mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2024-11-14 06:24:12 +01:00
dd18300b70
- Fix Resources not being closed properly - Change versioning scheme to match Create - Add LICENSE to built jar - Fix mods.toml version sync - Move JOML code to non-src directory - Update Gradle - Organize imports
486 lines
20 KiB
Java
486 lines
20 KiB
Java
/*
|
|
* The MIT License
|
|
*
|
|
* Copyright (c) 2016-2021 JOML
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
package com.jozufozu.flywheel.repack.joml;
|
|
|
|
/**
|
|
* A simplex noise algorithm for 2D, 3D and 4D input.
|
|
* <p>
|
|
* It was originally authored by Stefan Gustavson.
|
|
* <p>
|
|
* The original implementation can be found here: <a
|
|
* href="http://staffwww.itn.liu.se/~stegu/simplexnoise/SimplexNoise.java">http://http://staffwww.itn.liu.se/</a>.
|
|
*/
|
|
public class SimplexNoise {
|
|
private static class Vector3b {
|
|
byte x, y, z;
|
|
Vector3b(int x, int y, int z) {
|
|
super();
|
|
this.x = (byte) x;
|
|
this.y = (byte) y;
|
|
this.z = (byte) z;
|
|
}
|
|
}
|
|
private static class Vector4b {
|
|
byte x, y, z, w;
|
|
Vector4b(int x, int y, int z, int w) {
|
|
super();
|
|
this.x = (byte) x;
|
|
this.y = (byte) y;
|
|
this.z = (byte) z;
|
|
this.w = (byte) w;
|
|
}
|
|
}
|
|
|
|
// Kai Burjack:
|
|
// Use a three-component vector here to save memory. (instead of using 4-component 'Grad' class)
|
|
// And as the original author mentioned on the 'Grad' class, using a class to store the gradient components
|
|
// is indeed faster compared to using a simple int[] array...
|
|
private static final Vector3b[] grad3 = { new Vector3b(1, 1, 0), new Vector3b(-1, 1, 0), new Vector3b(1, -1, 0), new Vector3b(-1, -1, 0),
|
|
new Vector3b(1, 0, 1), new Vector3b(-1, 0, 1), new Vector3b(1, 0, -1), new Vector3b(-1, 0, -1), new Vector3b(0, 1, 1), new Vector3b(0, -1, 1),
|
|
new Vector3b(0, 1, -1), new Vector3b(0, -1, -1) };
|
|
|
|
// Kai Burjack:
|
|
// As the original author mentioned on the 'Grad' class, using a class to store the gradient components
|
|
// is indeed faster compared to using a simple int[] array...
|
|
private static final Vector4b[] grad4 = { new Vector4b(0, 1, 1, 1), new Vector4b(0, 1, 1, -1), new Vector4b(0, 1, -1, 1), new Vector4b(0, 1, -1, -1),
|
|
new Vector4b(0, -1, 1, 1), new Vector4b(0, -1, 1, -1), new Vector4b(0, -1, -1, 1), new Vector4b(0, -1, -1, -1), new Vector4b(1, 0, 1, 1),
|
|
new Vector4b(1, 0, 1, -1), new Vector4b(1, 0, -1, 1), new Vector4b(1, 0, -1, -1), new Vector4b(-1, 0, 1, 1), new Vector4b(-1, 0, 1, -1),
|
|
new Vector4b(-1, 0, -1, 1), new Vector4b(-1, 0, -1, -1), new Vector4b(1, 1, 0, 1), new Vector4b(1, 1, 0, -1), new Vector4b(1, -1, 0, 1),
|
|
new Vector4b(1, -1, 0, -1), new Vector4b(-1, 1, 0, 1), new Vector4b(-1, 1, 0, -1), new Vector4b(-1, -1, 0, 1), new Vector4b(-1, -1, 0, -1),
|
|
new Vector4b(1, 1, 1, 0), new Vector4b(1, 1, -1, 0), new Vector4b(1, -1, 1, 0), new Vector4b(1, -1, -1, 0), new Vector4b(-1, 1, 1, 0),
|
|
new Vector4b(-1, 1, -1, 0), new Vector4b(-1, -1, 1, 0), new Vector4b(-1, -1, -1, 0) };
|
|
|
|
// Kai Burjack:
|
|
// Use a byte[] instead of a short[] to save memory
|
|
private static final byte[] p = { -105, -96, -119, 91, 90, 15, -125, 13, -55, 95, 96, 53, -62, -23, 7, -31, -116, 36, 103, 30, 69, -114, 8, 99, 37, -16,
|
|
21, 10, 23, -66, 6, -108, -9, 120, -22, 75, 0, 26, -59, 62, 94, -4, -37, -53, 117, 35, 11, 32, 57, -79, 33, 88, -19, -107, 56, 87, -82, 20, 125,
|
|
-120, -85, -88, 68, -81, 74, -91, 71, -122, -117, 48, 27, -90, 77, -110, -98, -25, 83, 111, -27, 122, 60, -45, -123, -26, -36, 105, 92, 41, 55, 46,
|
|
-11, 40, -12, 102, -113, 54, 65, 25, 63, -95, 1, -40, 80, 73, -47, 76, -124, -69, -48, 89, 18, -87, -56, -60, -121, -126, 116, -68, -97, 86, -92,
|
|
100, 109, -58, -83, -70, 3, 64, 52, -39, -30, -6, 124, 123, 5, -54, 38, -109, 118, 126, -1, 82, 85, -44, -49, -50, 59, -29, 47, 16, 58, 17, -74,
|
|
-67, 28, 42, -33, -73, -86, -43, 119, -8, -104, 2, 44, -102, -93, 70, -35, -103, 101, -101, -89, 43, -84, 9, -127, 22, 39, -3, 19, 98, 108, 110,
|
|
79, 113, -32, -24, -78, -71, 112, 104, -38, -10, 97, -28, -5, 34, -14, -63, -18, -46, -112, 12, -65, -77, -94, -15, 81, 51, -111, -21, -7, 14, -17,
|
|
107, 49, -64, -42, 31, -75, -57, 106, -99, -72, 84, -52, -80, 115, 121, 50, 45, 127, 4, -106, -2, -118, -20, -51, 93, -34, 114, 67, 29, 24, 72,
|
|
-13, -115, -128, -61, 78, 66, -41, 61, -100, -76 };
|
|
// To remove the need for index wrapping, float the permutation table length
|
|
private static final byte[] perm = new byte[512];
|
|
private static final byte[] permMod12 = new byte[512];
|
|
static {
|
|
for (int i = 0; i < 512; i++) {
|
|
perm[i] = p[i & 255];
|
|
permMod12[i] = (byte) ((perm[i]&0xFF) % 12);
|
|
}
|
|
}
|
|
|
|
// Skewing and unskewing factors for 2, 3, and 4 dimensions
|
|
private static final float F2 = 0.3660254037844386f; // <- (float) (0.5f * (Math.sqrt(3.0f) - 1.0f));
|
|
private static final float G2 = 0.21132486540518713f; // <- (float) ((3.0f - Math.sqrt(3.0f)) / 6.0f);
|
|
private static final float F3 = 1.0f / 3.0f;
|
|
private static final float G3 = 1.0f / 6.0f;
|
|
private static final float F4 = 0.30901699437494745f; // <- (float) ((Math.sqrt(5.0f) - 1.0f) / 4.0f);
|
|
private static final float G4 = 0.1381966011250105f; // <- (float) ((5.0f - Math.sqrt(5.0f)) / 20.0f);
|
|
|
|
// This method is a *lot* faster than using (int)Math.floor(x)
|
|
private static int fastfloor(float x) {
|
|
int xi = (int) x;
|
|
return x < xi ? xi - 1 : xi;
|
|
}
|
|
|
|
private static float dot(Vector3b g, float x, float y) {
|
|
return g.x * x + g.y * y;
|
|
}
|
|
|
|
private static float dot(Vector3b g, float x, float y, float z) {
|
|
return g.x * x + g.y * y + g.z * z;
|
|
}
|
|
|
|
private static float dot(Vector4b g, float x, float y, float z, float w) {
|
|
return g.x * x + g.y * y + g.z * z + g.w * w;
|
|
}
|
|
|
|
/**
|
|
* Compute 2D simplex noise for the given input vector <code>(x, y)</code>.
|
|
* <p>
|
|
* The result is in the range <code>[-1..+1]</code>.
|
|
*
|
|
* @param x
|
|
* the x coordinate
|
|
* @param y
|
|
* the y coordinate
|
|
* @return the noise value (within <code>[-1..+1]</code>)
|
|
*/
|
|
public static float noise(float x, float y) {
|
|
float n0, n1, n2; // Noise contributions from the three corners
|
|
// Skew the input space to determine which simplex cell we're in
|
|
float s = (x + y) * F2; // Hairy factor for 2D
|
|
int i = fastfloor(x + s);
|
|
int j = fastfloor(y + s);
|
|
float t = (i + j) * G2;
|
|
float X0 = i - t; // Unskew the cell origin back to (x,y) space
|
|
float Y0 = j - t;
|
|
float x0 = x - X0; // The x,y distances from the cell origin
|
|
float y0 = y - Y0;
|
|
// For the 2D case, the simplex shape is an equilateral triangle.
|
|
// Determine which simplex we are in.
|
|
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
|
|
if (x0 > y0) {
|
|
i1 = 1;
|
|
j1 = 0;
|
|
} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
|
|
else {
|
|
i1 = 0;
|
|
j1 = 1;
|
|
} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
|
|
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
|
|
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
|
|
// c = (3-sqrt(3))/6
|
|
float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
|
|
float y1 = y0 - j1 + G2;
|
|
float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords
|
|
float y2 = y0 - 1.0f + 2.0f * G2;
|
|
// Work out the hashed gradient indices of the three simplex corners
|
|
int ii = i & 255;
|
|
int jj = j & 255;
|
|
int gi0 = permMod12[ii + perm[jj]&0xFF]&0xFF;
|
|
int gi1 = permMod12[ii + i1 + perm[jj + j1]&0xFF]&0xFF;
|
|
int gi2 = permMod12[ii + 1 + perm[jj + 1]&0xFF]&0xFF;
|
|
// Calculate the contribution from the three corners
|
|
float t0 = 0.5f - x0 * x0 - y0 * y0;
|
|
if (t0 < 0.0f)
|
|
n0 = 0.0f;
|
|
else {
|
|
t0 *= t0;
|
|
n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
|
|
}
|
|
float t1 = 0.5f - x1 * x1 - y1 * y1;
|
|
if (t1 < 0.0f)
|
|
n1 = 0.0f;
|
|
else {
|
|
t1 *= t1;
|
|
n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
|
|
}
|
|
float t2 = 0.5f - x2 * x2 - y2 * y2;
|
|
if (t2 < 0.0f)
|
|
n2 = 0.0f;
|
|
else {
|
|
t2 *= t2;
|
|
n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
|
|
}
|
|
// Add contributions from each corner to get the final noise value.
|
|
// The result is scaled to return values in the interval [-1,1].
|
|
return 70.0f * (n0 + n1 + n2);
|
|
}
|
|
|
|
/**
|
|
* Compute 3D simplex noise for the given input vector <code>(x, y, z)</code>.
|
|
* <p>
|
|
* The result is in the range <code>[-1..+1]</code>.
|
|
*
|
|
* @param x
|
|
* the x coordinate
|
|
* @param y
|
|
* the y coordinate
|
|
* @param z
|
|
* the z coordinate
|
|
* @return the noise value (within <code>[-1..+1]</code>)
|
|
*/
|
|
public static float noise(float x, float y, float z) {
|
|
float n0, n1, n2, n3; // Noise contributions from the four corners
|
|
// Skew the input space to determine which simplex cell we're in
|
|
float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D
|
|
int i = fastfloor(x + s);
|
|
int j = fastfloor(y + s);
|
|
int k = fastfloor(z + s);
|
|
float t = (i + j + k) * G3;
|
|
float X0 = i - t; // Unskew the cell origin back to (x,y,z) space
|
|
float Y0 = j - t;
|
|
float Z0 = k - t;
|
|
float x0 = x - X0; // The x,y,z distances from the cell origin
|
|
float y0 = y - Y0;
|
|
float z0 = z - Z0;
|
|
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
|
|
// Determine which simplex we are in.
|
|
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
|
|
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
|
|
if (x0 >= y0) {
|
|
if (y0 >= z0) {
|
|
i1 = 1;
|
|
j1 = 0;
|
|
k1 = 0;
|
|
i2 = 1;
|
|
j2 = 1;
|
|
k2 = 0;
|
|
} // X Y Z order
|
|
else if (x0 >= z0) {
|
|
i1 = 1;
|
|
j1 = 0;
|
|
k1 = 0;
|
|
i2 = 1;
|
|
j2 = 0;
|
|
k2 = 1;
|
|
} // X Z Y order
|
|
else {
|
|
i1 = 0;
|
|
j1 = 0;
|
|
k1 = 1;
|
|
i2 = 1;
|
|
j2 = 0;
|
|
k2 = 1;
|
|
} // Z X Y order
|
|
} else { // x0<y0
|
|
if (y0 < z0) {
|
|
i1 = 0;
|
|
j1 = 0;
|
|
k1 = 1;
|
|
i2 = 0;
|
|
j2 = 1;
|
|
k2 = 1;
|
|
} // Z Y X order
|
|
else if (x0 < z0) {
|
|
i1 = 0;
|
|
j1 = 1;
|
|
k1 = 0;
|
|
i2 = 0;
|
|
j2 = 1;
|
|
k2 = 1;
|
|
} // Y Z X order
|
|
else {
|
|
i1 = 0;
|
|
j1 = 1;
|
|
k1 = 0;
|
|
i2 = 1;
|
|
j2 = 1;
|
|
k2 = 0;
|
|
} // Y X Z order
|
|
}
|
|
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
|
|
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
|
|
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
|
|
// c = 1/6.
|
|
float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
|
|
float y1 = y0 - j1 + G3;
|
|
float z1 = z0 - k1 + G3;
|
|
float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords
|
|
float y2 = y0 - j2 + 2.0f * G3;
|
|
float z2 = z0 - k2 + 2.0f * G3;
|
|
float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords
|
|
float y3 = y0 - 1.0f + 3.0f * G3;
|
|
float z3 = z0 - 1.0f + 3.0f * G3;
|
|
// Work out the hashed gradient indices of the four simplex corners
|
|
int ii = i & 255;
|
|
int jj = j & 255;
|
|
int kk = k & 255;
|
|
int gi0 = permMod12[ii + perm[jj + perm[kk]&0xFF]&0xFF]&0xFF;
|
|
int gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]&0xFF]&0xFF]&0xFF;
|
|
int gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]&0xFF]&0xFF]&0xFF;
|
|
int gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]&0xFF]&0xFF]&0xFF;
|
|
// Calculate the contribution from the four corners
|
|
float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0;
|
|
if (t0 < 0.0f)
|
|
n0 = 0.0f;
|
|
else {
|
|
t0 *= t0;
|
|
n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
|
|
}
|
|
float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1;
|
|
if (t1 < 0.0f)
|
|
n1 = 0.0f;
|
|
else {
|
|
t1 *= t1;
|
|
n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
|
|
}
|
|
float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2;
|
|
if (t2 < 0.0f)
|
|
n2 = 0.0f;
|
|
else {
|
|
t2 *= t2;
|
|
n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
|
|
}
|
|
float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3;
|
|
if (t3 < 0.0f)
|
|
n3 = 0.0f;
|
|
else {
|
|
t3 *= t3;
|
|
n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
|
|
}
|
|
// Add contributions from each corner to get the final noise value.
|
|
// The result is scaled to stay just inside [-1,1]
|
|
return 32.0f * (n0 + n1 + n2 + n3);
|
|
}
|
|
|
|
/**
|
|
* Compute 4D simplex noise for the given input vector <code>(x, y, z, w)</code>.
|
|
* <p>
|
|
* The result is in the range <code>[-1..+1]</code>.
|
|
*
|
|
* @param x
|
|
* the x coordinate
|
|
* @param y
|
|
* the y coordinate
|
|
* @param z
|
|
* the z coordinate
|
|
* @param w
|
|
* the w coordinate
|
|
* @return the noise value (within <code>[-1..+1]</code>)
|
|
*/
|
|
public static float noise(float x, float y, float z, float w) {
|
|
float n0, n1, n2, n3, n4; // Noise contributions from the five corners
|
|
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
|
|
float s = (x + y + z + w) * F4; // Factor for 4D skewing
|
|
int i = fastfloor(x + s);
|
|
int j = fastfloor(y + s);
|
|
int k = fastfloor(z + s);
|
|
int l = fastfloor(w + s);
|
|
float t = (i + j + k + l) * G4; // Factor for 4D unskewing
|
|
float X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
|
|
float Y0 = j - t;
|
|
float Z0 = k - t;
|
|
float W0 = l - t;
|
|
float x0 = x - X0; // The x,y,z,w distances from the cell origin
|
|
float y0 = y - Y0;
|
|
float z0 = z - Z0;
|
|
float w0 = w - W0;
|
|
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
|
|
// To find out which of the 24 possible simplices we're in, we need to
|
|
// determine the magnitude ordering of x0, y0, z0 and w0.
|
|
// Six pair-wise comparisons are performed between each possible pair
|
|
// of the four coordinates, and the results are used to rank the numbers.
|
|
int rankx = 0;
|
|
int ranky = 0;
|
|
int rankz = 0;
|
|
int rankw = 0;
|
|
if (x0 > y0)
|
|
rankx++;
|
|
else
|
|
ranky++;
|
|
if (x0 > z0)
|
|
rankx++;
|
|
else
|
|
rankz++;
|
|
if (x0 > w0)
|
|
rankx++;
|
|
else
|
|
rankw++;
|
|
if (y0 > z0)
|
|
ranky++;
|
|
else
|
|
rankz++;
|
|
if (y0 > w0)
|
|
ranky++;
|
|
else
|
|
rankw++;
|
|
if (z0 > w0)
|
|
rankz++;
|
|
else
|
|
rankw++;
|
|
int i1, j1, k1, l1; // The integer offsets for the second simplex corner
|
|
int i2, j2, k2, l2; // The integer offsets for the third simplex corner
|
|
int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
|
|
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
|
|
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
|
|
// impossible. Only the 24 indices which have non-zero entries make any sense.
|
|
// We use a thresholding to set the coordinates in turn from the largest magnitude.
|
|
// Rank 3 denotes the largest coordinate.
|
|
i1 = rankx >= 3 ? 1 : 0;
|
|
j1 = ranky >= 3 ? 1 : 0;
|
|
k1 = rankz >= 3 ? 1 : 0;
|
|
l1 = rankw >= 3 ? 1 : 0;
|
|
// Rank 2 denotes the second largest coordinate.
|
|
i2 = rankx >= 2 ? 1 : 0;
|
|
j2 = ranky >= 2 ? 1 : 0;
|
|
k2 = rankz >= 2 ? 1 : 0;
|
|
l2 = rankw >= 2 ? 1 : 0;
|
|
// Rank 1 denotes the second smallest coordinate.
|
|
i3 = rankx >= 1 ? 1 : 0;
|
|
j3 = ranky >= 1 ? 1 : 0;
|
|
k3 = rankz >= 1 ? 1 : 0;
|
|
l3 = rankw >= 1 ? 1 : 0;
|
|
// The fifth corner has all coordinate offsets = 1, so no need to compute that.
|
|
float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
|
|
float y1 = y0 - j1 + G4;
|
|
float z1 = z0 - k1 + G4;
|
|
float w1 = w0 - l1 + G4;
|
|
float x2 = x0 - i2 + 2.0f * G4; // Offsets for third corner in (x,y,z,w) coords
|
|
float y2 = y0 - j2 + 2.0f * G4;
|
|
float z2 = z0 - k2 + 2.0f * G4;
|
|
float w2 = w0 - l2 + 2.0f * G4;
|
|
float x3 = x0 - i3 + 3.0f * G4; // Offsets for fourth corner in (x,y,z,w) coords
|
|
float y3 = y0 - j3 + 3.0f * G4;
|
|
float z3 = z0 - k3 + 3.0f * G4;
|
|
float w3 = w0 - l3 + 3.0f * G4;
|
|
float x4 = x0 - 1.0f + 4.0f * G4; // Offsets for last corner in (x,y,z,w) coords
|
|
float y4 = y0 - 1.0f + 4.0f * G4;
|
|
float z4 = z0 - 1.0f + 4.0f * G4;
|
|
float w4 = w0 - 1.0f + 4.0f * G4;
|
|
// Work out the hashed gradient indices of the five simplex corners
|
|
int ii = i & 255;
|
|
int jj = j & 255;
|
|
int kk = k & 255;
|
|
int ll = l & 255;
|
|
int gi0 = (perm[ii + perm[jj + perm[kk + perm[ll]&0xFF]&0xFF]&0xFF]&0xFF) % 32;
|
|
int gi1 = (perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]&0xFF]&0xFF]&0xFF]&0xFF) % 32;
|
|
int gi2 = (perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]&0xFF]&0xFF]&0xFF]&0xFF) % 32;
|
|
int gi3 = (perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]&0xFF]&0xFF]&0xFF]&0xFF) % 32;
|
|
int gi4 = (perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]&0xFF]&0xFF]&0xFF]&0xFF) % 32;
|
|
// Calculate the contribution from the five corners
|
|
float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
|
|
if (t0 < 0.0f)
|
|
n0 = 0.0f;
|
|
else {
|
|
t0 *= t0;
|
|
n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
|
|
}
|
|
float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
|
|
if (t1 < 0.0f)
|
|
n1 = 0.0f;
|
|
else {
|
|
t1 *= t1;
|
|
n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
|
|
}
|
|
float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
|
|
if (t2 < 0.0f)
|
|
n2 = 0.0f;
|
|
else {
|
|
t2 *= t2;
|
|
n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
|
|
}
|
|
float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
|
|
if (t3 < 0.0f)
|
|
n3 = 0.0f;
|
|
else {
|
|
t3 *= t3;
|
|
n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
|
|
}
|
|
float t4 = 0.6f - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
|
|
if (t4 < 0.0f)
|
|
n4 = 0.0f;
|
|
else {
|
|
t4 *= t4;
|
|
n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
|
|
}
|
|
// Sum up and scale the result to cover the range [-1,1]
|
|
return 27.0f * (n0 + n1 + n2 + n3 + n4);
|
|
}
|
|
|
|
}
|