/* * The MIT License * * Copyright (c) 2015-2021 Richard Greenlees * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ package com.jozufozu.flywheel.repack.joml; import java.io.Externalizable; import java.io.IOException; import java.io.ObjectInput; import java.io.ObjectOutput; import java.nio.*; import java.text.DecimalFormat; import java.text.NumberFormat; /** * Contains the definition of a Vector comprising 3 doubles and associated * transformations. * * @author Richard Greenlees * @author Kai Burjack * @author F. Neurath */ public class Vector3d implements Externalizable, Cloneable, Vector3dc { private static final long serialVersionUID = 1L; /** * The x component of the vector. */ public double x; /** * The y component of the vector. */ public double y; /** * The z component of the vector. */ public double z; /** * Create a new {@link Vector3d} with all components set to zero. */ public Vector3d() { } /** * Create a new {@link Vector3d} and initialize all three components with the given value. * * @param d * the value of all three components */ public Vector3d(double d) { this.x = d; this.y = d; this.z = d; } /** * Create a new {@link Vector3d} with the given component values. * * @param x * the value of x * @param y * the value of y * @param z * the value of z */ public Vector3d(double x, double y, double z) { this.x = x; this.y = y; this.z = z; } /** * Create a new {@link Vector3d} whose values will be copied from the given vector. * * @param v * provides the initial values for the new vector */ public Vector3d(Vector3fc v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); } /** * Create a new {@link Vector3d} whose values will be copied from the given vector. * * @param v * provides the initial values for the new vector */ public Vector3d(Vector3ic v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); } /** * Create a new {@link Vector3d} with the first two components from the * given v and the given z * * @param v * the {@link Vector2fc} to copy the values from * @param z * the z component */ public Vector3d(Vector2fc v, double z) { this.x = v.x(); this.y = v.y(); this.z = z; } /** * Create a new {@link Vector3d} with the first two components from the * given v and the given z * * @param v * the {@link Vector2ic} to copy the values from * @param z * the z component */ public Vector3d(Vector2ic v, double z) { this.x = v.x(); this.y = v.y(); this.z = z; } /** * Create a new {@link Vector3d} whose values will be copied from the given vector. * * @param v * provides the initial values for the new vector */ public Vector3d(Vector3dc v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); } /** * Create a new {@link Vector3d} with the first two components from the * given v and the given z * * @param v * the {@link Vector2d} to copy the values from * @param z * the z component */ public Vector3d(Vector2dc v, double z) { this.x = v.x(); this.y = v.y(); this.z = z; } /** * Create a new {@link Vector3d} and initialize its three components from the first * three elements of the given array. * * @param xyz * the array containing at least three elements */ public Vector3d(double[] xyz) { this.x = xyz[0]; this.y = xyz[1]; this.z = xyz[2]; } /** * Create a new {@link Vector3d} and initialize its three components from the first * three elements of the given array. * * @param xyz * the array containing at least three elements */ public Vector3d(float[] xyz) { this.x = xyz[0]; this.y = xyz[1]; this.z = xyz[2]; } /** * Create a new {@link Vector3d} and read this vector from the supplied {@link ByteBuffer} * at the current buffer {@link ByteBuffer#position() position}. *

* This method will not increment the position of the given ByteBuffer. *

* In order to specify the offset into the ByteBuffer at which * the vector is read, use {@link #Vector3d(int, ByteBuffer)}, taking * the absolute position as parameter. * * @param buffer values will be read in x, y, z order * @see #Vector3d(int, ByteBuffer) */ public Vector3d(ByteBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); } /** * Create a new {@link Vector3d} and read this vector from the supplied {@link ByteBuffer} * starting at the specified absolute buffer position/index. *

* This method will not increment the position of the given ByteBuffer. * * @param index the absolute position into the ByteBuffer * @param buffer values will be read in x, y, z order */ public Vector3d(int index, ByteBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); } /** * Create a new {@link Vector3d} and read this vector from the supplied {@link DoubleBuffer} * at the current buffer {@link DoubleBuffer#position() position}. *

* This method will not increment the position of the given DoubleBuffer. *

* In order to specify the offset into the DoubleBuffer at which * the vector is read, use {@link #Vector3d(int, DoubleBuffer)}, taking * the absolute position as parameter. * * @param buffer values will be read in x, y, z order * @see #Vector3d(int, DoubleBuffer) */ public Vector3d(DoubleBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); } /** * Create a new {@link Vector3d} and read this vector from the supplied {@link DoubleBuffer} * starting at the specified absolute buffer position/index. *

* This method will not increment the position of the given DoubleBuffer. * * @param index the absolute position into the DoubleBuffer * @param buffer values will be read in x, y, z order */ public Vector3d(int index, DoubleBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); } public double x() { return this.x; } public double y() { return this.y; } public double z() { return this.z; } /** * Set the x, y and z components to match the supplied vector. * * @param v * the vector to set this vector's components from * @return this */ public Vector3d set(Vector3dc v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); return this; } /** * Set the x, y and z components to match the supplied vector. * * @param v * the vector to set this vector's components from * @return this */ public Vector3d set(Vector3ic v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); return this; } /** * Set the first two components from the given v * and the z component from the given z * * @param v * the {@link Vector2dc} to copy the values from * @param z * the z component * @return this */ public Vector3d set(Vector2dc v, double z) { this.x = v.x(); this.y = v.y(); this.z = z; return this; } /** * Set the first two components from the given v * and the z component from the given z * * @param v * the {@link Vector2ic} to copy the values from * @param z * the z component * @return this */ public Vector3d set(Vector2ic v, double z) { this.x = v.x(); this.y = v.y(); this.z = z; return this; } /** * Set the x, y and z components to match the supplied vector. * * @param v * the vector to set this vector's components from * @return this */ public Vector3d set(Vector3fc v) { this.x = v.x(); this.y = v.y(); this.z = v.z(); return this; } /** * Set the first two components from the given v * and the z component from the given z * * @param v * the {@link Vector2fc} to copy the values from * @param z * the z component * @return this */ public Vector3d set(Vector2fc v, double z) { this.x = v.x(); this.y = v.y(); this.z = z; return this; } /** * Set the x, y, and z components to the supplied value. * * @param d * the value of all three components * @return this */ public Vector3d set(double d) { this.x = d; this.y = d; this.z = d; return this; } /** * Set the x, y and z components to the supplied values. * * @param x * the x component * @param y * the y component * @param z * the z component * @return this */ public Vector3d set(double x, double y, double z) { this.x = x; this.y = y; this.z = z; return this; } /** * Set the three components of this vector to the first three elements of the given array. * * @param xyz * the array containing at least three elements * @return this */ public Vector3d set(double[] xyz) { this.x = xyz[0]; this.y = xyz[1]; this.z = xyz[2]; return this; } /** * Set the three components of this vector to the first three elements of the given array. * * @param xyz * the array containing at least three elements * @return this */ public Vector3d set(float[] xyz) { this.x = xyz[0]; this.y = xyz[1]; this.z = xyz[2]; return this; } /** * Read this vector from the supplied {@link ByteBuffer} at the current * buffer {@link ByteBuffer#position() position}. *

* This method will not increment the position of the given ByteBuffer. *

* In order to specify the offset into the ByteBuffer at which * the vector is read, use {@link #set(int, ByteBuffer)}, taking * the absolute position as parameter. * * @param buffer * values will be read in x, y, z order * @return this * @see #set(int, ByteBuffer) */ public Vector3d set(ByteBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); return this; } /** * Read this vector from the supplied {@link ByteBuffer} starting at the specified * absolute buffer position/index. *

* This method will not increment the position of the given ByteBuffer. * * @param index * the absolute position into the ByteBuffer * @param buffer * values will be read in x, y, z order * @return this */ public Vector3d set(int index, ByteBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); return this; } /** * Read this vector from the supplied {@link DoubleBuffer} at the current * buffer {@link DoubleBuffer#position() position}. *

* This method will not increment the position of the given DoubleBuffer. *

* In order to specify the offset into the DoubleBuffer at which * the vector is read, use {@link #set(int, DoubleBuffer)}, taking * the absolute position as parameter. * * @param buffer * values will be read in x, y, z order * @return this * @see #set(int, DoubleBuffer) */ public Vector3d set(DoubleBuffer buffer) { MemUtil.INSTANCE.get(this, buffer.position(), buffer); return this; } /** * Read this vector from the supplied {@link DoubleBuffer} starting at the specified * absolute buffer position/index. *

* This method will not increment the position of the given DoubleBuffer. * * @param index * the absolute position into the DoubleBuffer * @param buffer * values will be read in x, y, z order * @return this */ public Vector3d set(int index, DoubleBuffer buffer) { MemUtil.INSTANCE.get(this, index, buffer); return this; } /** * Set the values of this vector by reading 3 double values from off-heap memory, * starting at the given address. *

* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`. *

* This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process. * * @param address * the off-heap memory address to read the vector values from * @return this */ public Vector3d setFromAddress(long address) { if (Options.NO_UNSAFE) throw new UnsupportedOperationException("Not supported when using joml.nounsafe"); MemUtil.MemUtilUnsafe.get(this, address); return this; } /** * Set the value of the specified component of this vector. * * @param component * the component whose value to set, within [0..2] * @param value * the value to set * @return this * @throws IllegalArgumentException if component is not within [0..2] */ public Vector3d setComponent(int component, double value) throws IllegalArgumentException { switch (component) { case 0: x = value; break; case 1: y = value; break; case 2: z = value; break; default: throw new IllegalArgumentException(); } return this; } public ByteBuffer get(ByteBuffer buffer) { MemUtil.INSTANCE.put(this, buffer.position(), buffer); return buffer; } public ByteBuffer get(int index, ByteBuffer buffer) { MemUtil.INSTANCE.put(this, index, buffer); return buffer; } public DoubleBuffer get(DoubleBuffer buffer) { MemUtil.INSTANCE.put(this, buffer.position(), buffer); return buffer; } public DoubleBuffer get(int index, DoubleBuffer buffer) { MemUtil.INSTANCE.put(this, index, buffer); return buffer; } public ByteBuffer getf(ByteBuffer buffer) { MemUtil.INSTANCE.putf(this, buffer.position(), buffer); return buffer; } public ByteBuffer getf(int index, ByteBuffer buffer) { MemUtil.INSTANCE.putf(this, index, buffer); return buffer; } public FloatBuffer get(FloatBuffer buffer) { MemUtil.INSTANCE.put(this, buffer.position(), buffer); return buffer; } public FloatBuffer get(int index, FloatBuffer buffer) { MemUtil.INSTANCE.put(this, index, buffer); return buffer; } public Vector3dc getToAddress(long address) { if (Options.NO_UNSAFE) throw new UnsupportedOperationException("Not supported when using joml.nounsafe"); MemUtil.MemUtilUnsafe.put(this, address); return this; } /** * Subtract the supplied vector from this one. * * @param v * the vector to subtract from this * @return this */ public Vector3d sub(Vector3dc v) { this.x = x - v.x(); this.y = y - v.y(); this.z = z - v.z(); return this; } public Vector3d sub(Vector3dc v, Vector3d dest) { dest.x = x - v.x(); dest.y = y - v.y(); dest.z = z - v.z(); return dest; } /** * Subtract the supplied vector from this one. * * @param v * the vector to subtract from this * @return this */ public Vector3d sub(Vector3fc v) { this.x = x - v.x(); this.y = y - v.y(); this.z = z - v.z(); return this; } public Vector3d sub(Vector3fc v, Vector3d dest) { dest.x = x - v.x(); dest.y = y - v.y(); dest.z = z - v.z(); return dest; } /** * Subtract (x, y, z) from this vector. * * @param x * the x component to subtract * @param y * the y component to subtract * @param z * the z component to subtract * @return this */ public Vector3d sub(double x, double y, double z) { this.x = this.x - x; this.y = this.y - y; this.z = this.z - z; return this; } public Vector3d sub(double x, double y, double z, Vector3d dest) { dest.x = this.x - x; dest.y = this.y - y; dest.z = this.z - z; return dest; } /** * Add the supplied vector to this one. * * @param v * the vector to add * @return this */ public Vector3d add(Vector3dc v) { this.x = x + v.x(); this.y = y + v.y(); this.z = z + v.z(); return this; } public Vector3d add(Vector3dc v, Vector3d dest) { dest.x = x + v.x(); dest.y = y + v.y(); dest.z = z + v.z(); return dest; } /** * Add the supplied vector to this one. * * @param v * the vector to add * @return this */ public Vector3d add(Vector3fc v) { this.x = x + v.x(); this.y = y + v.y(); this.z = z + v.z(); return this; } public Vector3d add(Vector3fc v, Vector3d dest) { dest.x = x + v.x(); dest.y = y + v.y(); dest.z = z + v.z(); return dest; } /** * Increment the components of this vector by the given values. * * @param x * the x component to add * @param y * the y component to add * @param z * the z component to add * @return this */ public Vector3d add(double x, double y, double z) { this.x = this.x + x; this.y = this.y + y; this.z = this.z + z; return this; } public Vector3d add(double x, double y, double z, Vector3d dest) { dest.x = this.x + x; dest.y = this.y + y; dest.z = this.z + z; return dest; } /** * Add the component-wise multiplication of a * b to this vector. * * @param a * the first multiplicand * @param b * the second multiplicand * @return this */ public Vector3d fma(Vector3dc a, Vector3dc b) { this.x = Math.fma(a.x(), b.x(), x); this.y = Math.fma(a.y(), b.y(), y); this.z = Math.fma(a.z(), b.z(), z); return this; } /** * Add the component-wise multiplication of a * b to this vector. * * @param a * the first multiplicand * @param b * the second multiplicand * @return this */ public Vector3d fma(double a, Vector3dc b) { this.x = Math.fma(a, b.x(), x); this.y = Math.fma(a, b.y(), y); this.z = Math.fma(a, b.z(), z); return this; } /** * Add the component-wise multiplication of a * b to this vector. * * @param a * the first multiplicand * @param b * the second multiplicand * @return this */ public Vector3d fma(Vector3fc a, Vector3fc b) { this.x = Math.fma(a.x(), b.x(), x); this.y = Math.fma(a.y(), b.y(), y); this.z = Math.fma(a.z(), b.z(), z); return this; } public Vector3d fma(Vector3fc a, Vector3fc b, Vector3d dest) { dest.x = Math.fma(a.x(), b.x(), x); dest.y = Math.fma(a.y(), b.y(), y); dest.z = Math.fma(a.z(), b.z(), z); return dest; } /** * Add the component-wise multiplication of a * b to this vector. * * @param a * the first multiplicand * @param b * the second multiplicand * @return this */ public Vector3d fma(double a, Vector3fc b) { this.x = Math.fma(a, b.x(), x); this.y = Math.fma(a, b.y(), y); this.z = Math.fma(a, b.z(), z); return this; } public Vector3d fma(Vector3dc a, Vector3dc b, Vector3d dest) { dest.x = Math.fma(a.x(), b.x(), x); dest.y = Math.fma(a.y(), b.y(), y); dest.z = Math.fma(a.z(), b.z(), z); return dest; } public Vector3d fma(double a, Vector3dc b, Vector3d dest) { dest.x = Math.fma(a, b.x(), x); dest.y = Math.fma(a, b.y(), y); dest.z = Math.fma(a, b.z(), z); return dest; } public Vector3d fma(Vector3dc a, Vector3fc b, Vector3d dest) { dest.x = Math.fma(a.x(), b.x(), x); dest.y = Math.fma(a.y(), b.y(), y); dest.z = Math.fma(a.z(), b.z(), z); return dest; } public Vector3d fma(double a, Vector3fc b, Vector3d dest) { dest.x = Math.fma(a, b.x(), x); dest.y = Math.fma(a, b.y(), y); dest.z = Math.fma(a, b.z(), z); return dest; } /** * Add the component-wise multiplication of this * a to b * and store the result in this. * * @param a * the multiplicand * @param b * the addend * @return this */ public Vector3d mulAdd(Vector3dc a, Vector3dc b) { this.x = Math.fma(x, a.x(), b.x()); this.y = Math.fma(y, a.y(), b.y()); this.z = Math.fma(z, a.z(), b.z()); return this; } /** * Add the component-wise multiplication of this * a to b * and store the result in this. * * @param a * the multiplicand * @param b * the addend * @return this */ public Vector3d mulAdd(double a, Vector3dc b) { this.x = Math.fma(x, a, b.x()); this.y = Math.fma(y, a, b.y()); this.z = Math.fma(z, a, b.z()); return this; } public Vector3d mulAdd(Vector3dc a, Vector3dc b, Vector3d dest) { dest.x = Math.fma(x, a.x(), b.x()); dest.y = Math.fma(y, a.y(), b.y()); dest.z = Math.fma(z, a.z(), b.z()); return dest; } public Vector3d mulAdd(double a, Vector3dc b, Vector3d dest) { dest.x = Math.fma(x, a, b.x()); dest.y = Math.fma(y, a, b.y()); dest.z = Math.fma(z, a, b.z()); return dest; } public Vector3d mulAdd(Vector3fc a, Vector3dc b, Vector3d dest) { dest.x = Math.fma(x, a.x(), b.x()); dest.y = Math.fma(y, a.y(), b.y()); dest.z = Math.fma(z, a.z(), b.z()); return dest; } /** * Multiply this Vector3d component-wise by another Vector3dc. * * @param v * the vector to multiply by * @return this */ public Vector3d mul(Vector3dc v) { this.x = x * v.x(); this.y = y * v.y(); this.z = z * v.z(); return this; } /** * Multiply this Vector3d component-wise by another Vector3fc. * * @param v * the vector to multiply by * @return this */ public Vector3d mul(Vector3fc v) { this.x = x * v.x(); this.y = y * v.y(); this.z = z * v.z(); return this; } public Vector3d mul(Vector3fc v, Vector3d dest) { dest.x = x * v.x(); dest.y = y * v.y(); dest.z = z * v.z(); return dest; } public Vector3d mul(Vector3dc v, Vector3d dest) { dest.x = x * v.x(); dest.y = y * v.y(); dest.z = z * v.z(); return dest; } /** * Divide this Vector3d component-wise by another Vector3dc. * * @param v * the vector to divide by * @return this */ public Vector3d div(Vector3d v) { this.x = x / v.x(); this.y = y / v.y(); this.z = z / v.z(); return this; } /** * Divide this Vector3d component-wise by another Vector3fc. * * @param v * the vector to divide by * @return this */ public Vector3d div(Vector3fc v) { this.x = x / v.x(); this.y = y / v.y(); this.z = z / v.z(); return this; } public Vector3d div(Vector3fc v, Vector3d dest) { dest.x = x / v.x(); dest.y = y / v.y(); dest.z = z / v.z(); return dest; } public Vector3d div(Vector3dc v, Vector3d dest) { dest.x = x / v.x(); dest.y = y / v.y(); dest.z = z / v.z(); return dest; } public Vector3d mulProject(Matrix4dc mat, double w, Vector3d dest) { double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w))); double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))) * invW; double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))) * invW; double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))) * invW; dest.x = rx; dest.y = ry; dest.z = rz; return dest; } public Vector3d mulProject(Matrix4dc mat, Vector3d dest) { double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33()))); double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))) * invW; double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))) * invW; double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))) * invW; dest.x = rx; dest.y = ry; dest.z = rz; return dest; } /** * Multiply the given matrix mat this Vector3d, perform perspective division. *

* This method uses w=1.0 as the fourth vector component. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3d mulProject(Matrix4dc mat) { double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33()))); double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))) * invW; double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))) * invW; double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))) * invW; this.x = rx; this.y = ry; this.z = rz; return this; } public Vector3d mulProject(Matrix4fc mat, Vector3d dest) { double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33()))); double rx = (mat.m00() * x + mat.m10() * y + mat.m20() * z + mat.m30()) * invW; double ry = (mat.m01() * x + mat.m11() * y + mat.m21() * z + mat.m31()) * invW; double rz = (mat.m02() * x + mat.m12() * y + mat.m22() * z + mat.m32()) * invW; dest.x = rx; dest.y = ry; dest.z = rz; return dest; } /** * Multiply the given matrix mat with this Vector3d, perform perspective division. *

* This method uses w=1.0 as the fourth vector component. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3d mulProject(Matrix4fc mat) { double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33()))); double rx = (mat.m00() * x + mat.m10() * y + mat.m20() * z + mat.m30()) * invW; double ry = (mat.m01() * x + mat.m11() * y + mat.m21() * z + mat.m31()) * invW; double rz = (mat.m02() * x + mat.m12() * y + mat.m22() * z + mat.m32()) * invW; this.x = rx; this.y = ry; this.z = rz; return this; } /** * Multiply the given matrix mat with this Vector3d. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3d mul(Matrix3fc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); this.x = rx; this.y = ry; this.z = rz; return this; } /** * Multiply the given matrix mat with this Vector3d. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3d mul(Matrix3dc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); this.x = rx; this.y = ry; this.z = rz; return this; } public Vector3d mul(Matrix3dc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } public Vector3f mul(Matrix3dc mat, Vector3f dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); dest.x = (float) rx; dest.y = (float) ry; dest.z = (float) rz; return dest; } public Vector3d mul(Matrix3fc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } /** * Multiply the given matrix with this Vector3d by assuming a third row in the matrix of (0, 0, 1) * and store the result in this. * * @param mat * the matrix * @return this */ public Vector3d mul(Matrix3x2dc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); this.x = rx; this.y = ry; return this; } public Vector3d mul(Matrix3x2dc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); dest.x = rx; dest.y = ry; dest.z = z; return dest; } /** * Multiply the given matrix with this Vector3d by assuming a third row in the matrix of (0, 0, 1) * and store the result in this. * * @param mat * the matrix * @return this */ public Vector3d mul(Matrix3x2fc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); this.x = rx; this.y = ry; return this; } public Vector3d mul(Matrix3x2fc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); dest.x = rx; dest.y = ry; dest.z = z; return dest; } /** * Multiply the transpose of the given matrix with this Vector3d and store the result in this. * * @param mat * the matrix * @return this */ public Vector3d mulTranspose(Matrix3dc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z)); double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z)); double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z)); this.x = rx; this.y = ry; this.z = rz; return this; } public Vector3d mulTranspose(Matrix3dc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z)); double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z)); double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z)); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } /** * Multiply the transpose of the given matrix with this Vector3d and store the result in this. * * @param mat * the matrix * @return this */ public Vector3d mulTranspose(Matrix3fc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z)); double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z)); double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z)); this.x = rx; this.y = ry; this.z = rz; return this; } public Vector3d mulTranspose(Matrix3fc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z)); double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z)); double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z)); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } /** * Multiply the given 4x4 matrix mat with this. *

* This method assumes the w component of this to be 1.0. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3d mulPosition(Matrix4fc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); this.x = rx; this.y = ry; this.z = rz; return this; } /** * Multiply the given 4x4 matrix mat with this. *

* This method assumes the w component of this to be 1.0. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3d mulPosition(Matrix4dc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); this.x = rx; this.y = ry; this.z = rz; return this; } /** * Multiply the given 4x3 matrix mat with this. *

* This method assumes the w component of this to be 1.0. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3d mulPosition(Matrix4x3dc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); this.x = rx; this.y = ry; this.z = rz; return this; } /** * Multiply the given 4x3 matrix mat with this. *

* This method assumes the w component of this to be 1.0. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3d mulPosition(Matrix4x3fc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); this.x = rx; this.y = ry; this.z = rz; return this; } public Vector3d mulPosition(Matrix4dc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } public Vector3d mulPosition(Matrix4fc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } public Vector3d mulPosition(Matrix4x3dc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } public Vector3d mulPosition(Matrix4x3fc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } /** * Multiply the transpose of the given 4x4 matrix mat with this. *

* This method assumes the w component of this to be 1.0. * * @param mat * the matrix whose transpose to multiply this vector by * @return this */ public Vector3d mulTransposePosition(Matrix4dc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03()))); double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13()))); double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23()))); this.x = rx; this.y = ry; this.z = rz; return this; } public Vector3d mulTransposePosition(Matrix4dc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03()))); double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13()))); double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23()))); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } /** * Multiply the transpose of the given 4x4 matrix mat with this. *

* This method assumes the w component of this to be 1.0. * * @param mat * the matrix whose transpose to multiply this vector by * @return this */ public Vector3d mulTransposePosition(Matrix4fc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03()))); double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13()))); double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23()))); this.x = rx; this.y = ry; this.z = rz; return this; } public Vector3d mulTransposePosition(Matrix4fc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03()))); double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13()))); double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23()))); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } /** * Multiply the given 4x4 matrix mat with this and return the w component * of the resulting 4D vector. *

* This method assumes the w component of this to be 1.0. * * @param mat * the matrix to multiply this vector by * @return the w component of the resulting 4D vector after multiplication */ public double mulPositionW(Matrix4fc mat) { double w = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33()))); double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); this.x = rx; this.y = ry; this.z = rz; return w; } public double mulPositionW(Matrix4fc mat, Vector3d dest) { double w = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33()))); double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); dest.x = rx; dest.y = ry; dest.z = rz; return w; } /** * Multiply the given 4x4 matrix mat with this and return the w component * of the resulting 4D vector. *

* This method assumes the w component of this to be 1.0. * * @param mat * the matrix to multiply this vector by * @return the w component of the resulting 4D vector after multiplication */ public double mulPositionW(Matrix4dc mat) { double w = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33()))); double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); this.x = rx; this.y = ry; this.z = rz; return w; } public double mulPositionW(Matrix4dc mat, Vector3d dest) { double w = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33()))); double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))); dest.x = rx; dest.y = ry; dest.z = rz; return w; } /** * Multiply the given 4x4 matrix mat with this. *

* This method assumes the w component of this to be 0.0. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3d mulDirection(Matrix4fc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); this.x = rx; this.y = ry; this.z = rz; return this; } /** * Multiply the given 4x4 matrix mat with this. *

* This method assumes the w component of this to be 0.0. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3d mulDirection(Matrix4dc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); this.x = rx; this.y = ry; this.z = rz; return this; } /** * Multiply the given 4x3 matrix mat with this. *

* This method assumes the w component of this to be 0.0. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3d mulDirection(Matrix4x3dc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); this.x = rx; this.y = ry; this.z = rz; return this; } /** * Multiply the given 4x3 matrix mat with this. *

* This method assumes the w component of this to be 0.0. * * @param mat * the matrix to multiply this vector by * @return this */ public Vector3d mulDirection(Matrix4x3fc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); this.x = rx; this.y = ry; this.z = rz; return this; } public Vector3d mulDirection(Matrix4dc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } public Vector3d mulDirection(Matrix4fc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } public Vector3d mulDirection(Matrix4x3dc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } public Vector3d mulDirection(Matrix4x3fc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z)); double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z)); double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z)); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } /** * Multiply the transpose of the given 4x4 matrix mat with this. *

* This method assumes the w component of this to be 0.0. * * @param mat * the matrix whose transpose to multiply this vector by * @return this */ public Vector3d mulTransposeDirection(Matrix4dc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z)); double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z)); double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z)); this.x = rx; this.y = ry; this.z = rz; return this; } public Vector3d mulTransposeDirection(Matrix4dc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z)); double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z)); double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z)); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } /** * Multiply the transpose of the given 4x4 matrix mat with this. *

* This method assumes the w component of this to be 0.0. * * @param mat * the matrix whose transpose to multiply this vector by * @return this */ public Vector3d mulTransposeDirection(Matrix4fc mat) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z)); double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z)); double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z)); this.x = rx; this.y = ry; this.z = rz; return this; } public Vector3d mulTransposeDirection(Matrix4fc mat, Vector3d dest) { double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z)); double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z)); double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z)); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } /** * Multiply this Vector3d by the given scalar value. * * @param scalar * the scalar to multiply this vector by * @return this */ public Vector3d mul(double scalar) { this.x = x * scalar; this.y = y * scalar; this.z = z * scalar; return this; } public Vector3d mul(double scalar, Vector3d dest) { dest.x = x * scalar; dest.y = y * scalar; dest.z = z * scalar; return dest; } /** * Multiply the components of this Vector3d by the given scalar values and store the result in this. * * @param x * the x component to multiply this vector by * @param y * the y component to multiply this vector by * @param z * the z component to multiply this vector by * @return this */ public Vector3d mul(double x, double y, double z) { this.x = this.x * x; this.y = this.y * y; this.z = this.z * z; return this; } public Vector3d mul(double x, double y, double z, Vector3d dest) { dest.x = this.x * x; dest.y = this.y * y; dest.z = this.z * z; return dest; } /** * Rotate this vector by the given quaternion quat and store the result in this. * * @see Quaterniond#transform(Vector3d) * * @param quat * the quaternion to rotate this vector * @return this */ public Vector3d rotate(Quaterniondc quat) { return quat.transform(this, this); } public Vector3d rotate(Quaterniondc quat, Vector3d dest) { return quat.transform(this, dest); } public Quaterniond rotationTo(Vector3dc toDir, Quaterniond dest) { return dest.rotationTo(this, toDir); } public Quaterniond rotationTo(double toDirX, double toDirY, double toDirZ, Quaterniond dest) { return dest.rotationTo(x, y, z, toDirX, toDirY, toDirZ); } /** * Rotate this vector the specified radians around the given rotation axis. * * @param angle * the angle in radians * @param x * the x component of the rotation axis * @param y * the y component of the rotation axis * @param z * the z component of the rotation axis * @return this */ public Vector3d rotateAxis(double angle, double x, double y, double z) { if (y == 0.0 && z == 0.0 && Math.absEqualsOne(x)) return rotateX(x * angle, this); else if (x == 0.0 && z == 0.0 && Math.absEqualsOne(y)) return rotateY(y * angle, this); else if (x == 0.0 && y == 0.0 && Math.absEqualsOne(z)) return rotateZ(z * angle, this); return rotateAxisInternal(angle, x, y, z, this); } public Vector3d rotateAxis(double angle, double aX, double aY, double aZ, Vector3d dest) { if (aY == 0.0 && aZ == 0.0 && Math.absEqualsOne(aX)) return rotateX(aX * angle, dest); else if (aX == 0.0 && aZ == 0.0 && Math.absEqualsOne(aY)) return rotateY(aY * angle, dest); else if (aX == 0.0 && aY == 0.0 && Math.absEqualsOne(aZ)) return rotateZ(aZ * angle, dest); return rotateAxisInternal(angle, aX, aY, aZ, dest); } private Vector3d rotateAxisInternal(double angle, double aX, double aY, double aZ, Vector3d dest) { double hangle = angle * 0.5; double sinAngle = Math.sin(hangle); double qx = aX * sinAngle, qy = aY * sinAngle, qz = aZ * sinAngle; double qw = Math.cosFromSin(sinAngle, hangle); double w2 = qw * qw, x2 = qx * qx, y2 = qy * qy, z2 = qz * qz, zw = qz * qw; double xy = qx * qy, xz = qx * qz, yw = qy * qw, yz = qy * qz, xw = qx * qw; double nx = (w2 + x2 - z2 - y2) * x + (-zw + xy - zw + xy) * y + (yw + xz + xz + yw) * z; double ny = (xy + zw + zw + xy) * x + ( y2 - z2 + w2 - x2) * y + (yz + yz - xw - xw) * z; double nz = (xz - yw + xz - yw) * x + ( yz + yz + xw + xw) * y + (z2 - y2 - x2 + w2) * z; dest.x = nx; dest.y = ny; dest.z = nz; return dest; } /** * Rotate this vector the specified radians around the X axis. * * @param angle * the angle in radians * @return this */ public Vector3d rotateX(double angle) { double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); double y = this.y * cos - this.z * sin; double z = this.y * sin + this.z * cos; this.y = y; this.z = z; return this; } public Vector3d rotateX(double angle, Vector3d dest) { double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); double y = this.y * cos - this.z * sin; double z = this.y * sin + this.z * cos; dest.x = this.x; dest.y = y; dest.z = z; return dest; } /** * Rotate this vector the specified radians around the Y axis. * * @param angle * the angle in radians * @return this */ public Vector3d rotateY(double angle) { double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); double x = this.x * cos + this.z * sin; double z = -this.x * sin + this.z * cos; this.x = x; this.z = z; return this; } public Vector3d rotateY(double angle, Vector3d dest) { double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); double x = this.x * cos + this.z * sin; double z = -this.x * sin + this.z * cos; dest.x = x; dest.y = this.y; dest.z = z; return dest; } /** * Rotate this vector the specified radians around the Z axis. * * @param angle * the angle in radians * @return this */ public Vector3d rotateZ(double angle) { double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); double x = this.x * cos - this.y * sin; double y = this.x * sin + this.y * cos; this.x = x; this.y = y; return this; } public Vector3d rotateZ(double angle, Vector3d dest) { double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle); double x = this.x * cos - this.y * sin; double y = this.x * sin + this.y * cos; dest.x = x; dest.y = y; dest.z = this.z; return dest; } /** * Divide this Vector3d by the given scalar value. * * @param scalar * the scalar to divide this vector by * @return this */ public Vector3d div(double scalar) { double inv = 1.0 / scalar; this.x = x * inv; this.y = y * inv; this.z = z * inv; return this; } public Vector3d div(double scalar, Vector3d dest) { double inv = 1.0 / scalar; dest.x = x * inv; dest.y = y * inv; dest.z = z * inv; return dest; } /** * Divide the components of this Vector3d by the given scalar values and store the result in this. * * @param x * the x component to divide this vector by * @param y * the y component to divide this vector by * @param z * the z component to divide this vector by * @return this */ public Vector3d div(double x, double y, double z) { this.x = this.x / x; this.y = this.y / y; this.z = this.z / z; return this; } public Vector3d div(double x, double y, double z, Vector3d dest) { dest.x = this.x / x; dest.y = this.y / y; dest.z = this.z / z; return dest; } public double lengthSquared() { return Math.fma(x, x, Math.fma(y, y, z * z)); } /** * Get the length squared of a 3-dimensional double-precision vector. * * @param x The vector's x component * @param y The vector's y component * @param z The vector's z component * * @return the length squared of the given vector * * @author F. Neurath */ public static double lengthSquared(double x, double y, double z) { return Math.fma(x, x, Math.fma(y, y, z * z)); } public double length() { return Math.sqrt(Math.fma(x, x, Math.fma(y, y, z * z))); } /** * Get the length of a 3-dimensional double-precision vector. * * @param x The vector's x component * @param y The vector's y component * @param z The vector's z component * * @return the length of the given vector * * @author F. Neurath */ public static double length(double x, double y, double z) { return Math.sqrt(Math.fma(x, x, Math.fma(y, y, z * z))); } /** * Normalize this vector. * * @return this */ public Vector3d normalize() { double invLength = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))); this.x = x * invLength; this.y = y * invLength; this.z = z * invLength; return this; } public Vector3d normalize(Vector3d dest) { double invLength = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))); dest.x = x * invLength; dest.y = y * invLength; dest.z = z * invLength; return dest; } /** * Scale this vector to have the given length. * * @param length * the desired length * @return this */ public Vector3d normalize(double length) { double invLength = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))) * length; this.x = x * invLength; this.y = y * invLength; this.z = z * invLength; return this; } public Vector3d normalize(double length, Vector3d dest) { double invLength = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))) * length; dest.x = x * invLength; dest.y = y * invLength; dest.z = z * invLength; return dest; } /** * Set this vector to be the cross product of this and v2. * * @param v * the other vector * @return this */ public Vector3d cross(Vector3dc v) { double rx = Math.fma(y, v.z(), -z * v.y()); double ry = Math.fma(z, v.x(), -x * v.z()); double rz = Math.fma(x, v.y(), -y * v.x()); this.x = rx; this.y = ry; this.z = rz; return this; } /** * Set this vector to be the cross product of itself and (x, y, z). * * @param x * the x component of the other vector * @param y * the y component of the other vector * @param z * the z component of the other vector * @return this */ public Vector3d cross(double x, double y, double z) { double rx = Math.fma(this.y, z, -this.z * y); double ry = Math.fma(this.z, x, -this.x * z); double rz = Math.fma(this.x, y, -this.y * x); this.x = rx; this.y = ry; this.z = rz; return this; } public Vector3d cross(Vector3dc v, Vector3d dest) { double rx = Math.fma(y, v.z(), -z * v.y()); double ry = Math.fma(z, v.x(), -x * v.z()); double rz = Math.fma(x, v.y(), -y * v.x()); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } public Vector3d cross(double x, double y, double z, Vector3d dest) { double rx = Math.fma(this.y, z, -this.z * y); double ry = Math.fma(this.z, x, -this.x * z); double rz = Math.fma(this.x, y, -this.y * x); dest.x = rx; dest.y = ry; dest.z = rz; return dest; } public double distance(Vector3dc v) { double dx = this.x - v.x(); double dy = this.y - v.y(); double dz = this.z - v.z(); return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, dz * dz))); } public double distance(double x, double y, double z) { double dx = this.x - x; double dy = this.y - y; double dz = this.z - z; return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, dz * dz))); } public double distanceSquared(Vector3dc v) { double dx = this.x - v.x(); double dy = this.y - v.y(); double dz = this.z - v.z(); return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz)); } public double distanceSquared(double x, double y, double z) { double dx = this.x - x; double dy = this.y - y; double dz = this.z - z; return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz)); } /** * Return the distance between (x1, y1, z1) and (x2, y2, z2). * * @param x1 * the x component of the first vector * @param y1 * the y component of the first vector * @param z1 * the z component of the first vector * @param x2 * the x component of the second vector * @param y2 * the y component of the second vector * @param z2 * the z component of the second vector * @return the euclidean distance */ public static double distance(double x1, double y1, double z1, double x2, double y2, double z2) { return Math.sqrt(distanceSquared(x1, y1, z1, x2, y2, z2)); } /** * Return the squared distance between (x1, y1, z1) and (x2, y2, z2). * * @param x1 * the x component of the first vector * @param y1 * the y component of the first vector * @param z1 * the z component of the first vector * @param x2 * the x component of the second vector * @param y2 * the y component of the second vector * @param z2 * the z component of the second vector * @return the euclidean distance squared */ public static double distanceSquared(double x1, double y1, double z1, double x2, double y2, double z2) { double dx = x1 - x2; double dy = y1 - y2; double dz = z1 - z2; return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz)); } public double dot(Vector3dc v) { return Math.fma(this.x, v.x(), Math.fma(this.y, v.y(), this.z * v.z())); } public double dot(double x, double y, double z) { return Math.fma(this.x, x, Math.fma(this.y, y, this.z * z)); } public double angleCos(Vector3dc v) { double length1Squared = Math.fma(x, x, Math.fma(y, y, z * z)); double length2Squared = Math.fma(v.x(), v.x(), Math.fma(v.y(), v.y(), v.z() * v.z())); double dot = Math.fma(x, v.x(), Math.fma(y, v.y(), z * v.z())); return dot / Math.sqrt(length1Squared * length2Squared); } public double angle(Vector3dc v) { double cos = angleCos(v); // This is because sometimes cos goes above 1 or below -1 because of lost precision cos = cos < 1 ? cos : 1; cos = cos > -1 ? cos : -1; return Math.acos(cos); } public double angleSigned(Vector3dc v, Vector3dc n) { double x = v.x(); double y = v.y(); double z = v.z(); return Math.atan2( (this.y * z - this.z * y) * n.x() + (this.z * x - this.x * z) * n.y() + (this.x * y - this.y * x) * n.z(), this.x * x + this.y * y + this.z * z); } public double angleSigned(double x, double y, double z, double nx, double ny, double nz) { return Math.atan2( (this.y * z - this.z * y) * nx + (this.z * x - this.x * z) * ny + (this.x * y - this.y * x) * nz, this.x * x + this.y * y + this.z * z); } /** * Set the components of this vector to be the component-wise minimum of this and the other vector. * * @param v * the other vector * @return this */ public Vector3d min(Vector3dc v) { this.x = x < v.x() ? x : v.x(); this.y = y < v.y() ? y : v.y(); this.z = z < v.z() ? z : v.z(); return this; } public Vector3d min(Vector3dc v, Vector3d dest) { dest.x = x < v.x() ? x : v.x(); dest.y = y < v.y() ? y : v.y(); dest.z = z < v.z() ? z : v.z(); return dest; } /** * Set the components of this vector to be the component-wise maximum of this and the other vector. * * @param v * the other vector * @return this */ public Vector3d max(Vector3dc v) { this.x = x > v.x() ? x : v.x(); this.y = y > v.y() ? y : v.y(); this.z = z > v.z() ? z : v.z(); return this; } public Vector3d max(Vector3dc v, Vector3d dest) { dest.x = x > v.x() ? x : v.x(); dest.y = y > v.y() ? y : v.y(); dest.z = z > v.z() ? z : v.z(); return dest; } /** * Set all components to zero. * * @return this */ public Vector3d zero() { this.x = 0; this.y = 0; this.z = 0; return this; } /** * Return a string representation of this vector. *

* This method creates a new {@link DecimalFormat} on every invocation with the format string "0.000E0;-". * * @return the string representation */ public String toString() { return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT)); } /** * Return a string representation of this vector by formatting the vector components with the given {@link NumberFormat}. * * @param formatter * the {@link NumberFormat} used to format the vector components with * @return the string representation */ public String toString(NumberFormat formatter) { return "(" + Runtime.format(x, formatter) + " " + Runtime.format(y, formatter) + " " + Runtime.format(z, formatter) + ")"; } public void writeExternal(ObjectOutput out) throws IOException { out.writeDouble(x); out.writeDouble(y); out.writeDouble(z); } public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { x = in.readDouble(); y = in.readDouble(); z = in.readDouble(); } /** * Negate this vector. * * @return this */ public Vector3d negate() { this.x = -x; this.y = -y; this.z = -z; return this; } public Vector3d negate(Vector3d dest) { dest.x = -x; dest.y = -y; dest.z = -z; return dest; } /** * Set this vector's components to their respective absolute values. * * @return this */ public Vector3d absolute() { this.x = Math.abs(this.x); this.y = Math.abs(this.y); this.z = Math.abs(this.z); return this; } public Vector3d absolute(Vector3d dest) { dest.x = Math.abs(this.x); dest.y = Math.abs(this.y); dest.z = Math.abs(this.z); return dest; } public int hashCode() { final int prime = 31; int result = 1; long temp; temp = Double.doubleToLongBits(x); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(y); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(z); result = prime * result + (int) (temp ^ (temp >>> 32)); return result; } public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Vector3d other = (Vector3d) obj; if (Double.doubleToLongBits(x) != Double.doubleToLongBits(other.x)) return false; if (Double.doubleToLongBits(y) != Double.doubleToLongBits(other.y)) return false; if (Double.doubleToLongBits(z) != Double.doubleToLongBits(other.z)) return false; return true; } public boolean equals(Vector3dc v, double delta) { if (this == v) return true; if (v == null) return false; if (!(v instanceof Vector3dc)) return false; if (!Runtime.equals(x, v.x(), delta)) return false; if (!Runtime.equals(y, v.y(), delta)) return false; if (!Runtime.equals(z, v.z(), delta)) return false; return true; } public boolean equals(double x, double y, double z) { if (Double.doubleToLongBits(this.x) != Double.doubleToLongBits(x)) return false; if (Double.doubleToLongBits(this.y) != Double.doubleToLongBits(y)) return false; if (Double.doubleToLongBits(this.z) != Double.doubleToLongBits(z)) return false; return true; } /** * Reflect this vector about the given normal vector. * * @param normal * the vector to reflect about * @return this */ public Vector3d reflect(Vector3dc normal) { double x = normal.x(); double y = normal.y(); double z = normal.z(); double dot = Math.fma(this.x, x, Math.fma(this.y, y, this.z * z)); this.x = this.x - (dot + dot) * x; this.y = this.y - (dot + dot) * y; this.z = this.z - (dot + dot) * z; return this; } /** * Reflect this vector about the given normal vector. * * @param x * the x component of the normal * @param y * the y component of the normal * @param z * the z component of the normal * @return this */ public Vector3d reflect(double x, double y, double z) { double dot = Math.fma(this.x, x, Math.fma(this.y, y, this.z * z)); this.x = this.x - (dot + dot) * x; this.y = this.y - (dot + dot) * y; this.z = this.z - (dot + dot) * z; return this; } public Vector3d reflect(Vector3dc normal, Vector3d dest) { double x = normal.x(); double y = normal.y(); double z = normal.z(); double dot = Math.fma(this.x, x, Math.fma(this.y, y, this.z * z)); dest.x = this.x - (dot + dot) * x; dest.y = this.y - (dot + dot) * y; dest.z = this.z - (dot + dot) * z; return dest; } public Vector3d reflect(double x, double y, double z, Vector3d dest) { double dot = Math.fma(this.x, x, Math.fma(this.y, y, this.z * z)); dest.x = this.x - (dot + dot) * x; dest.y = this.y - (dot + dot) * y; dest.z = this.z - (dot + dot) * z; return dest; } /** * Compute the half vector between this and the other vector. * * @param other * the other vector * @return this */ public Vector3d half(Vector3dc other) { return this.set(this).add(other.x(), other.y(), other.z()).normalize(); } /** * Compute the half vector between this and the vector (x, y, z). * * @param x * the x component of the other vector * @param y * the y component of the other vector * @param z * the z component of the other vector * @return this */ public Vector3d half(double x, double y, double z) { return this.set(this).add(x, y, z).normalize(); } public Vector3d half(Vector3dc other, Vector3d dest) { return dest.set(this).add(other.x(), other.y(), other.z()).normalize(); } public Vector3d half(double x, double y, double z, Vector3d dest) { return dest.set(this).add(x, y, z).normalize(); } public Vector3d smoothStep(Vector3dc v, double t, Vector3d dest) { double t2 = t * t; double t3 = t2 * t; dest.x = (x + x - v.x() - v.x()) * t3 + (3.0 * v.x() - 3.0 * x) * t2 + x * t + x; dest.y = (y + y - v.y() - v.y()) * t3 + (3.0 * v.y() - 3.0 * y) * t2 + y * t + y; dest.z = (z + z - v.z() - v.z()) * t3 + (3.0 * v.z() - 3.0 * z) * t2 + z * t + z; return dest; } public Vector3d hermite(Vector3dc t0, Vector3dc v1, Vector3dc t1, double t, Vector3d dest) { double t2 = t * t; double t3 = t2 * t; dest.x = (x + x - v1.x() - v1.x() + t1.x() + t0.x()) * t3 + (3.0 * v1.x() - 3.0 * x - t0.x() - t0.x() - t1.x()) * t2 + x * t + x; dest.y = (y + y - v1.y() - v1.y() + t1.y() + t0.y()) * t3 + (3.0 * v1.y() - 3.0 * y - t0.y() - t0.y() - t1.y()) * t2 + y * t + y; dest.z = (z + z - v1.z() - v1.z() + t1.z() + t0.z()) * t3 + (3.0 * v1.z() - 3.0 * z - t0.z() - t0.z() - t1.z()) * t2 + z * t + z; return dest; } /** * Linearly interpolate this and other using the given interpolation factor t * and store the result in this. *

* If t is 0.0 then the result is this. If the interpolation factor is 1.0 * then the result is other. * * @param other * the other vector * @param t * the interpolation factor between 0.0 and 1.0 * @return this */ public Vector3d lerp(Vector3dc other, double t) { this.x = Math.fma(other.x() - x, t, x); this.y = Math.fma(other.y() - y, t, y); this.z = Math.fma(other.z() - z, t, z); return this; } public Vector3d lerp(Vector3dc other, double t, Vector3d dest) { dest.x = Math.fma(other.x() - x, t, x); dest.y = Math.fma(other.y() - y, t, y); dest.z = Math.fma(other.z() - z, t, z); return dest; } public double get(int component) throws IllegalArgumentException { switch (component) { case 0: return x; case 1: return y; case 2: return z; default: throw new IllegalArgumentException(); } } public Vector3i get(int mode, Vector3i dest) { dest.x = Math.roundUsing(this.x(), mode); dest.y = Math.roundUsing(this.y(), mode); dest.z = Math.roundUsing(this.z(), mode); return dest; } public Vector3f get(Vector3f dest) { dest.x = (float) this.x(); dest.y = (float) this.y(); dest.z = (float) this.z(); return dest; } public Vector3d get(Vector3d dest) { dest.x = this.x(); dest.y = this.y(); dest.z = this.z(); return dest; } public int maxComponent() { double absX = Math.abs(x); double absY = Math.abs(y); double absZ = Math.abs(z); if (absX >= absY && absX >= absZ) { return 0; } else if (absY >= absZ) { return 1; } return 2; } public int minComponent() { double absX = Math.abs(x); double absY = Math.abs(y); double absZ = Math.abs(z); if (absX < absY && absX < absZ) { return 0; } else if (absY < absZ) { return 1; } return 2; } public Vector3d orthogonalize(Vector3dc v, Vector3d dest) { /* * http://lolengine.net/blog/2013/09/21/picking-orthogonal-vector-combing-coconuts */ double rx, ry, rz; if (Math.abs(v.x()) > Math.abs(v.z())) { rx = -v.y(); ry = v.x(); rz = 0.0; } else { rx = 0.0; ry = -v.z(); rz = v.y(); } double invLen = Math.invsqrt(rx * rx + ry * ry + rz * rz); dest.x = rx * invLen; dest.y = ry * invLen; dest.z = rz * invLen; return dest; } /** * Transform this vector so that it is orthogonal to the given vector v and normalize the result. *

* Reference: Gram–Schmidt process * * @param v * the reference vector which the result should be orthogonal to * @return this */ public Vector3d orthogonalize(Vector3dc v) { return orthogonalize(v, this); } public Vector3d orthogonalizeUnit(Vector3dc v, Vector3d dest) { return orthogonalize(v, dest); } /** * Transform this vector so that it is orthogonal to the given unit vector v and normalize the result. *

* The vector v is assumed to be a {@link #normalize() unit} vector. *

* Reference: Gram–Schmidt process * * @param v * the reference unit vector which the result should be orthogonal to * @return this */ public Vector3d orthogonalizeUnit(Vector3dc v) { return orthogonalizeUnit(v, this); } /** * Set each component of this vector to the largest (closest to positive * infinity) {@code double} value that is less than or equal to that * component and is equal to a mathematical integer. * * @return this */ public Vector3d floor() { this.x = Math.floor(x); this.y = Math.floor(y); this.z = Math.floor(z); return this; } public Vector3d floor(Vector3d dest) { dest.x = Math.floor(x); dest.y = Math.floor(y); dest.z = Math.floor(z); return dest; } /** * Set each component of this vector to the smallest (closest to negative * infinity) {@code double} value that is greater than or equal to that * component and is equal to a mathematical integer. * * @return this */ public Vector3d ceil() { this.x = Math.ceil(x); this.y = Math.ceil(y); this.z = Math.ceil(z); return this; } public Vector3d ceil(Vector3d dest) { dest.x = Math.ceil(x); dest.y = Math.ceil(y); dest.z = Math.ceil(z); return dest; } /** * Set each component of this vector to the closest double that is equal to * a mathematical integer, with ties rounding to positive infinity. * * @return this */ public Vector3d round() { this.x = Math.round(x); this.y = Math.round(y); this.z = Math.round(z); return this; } public Vector3d round(Vector3d dest) { dest.x = Math.round(x); dest.y = Math.round(y); dest.z = Math.round(z); return dest; } public boolean isFinite() { return Math.isFinite(x) && Math.isFinite(y) && Math.isFinite(z); } public Object clone() throws CloneNotSupportedException { return super.clone(); } }