 0; } else { double sd2 = Math.sqrt((1.0 + dot) * 2.0); double isd2 = 1.0 / sd2; double cx = fy * tz - fz * ty; double cy = fz * tx - fx * tz; double cz = fx * ty - fy * tx; x = cx * isd2; y = cy * isd2; z = cz * isd2; w = sd2 * 0.5; double n2 = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, Math.fma(z, z, w * w)))); this.x = x * n2; this.y = y * n2; this.z = z * n2; this.w = w * n2; } return this; } /** * Set this quaternion to a rotation that rotates the fromDir vector to point along toDir. *

* Because there can be multiple possible rotations, this method chooses the one with the shortest arc. * * @see #rotationTo(double, double, double, double, double, double) * * @param fromDir * the starting direction * @param toDir * the destination direction * @return this */ public Quaterniond rotationTo(Vector3dc fromDir, Vector3dc toDir) { return rotationTo(fromDir.x(), fromDir.y(), fromDir.z(), toDir.x(), toDir.y(), toDir.z()); } public Quaterniond rotateTo(double fromDirX, double fromDirY, double fromDirZ, double toDirX, double toDirY, double toDirZ, Quaterniond dest) { double fn = Math.invsqrt(Math.fma(fromDirX, fromDirX, Math.fma(fromDirY, fromDirY, fromDirZ * fromDirZ))); double tn = Math.invsqrt(Math.fma(toDirX, toDirX, Math.fma(toDirY, toDirY, toDirZ * toDirZ))); double fx = fromDirX * fn, fy = fromDirY * fn, fz = fromDirZ * fn; double tx = toDirX * tn, ty = toDirY * tn, tz = toDirZ * tn; double dot = fx * tx + fy * ty + fz * tz; double x, y, z, w; if (dot < -1.0 + 1E-6) { x = fy; y = -fx; z = 0.0; w = 0.0; if (x * x + y * y == 0.0) { x = 0.0; y = fz; z = -fy; w = 0.0; } } else { double sd2 = Math.sqrt((1.0 + dot) * 2.0); double isd2 = 1.0 / sd2; double cx = fy * tz - fz * ty; double cy = fz * tx - fx * tz; double cz = fx * ty - fy * tx; x = cx * isd2; y = cy * isd2; z = cz * isd2; w = sd2 * 0.5; double n2 = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, Math.fma(z, z, w * w)))); x *= n2; y *= n2; z *= n2; w *= n2; } /* Multiply */ return dest.set(Math.fma(this.w, x, Math.fma(this.x, w, Math.fma(this.y, z, -this.z * y))), Math.fma(this.w, y, Math.fma(-this.x, z, Math.fma(this.y, w, this.z * x))), Math.fma(this.w, z, Math.fma(this.x, y, Math.fma(-this.y, x, this.z * w))), Math.fma(this.w, w, Math.fma(-this.x, x, Math.fma(-this.y, y, -this.z * z)))); } /** * Set this {@link Quaterniond} to a rotation of the given angle in radians about the supplied * axis, all of which are specified via the {@link AxisAngle4f}. * * @see #rotationAxis(double, double, double, double) * * @param axisAngle * the {@link AxisAngle4f} giving the rotation angle in radians and the axis to rotate about * @return this */ public Quaterniond rotationAxis(AxisAngle4f axisAngle) { return rotationAxis(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z); } /** * Set this quaternion to a rotation of the given angle in radians about the supplied axis. * * @param angle * the rotation angle in radians * @param axisX * the x-coordinate of the rotation axis * @param axisY * the y-coordinate of the rotation axis * @param axisZ * the z-coordinate of the rotation axis * @return this */ public Quaterniond rotationAxis(double angle, double axisX, double axisY, double axisZ) { double hangle = angle / 2.0; double sinAngle = Math.sin(hangle); double invVLength = Math.invsqrt(axisX * axisX + axisY * axisY + axisZ * axisZ); return set(axisX * invVLength * sinAngle, axisY * invVLength * sinAngle, axisZ * invVLength * sinAngle, Math.cosFromSin(sinAngle, hangle)); } /** * Set this quaternion to represent a rotation of the given radians about the x axis. * * @param angle * the angle in radians to rotate about the x axis * @return this */ public Quaterniond rotationX(double angle) { double sin = Math.sin(angle * 0.5); double cos = Math.cosFromSin(sin, angle * 0.5); return set(sin, 0, cos, 0); } /** * Set this quaternion to represent a rotation of the given radians about the y axis. * * @param angle * the angle in radians to rotate about the y axis * @return this */ public Quaterniond rotationY(double angle) { double sin = Math.sin(angle * 0.5); double cos = Math.cosFromSin(sin, angle * 0.5); return set(0, sin, 0, cos); } /** * Set this quaternion to represent a rotation of the given radians about the z axis. * * @param angle * the angle in radians to rotate about the z axis * @return this */ public Quaterniond rotationZ(double angle) { double sin = Math.sin(angle * 0.5); double cos = Math.cosFromSin(sin, angle * 0.5); return set(0, 0, sin, cos); } /** * Apply a rotation to this that rotates the fromDir vector to point along toDir. *

* Since there can be multiple possible rotations, this method chooses the one with the shortest arc. *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be Q * R. So when transforming a * vector v with the new quaternion by using Q * R * v, the * rotation added by this method will be applied first! * * @see #rotateTo(double, double, double, double, double, double, Quaterniond) * * @param fromDirX * the x-coordinate of the direction to rotate into the destination direction * @param fromDirY * the y-coordinate of the direction to rotate into the destination direction * @param fromDirZ * the z-coordinate of the direction to rotate into the destination direction * @param toDirX * the x-coordinate of the direction to rotate to * @param toDirY * the y-coordinate of the direction to rotate to * @param toDirZ * the z-coordinate of the direction to rotate to * @return this */ public Quaterniond rotateTo(double fromDirX, double fromDirY, double fromDirZ, double toDirX, double toDirY, double toDirZ) { return rotateTo(fromDirX, fromDirY, fromDirZ, toDirX, toDirY, toDirZ, this); } public Quaterniond rotateTo(Vector3dc fromDir, Vector3dc toDir, Quaterniond dest) { return rotateTo(fromDir.x(), fromDir.y(), fromDir.z(), toDir.x(), toDir.y(), toDir.z(), dest); } /** * Apply a rotation to this that rotates the fromDir vector to point along toDir. *

* Because there can be multiple possible rotations, this method chooses the one with the shortest arc. *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be Q * R. So when transforming a * vector v with the new quaternion by using Q * R * v, the * rotation added by this method will be applied first! * * @see #rotateTo(double, double, double, double, double, double, Quaterniond) * * @param fromDir * the starting direction * @param toDir * the destination direction * @return this */ public Quaterniond rotateTo(Vector3dc fromDir, Vector3dc toDir) { return rotateTo(fromDir.x(), fromDir.y(), fromDir.z(), toDir.x(), toDir.y(), toDir.z(), this); } /** * Apply a rotation to this quaternion rotating the given radians about the x axis. *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be Q * R. So when transforming a * vector v with the new quaternion by using Q * R * v, the * rotation added by this method will be applied first! * * @param angle * the angle in radians to rotate about the x axis * @return this */ public Quaterniond rotateX(double angle) { return rotateX(angle, this); } public Quaterniond rotateX(double angle, Quaterniond dest) { double sin = Math.sin(angle * 0.5); double cos = Math.cosFromSin(sin, angle * 0.5); return dest.set(w * sin + x * cos, y * cos + z * sin, z * cos - y * sin, w * cos - x * sin); } /** * Apply a rotation to this quaternion rotating the given radians about the y axis. *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be Q * R. So when transforming a * vector v with the new quaternion by using Q * R * v, the * rotation added by this method will be applied first! * * @param angle * the angle in radians to rotate about the y axis * @return this */ public Quaterniond rotateY(double angle) { return rotateY(angle, this); } public Quaterniond rotateY(double angle, Quaterniond dest) { double sin = Math.sin(angle * 0.5); double cos = Math.cosFromSin(sin, angle * 0.5); return dest.set(x * cos - z * sin, w * sin + y * cos, x * sin + z * cos, w * cos - y * sin); } /** * Apply a rotation to this quaternion rotating the given radians about the z axis. *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be Q * R. So when transforming a * vector v with the new quaternion by using Q * R * v, the * rotation added by this method will be applied first! * * @param angle * the angle in radians to rotate about the z axis * @return this */ public Quaterniond rotateZ(double angle) { return rotateZ(angle, this); } public Quaterniond rotateZ(double angle, Quaterniond dest) { double sin = Math.sin(angle * 0.5); double cos = Math.cosFromSin(sin, angle * 0.5); return dest.set(x * cos + y * sin, y * cos - x * sin, w * sin + z * cos, w * cos - z * sin); } /** * Apply a rotation to this quaternion rotating the given radians about the local x axis. *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be R * Q. So when transforming a * vector v with the new quaternion by using R * Q * v, the * rotation represented by this will be applied first! * * @param angle * the angle in radians to rotate about the local x axis * @return this */ public Quaterniond rotateLocalX(double angle) { return rotateLocalX(angle, this); } public Quaterniond rotateLocalX(double angle, Quaterniond dest) { double hangle = angle * 0.5; double s = Math.sin(hangle); double c = Math.cosFromSin(s, hangle); dest.set(c * x + s * w, c * y - s * z, c * z + s * y, c * w - s * x); return dest; } /** * Apply a rotation to this quaternion rotating the given radians about the local y axis. *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be R * Q. So when transforming a * vector v with the new quaternion by using R * Q * v, the * rotation represented by this will be applied first! * * @param angle * the angle in radians to rotate about the local y axis * @return this */ public Quaterniond rotateLocalY(double angle) { return rotateLocalY(angle, this); } public Quaterniond rotateLocalY(double angle, Quaterniond dest) { double hangle = angle * 0.5; double s = Math.sin(hangle); double c = Math.cosFromSin(s, hangle); dest.set(c * x + s * z, c * y + s * w, c * z - s * x, c * w - s * y); return dest; } /** * Apply a rotation to this quaternion rotating the given radians about the local z axis. *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be R * Q. So when transforming a * vector v with the new quaternion by using R * Q * v, the * rotation represented by this will be applied first! * * @param angle * the angle in radians to rotate about the local z axis * @return this */ public Quaterniond rotateLocalZ(double angle) { return rotateLocalZ(angle, this); } public Quaterniond rotateLocalZ(double angle, Quaterniond dest) { double hangle = angle * 0.5; double s = Math.sin(hangle); double c = Math.cosFromSin(s, hangle); dest.set(c * x - s * y, c * y + s * x, c * z + s * w, c * w - s * z); return dest; } /** * Apply a rotation to this quaternion rotating the given radians about the cartesian base unit axes, * called the euler angles using rotation sequence XYZ. *

* This method is equivalent to calling: rotateX(angleX).rotateY(angleY).rotateZ(angleZ) *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be Q * R. So when transforming a * vector v with the new quaternion by using Q * R * v, the * rotation added by this method will be applied first! * * @param angleX * the angle in radians to rotate about the x axis * @param angleY * the angle in radians to rotate about the y axis * @param angleZ * the angle in radians to rotate about the z axis * @return this */ public Quaterniond rotateXYZ(double angleX, double angleY, double angleZ) { return rotateXYZ(angleX, angleY, angleZ, this); } public Quaterniond rotateXYZ(double angleX, double angleY, double angleZ, Quaterniond dest) { double sx = Math.sin(angleX * 0.5); double cx = Math.cosFromSin(sx, angleX * 0.5); double sy = Math.sin(angleY * 0.5); double cy = Math.cosFromSin(sy, angleY * 0.5); double sz = Math.sin(angleZ * 0.5); double cz = Math.cosFromSin(sz, angleZ * 0.5); double cycz = cy * cz; double sysz = sy * sz; double sycz = sy * cz; double cysz = cy * sz; double w = cx*cycz - sx*sysz; double x = sx*cycz + cx*sysz; double y = cx*sycz - sx*cysz; double z = cx*cysz + sx*sycz; // right-multiply return dest.set(Math.fma(this.w, x, Math.fma(this.x, w, Math.fma(this.y, z, -this.z * y))), Math.fma(this.w, y, Math.fma(-this.x, z, Math.fma(this.y, w, this.z * x))), Math.fma(this.w, z, Math.fma(this.x, y, Math.fma(-this.y, x, this.z * w))), Math.fma(this.w, w, Math.fma(-this.x, x, Math.fma(-this.y, y, -this.z * z)))); } /** * Apply a rotation to this quaternion rotating the given radians about the cartesian base unit axes, * called the euler angles, using the rotation sequence ZYX. *

* This method is equivalent to calling: rotateZ(angleZ).rotateY(angleY).rotateX(angleX) *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be Q * R. So when transforming a * vector v with the new quaternion by using Q * R * v, the * rotation added by this method will be applied first! * * @param angleZ * the angle in radians to rotate about the z axis * @param angleY * the angle in radians to rotate about the y axis * @param angleX * the angle in radians to rotate about the x axis * @return this */ public Quaterniond rotateZYX(double angleZ, double angleY, double angleX) { return rotateZYX(angleZ, angleY, angleX, this); } public Quaterniond rotateZYX(double angleZ, double angleY, double angleX, Quaterniond dest) { double sx = Math.sin(angleX * 0.5); double cx = Math.cosFromSin(sx, angleX * 0.5); double sy = Math.sin(angleY * 0.5); double cy = Math.cosFromSin(sy, angleY * 0.5); double sz = Math.sin(angleZ * 0.5); double cz = Math.cosFromSin(sz, angleZ * 0.5); double cycz = cy * cz; double sysz = sy * sz; double sycz = sy * cz; double cysz = cy * sz; double w = cx*cycz + sx*sysz; double x = sx*cycz - cx*sysz; double y = cx*sycz + sx*cysz; double z = cx*cysz - sx*sycz; // right-multiply return dest.set(Math.fma(this.w, x, Math.fma(this.x, w, Math.fma(this.y, z, -this.z * y))), Math.fma(this.w, y, Math.fma(-this.x, z, Math.fma(this.y, w, this.z * x))), Math.fma(this.w, z, Math.fma(this.x, y, Math.fma(-this.y, x, this.z * w))), Math.fma(this.w, w, Math.fma(-this.x, x, Math.fma(-this.y, y, -this.z * z)))); } /** * Apply a rotation to this quaternion rotating the given radians about the cartesian base unit axes, * called the euler angles, using the rotation sequence YXZ. *

* This method is equivalent to calling: rotateY(angleY).rotateX(angleX).rotateZ(angleZ) *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be Q * R. So when transforming a * vector v with the new quaternion by using Q * R * v, the * rotation added by this method will be applied first! * * @param angleY * the angle in radians to rotate about the y axis * @param angleX * the angle in radians to rotate about the x axis * @param angleZ * the angle in radians to rotate about the z axis * @return this */ public Quaterniond rotateYXZ(double angleY, double angleX, double angleZ) { return rotateYXZ(angleY, angleX, angleZ, this); } public Quaterniond rotateYXZ(double angleY, double angleX, double angleZ, Quaterniond dest) { double sx = Math.sin(angleX * 0.5); double cx = Math.cosFromSin(sx, angleX * 0.5); double sy = Math.sin(angleY * 0.5); double cy = Math.cosFromSin(sy, angleY * 0.5); double sz = Math.sin(angleZ * 0.5); double cz = Math.cosFromSin(sz, angleZ * 0.5); double yx = cy * sx; double yy = sy * cx; double yz = sy * sx; double yw = cy * cx; double x = yx * cz + yy * sz; double y = yy * cz - yx * sz; double z = yw * sz - yz * cz; double w = yw * cz + yz * sz; // right-multiply return dest.set(Math.fma(this.w, x, Math.fma(this.x, w, Math.fma(this.y, z, -this.z * y))), Math.fma(this.w, y, Math.fma(-this.x, z, Math.fma(this.y, w, this.z * x))), Math.fma(this.w, z, Math.fma(this.x, y, Math.fma(-this.y, x, this.z * w))), Math.fma(this.w, w, Math.fma(-this.x, x, Math.fma(-this.y, y, -this.z * z)))); } public Vector3d getEulerAnglesXYZ(Vector3d eulerAngles) { eulerAngles.x = Math.atan2(x * w - y * z, 0.5 - x * x - y * y); eulerAngles.y = Math.safeAsin(2.0 * (x * z + y * w)); eulerAngles.z = Math.atan2(z * w - x * y, 0.5 - y * y - z * z); return eulerAngles; } public Vector3d getEulerAnglesZYX(Vector3d eulerAngles) { eulerAngles.x = Math.atan2(y * z + w * x, 0.5 - x * x + y * y); eulerAngles.y = Math.safeAsin(-2.0 * (x * z - w * y)); eulerAngles.z = Math.atan2(x * y + w * z, 0.5 - y * y - z * z); return eulerAngles; } public Quaterniond rotateAxis(double angle, double axisX, double axisY, double axisZ, Quaterniond dest) { double hangle = angle / 2.0; double sinAngle = Math.sin(hangle); double invVLength = Math.invsqrt(Math.fma(axisX, axisX, Math.fma(axisY, axisY, axisZ * axisZ))); double rx = axisX * invVLength * sinAngle; double ry = axisY * invVLength * sinAngle; double rz = axisZ * invVLength * sinAngle; double rw = Math.cosFromSin(sinAngle, hangle); return dest.set(Math.fma(this.w, rx, Math.fma(this.x, rw, Math.fma(this.y, rz, -this.z * ry))), Math.fma(this.w, ry, Math.fma(-this.x, rz, Math.fma(this.y, rw, this.z * rx))), Math.fma(this.w, rz, Math.fma(this.x, ry, Math.fma(-this.y, rx, this.z * rw))), Math.fma(this.w, rw, Math.fma(-this.x, rx, Math.fma(-this.y, ry, -this.z * rz)))); } public Quaterniond rotateAxis(double angle, Vector3dc axis, Quaterniond dest) { return rotateAxis(angle, axis.x(), axis.y(), axis.z(), dest); } /** * Apply a rotation to this quaternion rotating the given radians about the specified axis. *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be Q * R. So when transforming a * vector v with the new quaternion by using Q * R * v, the * rotation added by this method will be applied first! * * @see #rotateAxis(double, double, double, double, Quaterniond) * * @param angle * the angle in radians to rotate about the specified axis * @param axis * the rotation axis * @return this */ public Quaterniond rotateAxis(double angle, Vector3dc axis) { return rotateAxis(angle, axis.x(), axis.y(), axis.z(), this); } /** * Apply a rotation to this quaternion rotating the given radians about the specified axis. *

* If Q is this quaternion and R the quaternion representing the * specified rotation, then the new quaternion will be Q * R. So when transforming a * vector v with the new quaternion by using Q * R * v, the * rotation added by this method will be applied first! * * @see #rotateAxis(double, double, double, double, Quaterniond) * * @param angle * the angle in radians to rotate about the specified axis * @param axisX * the x coordinate of the rotation axis * @param axisY * the y coordinate of the rotation axis * @param axisZ * the z coordinate of the rotation axis * @return this */ public Quaterniond rotateAxis(double angle, double axisX, double axisY, double axisZ) { return rotateAxis(angle, axisX, axisY, axisZ, this); } public Vector3d positiveX(Vector3d dir) { double invNorm = 1.0 / lengthSquared(); double nx = -x * invNorm; double ny = -y * invNorm; double nz = -z * invNorm; double nw = w * invNorm; double dy = ny + ny; double dz = nz + nz; dir.x = -ny * dy - nz * dz + 1.0; dir.y = nx * dy + nw * dz; dir.z = nx * dz - nw * dy; return dir; } public Vector3d normalizedPositiveX(Vector3d dir) { double dy = y + y; double dz = z + z; dir.x = -y * dy - z * dz + 1.0; dir.y = x * dy - w * dz; dir.z = x * dz + w * dy; return dir; } public Vector3d positiveY(Vector3d dir) { double invNorm = 1.0 / lengthSquared(); double nx = -x * invNorm; double ny = -y * invNorm; double nz = -z * invNorm; double nw = w * invNorm; double dx = nx + nx; double dy = ny + ny; double dz = nz + nz; dir.x = nx * dy - nw * dz; dir.y = -nx * dx - nz * dz + 1.0; dir.z = ny * dz + nw * dx; return dir; } public Vector3d normalizedPositiveY(Vector3d dir) { double dx = x + x; double dy = y + y; double dz = z + z; dir.x = x * dy + w * dz; dir.y = -x * dx - z * dz + 1.0; dir.z = y * dz - w * dx; return dir; } public Vector3d positiveZ(Vector3d dir) { double invNorm = 1.0 / lengthSquared(); double nx = -x * invNorm; double ny = -y * invNorm; double nz = -z * invNorm; double nw = w * invNorm; double dx = nx + nx; double dy = ny + ny; double dz = nz + nz; dir.x = nx * dz + nw * dy; dir.y = ny * dz - nw * dx; dir.z = -nx * dx - ny * dy + 1.0; return dir; } public Vector3d normalizedPositiveZ(Vector3d dir) { double dx = x + x; double dy = y + y; double dz = z + z; dir.x = x * dz - w * dy; dir.y = y * dz + w * dx; dir.z = -x * dx - y * dy + 1.0; return dir; } /** * Conjugate this by the given quaternion q by computing q * this * q^-1. * * @param q * the {@link Quaterniondc} to conjugate this by * @return this */ public Quaterniond conjugateBy(Quaterniondc q) { return conjugateBy(q, this); } /** * Conjugate this by the given quaternion q by computing q * this * q^-1 * and store the result into dest. * * @param q * the {@link Quaterniondc} to conjugate this by * @param dest * will hold the result * @return dest */ public Quaterniond conjugateBy(Quaterniondc q, Quaterniond dest) { double invNorm = 1.0 / q.lengthSquared(); double qix = -q.x() * invNorm, qiy = -q.y() * invNorm, qiz = -q.z() * invNorm, qiw = q.w() * invNorm; double qpx = Math.fma(q.w(), x, Math.fma(q.x(), w, Math.fma(q.y(), z, -q.z() * y))); double qpy = Math.fma(q.w(), y, Math.fma(-q.x(), z, Math.fma(q.y(), w, q.z() * x))); double qpz = Math.fma(q.w(), z, Math.fma(q.x(), y, Math.fma(-q.y(), x, q.z() * w))); double qpw = Math.fma(q.w(), w, Math.fma(-q.x(), x, Math.fma(-q.y(), y, -q.z() * z))); return dest.set(Math.fma(qpw, qix, Math.fma(qpx, qiw, Math.fma(qpy, qiz, -qpz * qiy))), Math.fma(qpw, qiy, Math.fma(-qpx, qiz, Math.fma(qpy, qiw, qpz * qix))), Math.fma(qpw, qiz, Math.fma(qpx, qiy, Math.fma(-qpy, qix, qpz * qiw))), Math.fma(qpw, qiw, Math.fma(-qpx, qix, Math.fma(-qpy, qiy, -qpz * qiz)))); } public boolean isFinite() { return Math.isFinite(x) && Math.isFinite(y) && Math.isFinite(z) && Math.isFinite(w); } public boolean equals(Quaterniondc q, double delta) { if (this == q) return true; if (q == null) return false; if (!(q instanceof Quaterniondc)) return false; if (!Runtime.equals(x, q.x(), delta)) return false; if (!Runtime.equals(y, q.y(), delta)) return false; if (!Runtime.equals(z, q.z(), delta)) return false; if (!Runtime.equals(w, q.w(), delta)) return false; return true; } public boolean equals(double x, double y, double z, double w) { if (Double.doubleToLongBits(this.x) != Double.doubleToLongBits(x)) return false; if (Double.doubleToLongBits(this.y) != Double.doubleToLongBits(y)) return false; if (Double.doubleToLongBits(this.z) != Double.doubleToLongBits(z)) return false; if (Double.doubleToLongBits(this.w) != Double.doubleToLongBits(w)) return false; return true; } public Object clone() throws CloneNotSupportedException { return super.clone(); } }