Flywheel/joml/AxisAngle4d.java
PepperCode1 dd18300b70 Scheme-a-version
- Fix Resources not being closed properly
- Change versioning scheme to match Create
- Add LICENSE to built jar
- Fix mods.toml version sync
- Move JOML code to non-src directory
- Update Gradle
- Organize imports
2022-07-15 00:00:54 -07:00

906 lines
31 KiB
Java

/*
* The MIT License
*
* Copyright (c) 2015-2021 Kai Burjack
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.jozufozu.flywheel.repack.joml;
import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.text.DecimalFormat;
import java.text.NumberFormat;
/**
* Represents a 3D rotation of a given radians about an axis represented as an
* unit 3D vector.
* <p>
* This class uses double-precision components.
*
* @author Kai Burjack
*/
public class AxisAngle4d implements Externalizable, Cloneable {
private static final long serialVersionUID = 1L;
/**
* The angle in radians.
*/
public double angle;
/**
* The x-component of the rotation axis.
*/
public double x;
/**
* The y-component of the rotation axis.
*/
public double y;
/**
* The z-component of the rotation axis.
*/
public double z;
/**
* Create a new {@link AxisAngle4d} with zero rotation about <code>(0, 0, 1)</code>.
*/
public AxisAngle4d() {
z = 1.0;
}
/**
* Create a new {@link AxisAngle4d} with the same values of <code>a</code>.
*
* @param a
* the AngleAxis4d to copy the values from
*/
public AxisAngle4d(AxisAngle4d a) {
x = a.x;
y = a.y;
z = a.z;
angle = (a.angle < 0.0 ? Math.PI + Math.PI + a.angle % (Math.PI + Math.PI) : a.angle) % (Math.PI + Math.PI);
}
/**
* Create a new {@link AxisAngle4d} with the same values of <code>a</code>.
*
* @param a
* the AngleAxis4f to copy the values from
*/
public AxisAngle4d(AxisAngle4f a) {
x = a.x;
y = a.y;
z = a.z;
angle = (a.angle < 0.0 ? Math.PI + Math.PI + a.angle % (Math.PI + Math.PI) : a.angle) % (Math.PI + Math.PI);
}
/**
* Create a new {@link AxisAngle4d} from the given {@link Quaternionfc}.
* <p>
* Reference: <a href=
* "http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/"
* >http://www.euclideanspace.com</a>
*
* @param q
* the quaternion from which to create the new AngleAxis4f
*/
public AxisAngle4d(Quaternionfc q) {
float acos = Math.safeAcos(q.w());
float invSqrt = Math.invsqrt(1.0f - q.w() * q.w());
if (Float.isInfinite(invSqrt)) {
this.x = 0.0;
this.y = 0.0;
this.z = 1.0;
} else {
this.x = q.x() * invSqrt;
this.y = q.y() * invSqrt;
this.z = q.z() * invSqrt;
}
this.angle = acos + acos;
}
/**
* Create a new {@link AxisAngle4d} from the given {@link Quaterniondc}.
* <p>
* Reference: <a href=
* "http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/"
* >http://www.euclideanspace.com</a>
*
* @param q
* the quaternion from which to create the new AngleAxis4d
*/
public AxisAngle4d(Quaterniondc q) {
double acos = Math.safeAcos(q.w());
double invSqrt = Math.invsqrt(1.0 - q.w() * q.w());
if (Double.isInfinite(invSqrt)) {
this.x = 0.0;
this.y = 0.0;
this.z = 1.0;
} else {
this.x = q.x() * invSqrt;
this.y = q.y() * invSqrt;
this.z = q.z() * invSqrt;
}
this.angle = acos + acos;
}
/**
* Create a new {@link AxisAngle4d} with the given values.
*
* @param angle
* the angle in radians
* @param x
* the x-coordinate of the rotation axis
* @param y
* the y-coordinate of the rotation axis
* @param z
* the z-coordinate of the rotation axis
*/
public AxisAngle4d(double angle, double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
this.angle = (angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI);
}
/**
* Create a new {@link AxisAngle4d} with the given values.
*
* @param angle the angle in radians
* @param v the rotation axis as a {@link Vector3dc}
*/
public AxisAngle4d(double angle, Vector3dc v) {
this(angle, v.x(), v.y(), v.z());
}
/**
* Create a new {@link AxisAngle4d} with the given values.
*
* @param angle the angle in radians
* @param v the rotation axis as a {@link Vector3f}
*/
public AxisAngle4d(double angle, Vector3f v) {
this(angle, v.x, v.y, v.z);
}
/**
* Set this {@link AxisAngle4d} to the values of <code>a</code>.
*
* @param a
* the AngleAxis4f to copy the values from
* @return this
*/
public AxisAngle4d set(AxisAngle4d a) {
x = a.x;
y = a.y;
z = a.z;
angle = (a.angle < 0.0 ? Math.PI + Math.PI + a.angle % (Math.PI + Math.PI) : a.angle) % (Math.PI + Math.PI);
return this;
}
/**
* Set this {@link AxisAngle4d} to the values of <code>a</code>.
*
* @param a
* the AngleAxis4f to copy the values from
* @return this
*/
public AxisAngle4d set(AxisAngle4f a) {
x = a.x;
y = a.y;
z = a.z;
angle = (a.angle < 0.0 ? Math.PI + Math.PI + a.angle % (Math.PI + Math.PI) : a.angle) % (Math.PI + Math.PI);
return this;
}
/**
* Set this {@link AxisAngle4d} to the given values.
*
* @param angle
* the angle in radians
* @param x
* the x-coordinate of the rotation axis
* @param y
* the y-coordinate of the rotation axis
* @param z
* the z-coordinate of the rotation axis
* @return this
*/
public AxisAngle4d set(double angle, double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
this.angle = (angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI);
return this;
}
/**
* Set this {@link AxisAngle4d} to the given values.
*
* @param angle
* the angle in radians
* @param v
* the rotation axis as a {@link Vector3dc}
* @return this
*/
public AxisAngle4d set(double angle, Vector3dc v) {
return set(angle, v.x(), v.y(), v.z());
}
/**
* Set this {@link AxisAngle4d} to the given values.
*
* @param angle
* the angle in radians
* @param v
* the rotation axis as a {@link Vector3f}
* @return this
*/
public AxisAngle4d set(double angle, Vector3f v) {
return set(angle, v.x, v.y, v.z);
}
/**
* Set this {@link AxisAngle4d} to be equivalent to the given
* {@link Quaternionfc}.
*
* @param q
* the quaternion to set this AngleAxis4d from
* @return this
*/
public AxisAngle4d set(Quaternionfc q) {
float acos = Math.safeAcos(q.w());
float invSqrt = Math.invsqrt(1.0f - q.w() * q.w());
if (Float.isInfinite(invSqrt)) {
this.x = 0.0;
this.y = 0.0;
this.z = 1.0;
} else {
this.x = q.x() * invSqrt;
this.y = q.y() * invSqrt;
this.z = q.z() * invSqrt;
}
this.angle = acos + acos;
return this;
}
/**
* Set this {@link AxisAngle4d} to be equivalent to the given
* {@link Quaterniondc}.
*
* @param q
* the quaternion to set this AngleAxis4d from
* @return this
*/
public AxisAngle4d set(Quaterniondc q) {
double acos = Math.safeAcos(q.w());
double invSqrt = Math.invsqrt(1.0f - q.w() * q.w());
if (Double.isInfinite(invSqrt)) {
this.x = 0.0;
this.y = 0.0;
this.z = 1.0;
} else {
this.x = q.x() * invSqrt;
this.y = q.y() * invSqrt;
this.z = q.z() * invSqrt;
}
this.angle = acos + acos;
return this;
}
/**
* Set this {@link AxisAngle4d} to be equivalent to the rotation
* of the given {@link Matrix3fc}.
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a>
*
* @param m
* the Matrix3fc to set this AngleAxis4d from
* @return this
*/
public AxisAngle4d set(Matrix3fc m) {
double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02();
double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12();
double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22();
double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02());
double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12());
double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22());
nm00 *= lenX; nm01 *= lenX; nm02 *= lenX;
nm10 *= lenY; nm11 *= lenY; nm12 *= lenY;
nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ;
double epsilon = 1E-4, epsilon2 = 1E-3;
if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) {
if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2
&& Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) {
x = 0;
y = 0;
z = 1;
angle = 0;
return this;
}
angle = Math.PI;
double xx = (nm00 + 1) / 2;
double yy = (nm11 + 1) / 2;
double zz = (nm22 + 1) / 2;
double xy = (nm10 + nm01) / 4;
double xz = (nm20 + nm02) / 4;
double yz = (nm21 + nm12) / 4;
if ((xx > yy) && (xx > zz)) {
x = Math.sqrt(xx);
y = xy / x;
z = xz / x;
} else if (yy > zz) {
y = Math.sqrt(yy);
x = xy / y;
z = yz / y;
} else {
z = Math.sqrt(zz);
x = xz / z;
y = yz / z;
}
return this;
}
double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10));
angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2);
x = (nm12 - nm21) / s;
y = (nm20 - nm02) / s;
z = (nm01 - nm10) / s;
return this;
}
/**
* Set this {@link AxisAngle4d} to be equivalent to the rotation
* of the given {@link Matrix3dc}.
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a>
*
* @param m
* the Matrix3dc to set this AngleAxis4d from
* @return this
*/
public AxisAngle4d set(Matrix3dc m) {
double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02();
double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12();
double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22();
double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02());
double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12());
double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22());
nm00 *= lenX; nm01 *= lenX; nm02 *= lenX;
nm10 *= lenY; nm11 *= lenY; nm12 *= lenY;
nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ;
double epsilon = 1E-4, epsilon2 = 1E-3;
if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) {
if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2
&& Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) {
x = 0;
y = 0;
z = 1;
angle = 0;
return this;
}
angle = Math.PI;
double xx = (nm00 + 1) / 2;
double yy = (nm11 + 1) / 2;
double zz = (nm22 + 1) / 2;
double xy = (nm10 + nm01) / 4;
double xz = (nm20 + nm02) / 4;
double yz = (nm21 + nm12) / 4;
if ((xx > yy) && (xx > zz)) {
x = Math.sqrt(xx);
y = xy / x;
z = xz / x;
} else if (yy > zz) {
y = Math.sqrt(yy);
x = xy / y;
z = yz / y;
} else {
z = Math.sqrt(zz);
x = xz / z;
y = yz / z;
}
return this;
}
double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10));
angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2);
x = (nm12 - nm21) / s;
y = (nm20 - nm02) / s;
z = (nm01 - nm10) / s;
return this;
}
/**
* Set this {@link AxisAngle4d} to be equivalent to the rotational component
* of the given {@link Matrix4fc}.
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a>
*
* @param m
* the Matrix4fc to set this AngleAxis4d from
* @return this
*/
public AxisAngle4d set(Matrix4fc m) {
double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02();
double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12();
double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22();
double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02());
double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12());
double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22());
nm00 *= lenX; nm01 *= lenX; nm02 *= lenX;
nm10 *= lenY; nm11 *= lenY; nm12 *= lenY;
nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ;
double epsilon = 1E-4, epsilon2 = 1E-3;
if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) {
if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2
&& Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) {
x = 0;
y = 0;
z = 1;
angle = 0;
return this;
}
angle = Math.PI;
double xx = (nm00 + 1) / 2;
double yy = (nm11 + 1) / 2;
double zz = (nm22 + 1) / 2;
double xy = (nm10 + nm01) / 4;
double xz = (nm20 + nm02) / 4;
double yz = (nm21 + nm12) / 4;
if ((xx > yy) && (xx > zz)) {
x = Math.sqrt(xx);
y = xy / x;
z = xz / x;
} else if (yy > zz) {
y = Math.sqrt(yy);
x = xy / y;
z = yz / y;
} else {
z = Math.sqrt(zz);
x = xz / z;
y = yz / z;
}
return this;
}
double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10));
angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2);
x = (nm12 - nm21) / s;
y = (nm20 - nm02) / s;
z = (nm01 - nm10) / s;
return this;
}
/**
* Set this {@link AxisAngle4d} to be equivalent to the rotational component
* of the given {@link Matrix4x3fc}.
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a>
*
* @param m
* the Matrix4x3fc to set this AngleAxis4d from
* @return this
*/
public AxisAngle4d set(Matrix4x3fc m) {
double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02();
double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12();
double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22();
double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02());
double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12());
double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22());
nm00 *= lenX; nm01 *= lenX; nm02 *= lenX;
nm10 *= lenY; nm11 *= lenY; nm12 *= lenY;
nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ;
double epsilon = 1E-4, epsilon2 = 1E-3;
if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) {
if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2
&& Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) {
x = 0;
y = 0;
z = 1;
angle = 0;
return this;
}
angle = Math.PI;
double xx = (nm00 + 1) / 2;
double yy = (nm11 + 1) / 2;
double zz = (nm22 + 1) / 2;
double xy = (nm10 + nm01) / 4;
double xz = (nm20 + nm02) / 4;
double yz = (nm21 + nm12) / 4;
if ((xx > yy) && (xx > zz)) {
x = Math.sqrt(xx);
y = xy / x;
z = xz / x;
} else if (yy > zz) {
y = Math.sqrt(yy);
x = xy / y;
z = yz / y;
} else {
z = Math.sqrt(zz);
x = xz / z;
y = yz / z;
}
return this;
}
double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10));
angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2);
x = (nm12 - nm21) / s;
y = (nm20 - nm02) / s;
z = (nm01 - nm10) / s;
return this;
}
/**
* Set this {@link AxisAngle4d} to be equivalent to the rotational component
* of the given {@link Matrix4dc}.
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a>
*
* @param m
* the Matrix4dc to set this AngleAxis4d from
* @return this
*/
public AxisAngle4d set(Matrix4dc m) {
double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02();
double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12();
double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22();
double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02());
double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12());
double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22());
nm00 *= lenX; nm01 *= lenX; nm02 *= lenX;
nm10 *= lenY; nm11 *= lenY; nm12 *= lenY;
nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ;
double epsilon = 1E-4, epsilon2 = 1E-3;
if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) {
if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2
&& Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) {
x = 0;
y = 0;
z = 1;
angle = 0;
return this;
}
angle = Math.PI;
double xx = (nm00 + 1) / 2;
double yy = (nm11 + 1) / 2;
double zz = (nm22 + 1) / 2;
double xy = (nm10 + nm01) / 4;
double xz = (nm20 + nm02) / 4;
double yz = (nm21 + nm12) / 4;
if ((xx > yy) && (xx > zz)) {
x = Math.sqrt(xx);
y = xy / x;
z = xz / x;
} else if (yy > zz) {
y = Math.sqrt(yy);
x = xy / y;
z = yz / y;
} else {
z = Math.sqrt(zz);
x = xz / z;
y = yz / z;
}
return this;
}
double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10));
angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2);
x = (nm12 - nm21) / s;
y = (nm20 - nm02) / s;
z = (nm01 - nm10) / s;
return this;
}
/**
* Set the given {@link Quaternionf} to be equivalent to this {@link AxisAngle4d} rotation.
*
* @see Quaternionf#set(AxisAngle4d)
*
* @param q
* the quaternion to set
* @return q
*/
public Quaternionf get(Quaternionf q) {
return q.set(this);
}
/**
* Set the given {@link Quaterniond} to be equivalent to this {@link AxisAngle4d} rotation.
*
* @see Quaterniond#set(AxisAngle4d)
*
* @param q
* the quaternion to set
* @return q
*/
public Quaterniond get(Quaterniond q) {
return q.set(this);
}
/**
* Set the given {@link Matrix4f} to a rotation transformation equivalent to this {@link AxisAngle4d}.
*
* @see Matrix4f#set(AxisAngle4d)
*
* @param m
* the matrix to set
* @return m
*/
public Matrix4f get(Matrix4f m) {
return m.set(this);
}
/**
* Set the given {@link Matrix3f} to a rotation transformation equivalent to this {@link AxisAngle4d}.
*
* @see Matrix3f#set(AxisAngle4d)
*
* @param m
* the matrix to set
* @return m
*/
public Matrix3f get(Matrix3f m) {
return m.set(this);
}
/**
* Set the given {@link Matrix4d} to a rotation transformation equivalent to this {@link AxisAngle4d}.
*
* @see Matrix4f#set(AxisAngle4d)
*
* @param m
* the matrix to set
* @return m
*/
public Matrix4d get(Matrix4d m) {
return m.set(this);
}
/**
* Set the given {@link Matrix3d} to a rotation transformation equivalent to this {@link AxisAngle4d}.
*
* @see Matrix3f#set(AxisAngle4d)
*
* @param m
* the matrix to set
* @return m
*/
public Matrix3d get(Matrix3d m) {
return m.set(this);
}
/**
* Set the given {@link AxisAngle4d} to this {@link AxisAngle4d}.
*
* @param dest
* will hold the result
* @return dest
*/
public AxisAngle4d get(AxisAngle4d dest) {
return dest.set(this);
}
/**
* Set the given {@link AxisAngle4f} to this {@link AxisAngle4d}.
*
* @param dest
* will hold the result
* @return dest
*/
public AxisAngle4f get(AxisAngle4f dest) {
return dest.set(this);
}
public void writeExternal(ObjectOutput out) throws IOException {
out.writeDouble(angle);
out.writeDouble(x);
out.writeDouble(y);
out.writeDouble(z);
}
public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
angle = in.readDouble();
x = in.readDouble();
y = in.readDouble();
z = in.readDouble();
}
/**
* Normalize the axis vector.
*
* @return this
*/
public AxisAngle4d normalize() {
double invLength = Math.invsqrt(x * x + y * y + z * z);
x *= invLength;
y *= invLength;
z *= invLength;
return this;
}
/**
* Increase the rotation angle by the given amount.
* <p>
* This method also takes care of wrapping around.
*
* @param ang
* the angle increase
* @return this
*/
public AxisAngle4d rotate(double ang) {
angle += ang;
angle = (angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI);
return this;
}
/**
* Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}.
*
* @param v
* the vector to transform
* @return v
*/
public Vector3d transform(Vector3d v) {
return transform(v, v);
}
/**
* Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}
* and store the result in <code>dest</code>.
*
* @param v
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
public Vector3d transform(Vector3dc v, Vector3d dest) {
double sin = Math.sin(angle);
double cos = Math.cosFromSin(sin, angle);
double dot = x * v.x() + y * v.y() + z * v.z();
dest.set(v.x() * cos + sin * (y * v.z() - z * v.y()) + (1.0 - cos) * dot * x,
v.y() * cos + sin * (z * v.x() - x * v.z()) + (1.0 - cos) * dot * y,
v.z() * cos + sin * (x * v.y() - y * v.x()) + (1.0 - cos) * dot * z);
return dest;
}
/**
* Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}.
*
* @param v
* the vector to transform
* @return v
*/
public Vector3f transform(Vector3f v) {
return transform(v, v);
}
/**
* Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}
* and store the result in <code>dest</code>.
*
* @param v
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
public Vector3f transform(Vector3fc v, Vector3f dest) {
double sin = Math.sin(angle);
double cos = Math.cosFromSin(sin, angle);
double dot = x * v.x() + y * v.y() + z * v.z();
dest.set((float) (v.x() * cos + sin * (y * v.z() - z * v.y()) + (1.0 - cos) * dot * x),
(float) (v.y() * cos + sin * (z * v.x() - x * v.z()) + (1.0 - cos) * dot * y),
(float) (v.z() * cos + sin * (x * v.y() - y * v.x()) + (1.0 - cos) * dot * z));
return dest;
}
/**
* Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}.
*
* @param v
* the vector to transform
* @return v
*/
public Vector4d transform(Vector4d v) {
return transform(v, v);
}
/**
* Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}
* and store the result in <code>dest</code>.
*
* @param v
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
public Vector4d transform(Vector4dc v, Vector4d dest) {
double sin = Math.sin(angle);
double cos = Math.cosFromSin(sin, angle);
double dot = x * v.x() + y * v.y() + z * v.z();
dest.set(v.x() * cos + sin * (y * v.z() - z * v.y()) + (1.0 - cos) * dot * x,
v.y() * cos + sin * (z * v.x() - x * v.z()) + (1.0 - cos) * dot * y,
v.z() * cos + sin * (x * v.y() - y * v.x()) + (1.0 - cos) * dot * z,
dest.w);
return dest;
}
/**
* Return a string representation of this {@link AxisAngle4d}.
* <p>
* This method creates a new {@link DecimalFormat} on every invocation with the format string "<code> 0.000E0;-</code>".
*
* @return the string representation
*/
public String toString() {
return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT));
}
/**
* Return a string representation of this {@link AxisAngle4d} by formatting the components with the given {@link NumberFormat}.
*
* @param formatter
* the {@link NumberFormat} used to format the vector components with
* @return the string representation
*/
public String toString(NumberFormat formatter) {
return "(" + Runtime.format(x, formatter) + " " + Runtime.format(y, formatter) + " " + Runtime.format(z, formatter) + " <| " + Runtime.format(angle, formatter) + ")";
}
public int hashCode() {
final int prime = 31;
int result = 1;
long temp;
temp = Double.doubleToLongBits((angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI));
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(x);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(y);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(z);
result = prime * result + (int) (temp ^ (temp >>> 32));
return result;
}
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
AxisAngle4d other = (AxisAngle4d) obj;
if (Double.doubleToLongBits((angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI)) !=
Double.doubleToLongBits((other.angle < 0.0 ? Math.PI + Math.PI + other.angle % (Math.PI + Math.PI) : other.angle) % (Math.PI + Math.PI)))
return false;
if (Double.doubleToLongBits(x) != Double.doubleToLongBits(other.x))
return false;
if (Double.doubleToLongBits(y) != Double.doubleToLongBits(other.y))
return false;
if (Double.doubleToLongBits(z) != Double.doubleToLongBits(other.z))
return false;
return true;
}
public Object clone() throws CloneNotSupportedException {
return super.clone();
}
}