/*
* The MIT License
*
* Copyright (c) 2020-2021 JOML
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.jozufozu.flywheel.repack.joml;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.util.*;
/**
* Interface to a read-only view of a 2x2 matrix of single-precision floats.
*
* @author Joseph Burton
*/
public interface Matrix2fc {
/**
* Return the value of the matrix element at column 0 and row 0.
*
* @return the value of the matrix element
*/
float m00();
/**
* Return the value of the matrix element at column 0 and row 1.
*
* @return the value of the matrix element
*/
float m01();
/**
* Return the value of the matrix element at column 1 and row 0.
*
* @return the value of the matrix element
*/
float m10();
/**
* Return the value of the matrix element at column 1 and row 1.
*
* @return the value of the matrix element
*/
float m11();
/**
* Multiply this matrix by the supplied right
matrix and store the result in dest
.
*
* If M
is this
matrix and R
the right
matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
, the
* transformation of the right matrix will be applied first!
*
* @param right
* the right operand of the matrix multiplication
* @param dest
* will hold the result
* @return dest
*/
Matrix2f mul(Matrix2fc right, Matrix2f dest);
/**
* Pre-multiply this matrix by the supplied left
matrix and store the result in dest
.
*
* If M
is this
matrix and L
the left
matrix,
* then the new matrix will be L * M
. So when transforming a
* vector v
with the new matrix by using L * M * v
, the
* transformation of this
matrix will be applied first!
*
* @param left
* the left operand of the matrix multiplication
* @param dest
* the destination matrix, which will hold the result
* @return dest
*/
Matrix2f mulLocal(Matrix2fc left, Matrix2f dest);
/**
* Return the determinant of this matrix.
*
* @return the determinant
*/
float determinant();
/**
* Invert the this
matrix and store the result in dest
.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix2f invert(Matrix2f dest);
/**
* Transpose this
matrix and store the result in dest
.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix2f transpose(Matrix2f dest);
/**
* Get the current values of this
matrix and store them into
* dest
.
*
* @param dest
* the destination matrix
* @return the passed in destination
*/
Matrix2f get(Matrix2f dest);
/**
* Get the current values of this
matrix and store them as
* the rotational component of dest
. All other values of dest
will
* be set to 0.
*
* @see Matrix3x2f#set(Matrix2fc)
*
* @param dest
* the destination matrix
* @return the passed in destination
*/
Matrix3x2f get(Matrix3x2f dest);
/**
* Get the current values of this
matrix and store them as
* the rotational component of dest
. All other values of dest
will
* be set to identity.
*
* @see Matrix3f#set(Matrix2fc)
*
* @param dest
* the destination matrix
* @return the passed in destination
*/
Matrix3f get(Matrix3f dest);
/**
* Get the angle of the rotation component of this
matrix.
*
* This method assumes that there is a valid rotation to be returned, i.e. that
* atan2(-m10, m00) == atan2(m01, m11)
.
*
* @return the angle
*/
float getRotation();
/**
* Store this matrix in column-major order into the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}.
*
* This method will not increment the position of the given FloatBuffer. *
* In order to specify the offset into the FloatBuffer at which * the matrix is stored, use {@link #get(int, FloatBuffer)}, taking * the absolute position as parameter. * * @see #get(int, FloatBuffer) * * @param buffer * will receive the values of this matrix in column-major order at its current position * @return the passed in buffer */ FloatBuffer get(FloatBuffer buffer); /** * Store this matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified * absolute buffer position/index. *
* This method will not increment the position of the given FloatBuffer. * * @param index * the absolute position into the FloatBuffer * @param buffer * will receive the values of this matrix in column-major order * @return the passed in buffer */ FloatBuffer get(int index, FloatBuffer buffer); /** * Store this matrix in column-major order into the supplied {@link ByteBuffer} at the current * buffer {@link ByteBuffer#position() position}. *
* This method will not increment the position of the given ByteBuffer. *
* In order to specify the offset into the ByteBuffer at which * the matrix is stored, use {@link #get(int, ByteBuffer)}, taking * the absolute position as parameter. * * @see #get(int, ByteBuffer) * * @param buffer * will receive the values of this matrix in column-major order at its current position * @return the passed in buffer */ ByteBuffer get(ByteBuffer buffer); /** * Store this matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified * absolute buffer position/index. *
* This method will not increment the position of the given ByteBuffer. * * @param index * the absolute position into the ByteBuffer * @param buffer * will receive the values of this matrix in column-major order * @return the passed in buffer */ ByteBuffer get(int index, ByteBuffer buffer); /** * Store the transpose of this matrix in column-major order into the supplied {@link FloatBuffer} at the current * buffer {@link FloatBuffer#position() position}. *
* This method will not increment the position of the given FloatBuffer. *
* In order to specify the offset into the FloatBuffer at which * the matrix is stored, use {@link #getTransposed(int, FloatBuffer)}, taking * the absolute position as parameter. * * @see #getTransposed(int, FloatBuffer) * * @param buffer * will receive the values of this matrix in column-major order at its current position * @return the passed in buffer */ FloatBuffer getTransposed(FloatBuffer buffer); /** * Store the transpose of this matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified * absolute buffer position/index. *
* This method will not increment the position of the given FloatBuffer. * * @param index * the absolute position into the FloatBuffer * @param buffer * will receive the values of this matrix in column-major order * @return the passed in buffer */ FloatBuffer getTransposed(int index, FloatBuffer buffer); /** * Store the transpose of this matrix in column-major order into the supplied {@link ByteBuffer} at the current * buffer {@link ByteBuffer#position() position}. *
* This method will not increment the position of the given ByteBuffer. *
* In order to specify the offset into the ByteBuffer at which * the matrix is stored, use {@link #getTransposed(int, ByteBuffer)}, taking * the absolute position as parameter. * * @see #getTransposed(int, ByteBuffer) * * @param buffer * will receive the values of this matrix in column-major order at its current position * @return the passed in buffer */ ByteBuffer getTransposed(ByteBuffer buffer); /** * Store the transpose of this matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified * absolute buffer position/index. *
* This method will not increment the position of the given ByteBuffer. * * @param index * the absolute position into the ByteBuffer * @param buffer * will receive the values of this matrix in column-major order * @return the passed in buffer */ ByteBuffer getTransposed(int index, ByteBuffer buffer); /** * Store this matrix in column-major order at the given off-heap address. *
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`. *
* This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process. * * @param address * the off-heap address where to store this matrix * @return this */ Matrix2fc getToAddress(long address); /** * Store this matrix into the supplied float array in column-major order at the given offset. * * @param arr * the array to write the matrix values into * @param offset * the offset into the array * @return the passed in array */ float[] get(float[] arr, int offset); /** * Store this matrix into the supplied float array in column-major order. *
* In order to specify an explicit offset into the array, use the method {@link #get(float[], int)}.
*
* @see #get(float[], int)
*
* @param arr
* the array to write the matrix values into
* @return the passed in array
*/
float[] get(float[] arr);
/**
* Apply scaling to this
matrix by scaling the base axes by the given xy.x
and
* xy.y
factors, respectively and store the result in dest
.
*
* If M
is this
matrix and S
the scaling matrix,
* then the new matrix will be M * S
. So when transforming a
* vector v
with the new matrix by using M * S * v
* , the scaling will be applied first!
*
* @param xy
* the factors of the x and y component, respectively
* @param dest
* will hold the result
* @return dest
*/
Matrix2f scale(Vector2fc xy, Matrix2f dest);
/**
* Apply scaling to this matrix by scaling the base axes by the given x and
* y factors and store the result in dest
.
*
* If M
is this
matrix and S
the scaling matrix,
* then the new matrix will be M * S
. So when transforming a
* vector v
with the new matrix by using M * S * v
* , the scaling will be applied first!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @param dest
* will hold the result
* @return dest
*/
Matrix2f scale(float x, float y, Matrix2f dest);
/**
* Apply scaling to this matrix by uniformly scaling all base axes by the given xy
factor
* and store the result in dest
.
*
* If M
is this
matrix and S
the scaling matrix,
* then the new matrix will be M * S
. So when transforming a
* vector v
with the new matrix by using M * S * v
* , the scaling will be applied first!
*
* @see #scale(float, float, Matrix2f)
*
* @param xy
* the factor for all components
* @param dest
* will hold the result
* @return dest
*/
Matrix2f scale(float xy, Matrix2f dest);
/**
* Pre-multiply scaling to this
matrix by scaling the base axes by the given x and
* y factors and store the result in dest
.
*
* If M
is this
matrix and S
the scaling matrix,
* then the new matrix will be S * M
. So when transforming a
* vector v
with the new matrix by using S * M * v
* , the scaling will be applied last!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @param dest
* will hold the result
* @return dest
*/
Matrix2f scaleLocal(float x, float y, Matrix2f dest);
/**
* Transform the given vector by this matrix.
*
* @param v
* the vector to transform
* @return v
*/
Vector2f transform(Vector2f v);
/**
* Transform the given vector by this matrix and store the result in dest
.
*
* @param v
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector2f transform(Vector2fc v, Vector2f dest);
/**
* Transform the vector (x, y)
by this matrix and store the result in dest
.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector2f transform(float x, float y, Vector2f dest);
/**
* Transform the given vector by the transpose of this matrix.
*
* @param v
* the vector to transform
* @return v
*/
Vector2f transformTranspose(Vector2f v);
/**
* Transform the given vector by the transpose of this matrix and store the result in dest
.
*
* @param v
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector2f transformTranspose(Vector2fc v, Vector2f dest);
/**
* Transform the vector (x, y)
by the transpose of this matrix and store the result in dest
.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector2f transformTranspose(float x, float y, Vector2f dest);
/**
* Apply rotation to this matrix by rotating the given amount of radians
* and store the result in dest
.
*
* The produced rotation will rotate a vector counter-clockwise around the origin. *
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be M * R
. So when transforming a
* vector v
with the new matrix by using M * R * v
* , the rotation will be applied first!
*
* Reference: http://en.wikipedia.org
*
* @param ang
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Matrix2f rotate(float ang, Matrix2f dest);
/**
* Pre-multiply a rotation to this matrix by rotating the given amount of radians
* and store the result in dest
.
*
* The produced rotation will rotate a vector counter-clockwise around the origin. *
* If M
is this
matrix and R
the rotation matrix,
* then the new matrix will be R * M
. So when transforming a
* vector v
with the new matrix by using R * M * v
, the
* rotation will be applied last!
*
* Reference: http://en.wikipedia.org
*
* @param ang
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Matrix2f rotateLocal(float ang, Matrix2f dest);
/**
* Get the row at the given row
index, starting with 0
.
*
* @param row
* the row index in [0..1]
* @param dest
* will hold the row components
* @return the passed in destination
* @throws IndexOutOfBoundsException if row
is not in [0..1]
*/
Vector2f getRow(int row, Vector2f dest) throws IndexOutOfBoundsException;
/**
* Get the column at the given column
index, starting with 0
.
*
* @param column
* the column index in [0..1]
* @param dest
* will hold the column components
* @return the passed in destination
* @throws IndexOutOfBoundsException if column
is not in [0..1]
*/
Vector2f getColumn(int column, Vector2f dest) throws IndexOutOfBoundsException;
/**
* Get the matrix element value at the given column and row.
*
* @param column
* the colum index in [0..1]
* @param row
* the row index in [0..1]
* @return the element value
*/
float get(int column, int row);
/**
* Compute a normal matrix from this
matrix and store it into dest
.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix2f normal(Matrix2f dest);
/**
* Get the scaling factors of this
matrix for the three base axes.
*
* @param dest
* will hold the scaling factors for x
and y
* @return dest
*/
Vector2f getScale(Vector2f dest);
/**
* Obtain the direction of +X
before the transformation represented by this
matrix is applied.
*
* This method is equivalent to the following code: *
* Matrix2f inv = new Matrix2f(this).invert(); * inv.transform(dir.set(1, 0)).normalize(); ** If
this
is already an orthogonal matrix, then consider using {@link #normalizedPositiveX(Vector2f)} instead.
*
* @param dest
* will hold the direction of +X
* @return dest
*/
Vector2f positiveX(Vector2f dest);
/**
* Obtain the direction of +X
before the transformation represented by this
orthogonal matrix is applied.
* This method only produces correct results if this
is an orthogonal matrix.
* * This method is equivalent to the following code: *
* Matrix2f inv = new Matrix2f(this).transpose(); * inv.transform(dir.set(1, 0)); ** * @param dest * will hold the direction of
+X
* @return dest
*/
Vector2f normalizedPositiveX(Vector2f dest);
/**
* Obtain the direction of +Y
before the transformation represented by this
matrix is applied.
* * This method is equivalent to the following code: *
* Matrix2f inv = new Matrix2f(this).invert(); * inv.transform(dir.set(0, 1)).normalize(); ** If
this
is already an orthogonal matrix, then consider using {@link #normalizedPositiveY(Vector2f)} instead.
*
* @param dest
* will hold the direction of +Y
* @return dest
*/
Vector2f positiveY(Vector2f dest);
/**
* Obtain the direction of +Y
before the transformation represented by this
orthogonal matrix is applied.
* This method only produces correct results if this
is an orthogonal matrix.
* * This method is equivalent to the following code: *
* Matrix2f inv = new Matrix2f(this).transpose(); * inv.transform(dir.set(0, 1)); ** * @param dest * will hold the direction of
+Y
* @return dest
*/
Vector2f normalizedPositiveY(Vector2f dest);
/**
* Component-wise add this
and other
and store the result in dest
.
*
* @param other
* the other addend
* @param dest
* will hold the result
* @return dest
*/
Matrix2f add(Matrix2fc other, Matrix2f dest);
/**
* Component-wise subtract subtrahend
from this
and store the result in dest
.
*
* @param subtrahend
* the subtrahend
* @param dest
* will hold the result
* @return dest
*/
Matrix2f sub(Matrix2fc subtrahend, Matrix2f dest);
/**
* Component-wise multiply this
by other
and store the result in dest
.
*
* @param other
* the other matrix
* @param dest
* will hold the result
* @return dest
*/
Matrix2f mulComponentWise(Matrix2fc other, Matrix2f dest);
/**
* Linearly interpolate this
and other
using the given interpolation factor t
* and store the result in dest
.
*
* If t
is 0.0
then the result is this
. If the interpolation factor is 1.0
* then the result is other
.
*
* @param other
* the other matrix
* @param t
* the interpolation factor between 0.0 and 1.0
* @param dest
* will hold the result
* @return dest
*/
Matrix2f lerp(Matrix2fc other, float t, Matrix2f dest);
/**
* Compare the matrix elements of this
matrix with the given matrix using the given delta
* and return whether all of them are equal within a maximum difference of delta
.
*
* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap}
* and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those
* data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods.
*
* @param m
* the other matrix
* @param delta
* the allowed maximum difference
* @return true
whether all of the matrix elements are equal; false
otherwise
*/
boolean equals(Matrix2fc m, float delta);
/**
* Determine whether all matrix elements are finite floating-point values, that
* is, they are not {@link Float#isNaN() NaN} and not
* {@link Float#isInfinite() infinity}.
*
* @return {@code true} if all components are finite floating-point values;
* {@code false} otherwise
*/
boolean isFinite();
}