Flywheel/joml/Vector3dc.java
PepperCode1 a42c027b6f Scheme-a-version
- Fix Resources not being closed properly
- Change versioning scheme to match Create
- Add LICENSE to built jar
- Fix mods.toml version sync
- Move JOML code to non-src directory
- Update Gradle
- Organize imports
2022-07-15 00:00:54 -07:00

1393 lines
44 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* The MIT License
*
* Copyright (c) 2016-2021 JOML
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.jozufozu.flywheel.repack.joml;
import java.nio.*;
import java.util.*;
/**
* Interface to a read-only view of a 3-dimensional vector of double-precision floats.
*
* @author Kai Burjack
*/
public interface Vector3dc {
/**
* @return the value of the x component
*/
double x();
/**
* @return the value of the y component
*/
double y();
/**
* @return the value of the z component
*/
double z();
/**
* Store this vector into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the vector is stored, use {@link #get(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
* @see #get(int, ByteBuffer)
*/
ByteBuffer get(ByteBuffer buffer);
/**
* Store this vector into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
*/
ByteBuffer get(int index, ByteBuffer buffer);
/**
* Store this vector into the supplied {@link DoubleBuffer} at the current
* buffer {@link DoubleBuffer#position() position}.
* <p>
* This method will not increment the position of the given DoubleBuffer.
* <p>
* In order to specify the offset into the DoubleBuffer at which
* the vector is stored, use {@link #get(int, DoubleBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
* @see #get(int, DoubleBuffer)
*/
DoubleBuffer get(DoubleBuffer buffer);
/**
* Store this vector into the supplied {@link DoubleBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given DoubleBuffer.
*
* @param index
* the absolute position into the DoubleBuffer
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
*/
DoubleBuffer get(int index, DoubleBuffer buffer);
/**
* Store this vector into the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the vector is stored, use {@link #get(int, FloatBuffer)}, taking
* the absolute position as parameter.
* <p>
* Please note that due to this vector storing double values those values will potentially
* lose precision when they are converted to float values before being put into the given FloatBuffer.
*
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
* @see #get(int, DoubleBuffer)
*/
FloatBuffer get(FloatBuffer buffer);
/**
* Store this vector into the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* Please note that due to this vector storing double values those values will potentially
* lose precision when they are converted to float values before being put into the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
*/
FloatBuffer get(int index, FloatBuffer buffer);
/**
* Store this vector into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the vector is stored, use {@link #get(int, ByteBuffer)}, taking
* the absolute position as parameter.
* <p>
* Please note that due to this vector storing double values those values will potentially
* lose precision when they are converted to float values before being put into the given ByteBuffer.
*
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
* @see #get(int, ByteBuffer)
*/
ByteBuffer getf(ByteBuffer buffer);
/**
* Store this vector into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* Please note that due to this vector storing double values those values will potentially
* lose precision when they are converted to float values before being put into the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
*/
ByteBuffer getf(int index, ByteBuffer buffer);
/**
* Store this vector at the given off-heap memory address.
* <p>
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
* <p>
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
*
* @param address
* the off-heap address where to store this vector
* @return this
*/
Vector3dc getToAddress(long address);
/**
* Subtract the supplied vector from this one and store the result in <code>dest</code>.
*
* @param v
* the vector to subtract from <code>this</code>
* @param dest
* will hold the result
* @return dest
*/
Vector3d sub(Vector3dc v, Vector3d dest);
/**
* Subtract the supplied vector from this one and store the result in <code>dest</code>.
*
* @param v
* the vector to subtract from <code>this</code>
* @param dest
* will hold the result
* @return dest
*/
Vector3d sub(Vector3fc v, Vector3d dest);
/**
* Subtract <code>(x, y, z)</code> from this vector and store the result in <code>dest</code>.
*
* @param x
* the x component to subtract
* @param y
* the y component to subtract
* @param z
* the z component to subtract
* @param dest
* will hold the result
* @return dest
*/
Vector3d sub(double x, double y, double z, Vector3d dest);
/**
* Add the supplied vector to this one and store the result in <code>dest</code>.
*
* @param v
* the vector to add
* @param dest
* will hold the result
* @return dest
*/
Vector3d add(Vector3dc v, Vector3d dest);
/**
* Add the supplied vector to this one and store the result in <code>dest</code>.
*
* @param v
* the vector to add
* @param dest
* will hold the result
* @return dest
*/
Vector3d add(Vector3fc v, Vector3d dest);
/**
* Increment the components of this vector by the given values and store the result in <code>dest</code>.
*
* @param x
* the x component to add
* @param y
* the y component to add
* @param z
* the z component to add
* @param dest
* will hold the result
* @return dest
*/
Vector3d add(double x, double y, double z, Vector3d dest);
/**
* Add the component-wise multiplication of <code>a * b</code> to this vector
* and store the result in <code>dest</code>.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @param dest
* will hold the result
* @return dest
*/
Vector3d fma(Vector3dc a, Vector3dc b, Vector3d dest);
/**
* Add the component-wise multiplication of <code>a * b</code> to this vector
* and store the result in <code>dest</code>.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @param dest
* will hold the result
* @return dest
*/
Vector3d fma(double a, Vector3dc b, Vector3d dest);
/**
* Add the component-wise multiplication of <code>a * b</code> to this vector
* and store the result in <code>dest</code>.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @param dest
* will hold the result
* @return dest
*/
Vector3d fma(Vector3dc a, Vector3fc b, Vector3d dest);
/**
* Add the component-wise multiplication of <code>a * b</code> to this vector
* and store the result in <code>dest</code>.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @param dest
* will hold the result
* @return dest
*/
Vector3d fma(Vector3fc a, Vector3fc b, Vector3d dest);
/**
* Add the component-wise multiplication of <code>a * b</code> to this vector
* and store the result in <code>dest</code>.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @param dest
* will hold the result
* @return dest
*/
Vector3d fma(double a, Vector3fc b, Vector3d dest);
/**
* Add the component-wise multiplication of <code>this * a</code> to <code>b</code>
* and store the result in <code>dest</code>.
*
* @param a
* the multiplicand
* @param b
* the addend
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulAdd(Vector3dc a, Vector3dc b, Vector3d dest);
/**
* Add the component-wise multiplication of <code>this * a</code> to <code>b</code>
* and store the result in <code>dest</code>.
*
* @param a
* the multiplicand
* @param b
* the addend
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulAdd(double a, Vector3dc b, Vector3d dest);
/**
* Add the component-wise multiplication of <code>this * a</code> to <code>b</code>
* and store the result in <code>dest</code>.
*
* @param a
* the multiplicand
* @param b
* the addend
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulAdd(Vector3fc a, Vector3dc b, Vector3d dest);
/**
* Multiply this Vector3d component-wise by another Vector3f and store the result in <code>dest</code>.
*
* @param v
* the vector to multiply by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mul(Vector3fc v, Vector3d dest);
/**
* Multiply this by <code>v</code> component-wise and store the result into <code>dest</code>.
*
* @param v
* the vector to multiply by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mul(Vector3dc v, Vector3d dest);
/**
* Divide this Vector3d component-wise by another Vector3f and store the result in <code>dest</code>.
*
* @param v
* the vector to divide by
* @param dest
* will hold the result
* @return dest
*/
Vector3d div(Vector3fc v, Vector3d dest);
/**
* Divide this by <code>v</code> component-wise and store the result into <code>dest</code>.
*
* @param v
* the vector to divide by
* @param dest
* will hold the result
* @return dest
*/
Vector3d div(Vector3dc v, Vector3d dest);
/**
* Multiply the given matrix <code>mat</code> with this Vector3d, perform perspective division
* and store the result in <code>dest</code>.
* <p>
* This method uses the given <code>w</code> as the fourth vector component.
*
* @param mat
* the matrix to multiply this vector by
* @param w
* the w component to use
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulProject(Matrix4dc mat, double w, Vector3d dest);
/**
* Multiply the given matrix <code>mat</code> with this Vector3d, perform perspective division
* and store the result in <code>dest</code>.
* <p>
* This method uses <code>w=1.0</code> as the fourth vector component.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulProject(Matrix4dc mat, Vector3d dest);
/**
* Multiply the given matrix <code>mat</code> with this Vector3d, perform perspective division
* and store the result in <code>dest</code>.
* <p>
* This method uses <code>w=1.0</code> as the fourth vector component.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulProject(Matrix4fc mat, Vector3d dest);
/**
* Multiply the given matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mul(Matrix3dc mat, Vector3d dest);
/**
* Multiply the given matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mul(Matrix3dc mat, Vector3f dest);
/**
* Multiply the given matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mul(Matrix3fc mat, Vector3d dest);
/**
* Multiply the given matrix <code>mat</code> with <code>this</code> by assuming a
* third row in the matrix of <code>(0, 0, 1)</code> and store the result in <code>dest</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mul(Matrix3x2dc mat, Vector3d dest);
/**
* Multiply the given matrix <code>mat</code> with <code>this</code> by assuming a
* third row in the matrix of <code>(0, 0, 1)</code> and store the result in <code>dest</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mul(Matrix3x2fc mat, Vector3d dest);
/**
* Multiply the transpose of the given matrix with this Vector3f and store the result in <code>dest</code>.
*
* @param mat
* the matrix
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulTranspose(Matrix3dc mat, Vector3d dest);
/**
* Multiply the transpose of the given matrix with this Vector3f and store the result in <code>dest</code>.
*
* @param mat
* the matrix
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulTranspose(Matrix3fc mat, Vector3d dest);
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulPosition(Matrix4dc mat, Vector3d dest);
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulPosition(Matrix4fc mat, Vector3d dest);
/**
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulPosition(Matrix4x3dc mat, Vector3d dest);
/**
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulPosition(Matrix4x3fc mat, Vector3d dest);
/**
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix whose transpose to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulTransposePosition(Matrix4dc mat, Vector3d dest);
/**
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix whose transpose to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulTransposePosition(Matrix4fc mat, Vector3d dest);
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>, store the
* result in <code>dest</code> and return the <i>w</i> component of the resulting 4D vector.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the <code>(x, y, z)</code> components of the resulting vector
* @return the <i>w</i> component of the resulting 4D vector after multiplication
*/
double mulPositionW(Matrix4fc mat, Vector3d dest);
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>, store the
* result in <code>dest</code> and return the <i>w</i> component of the resulting 4D vector.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the <code>(x, y, z)</code> components of the resulting vector
* @return the <i>w</i> component of the resulting 4D vector after multiplication
*/
double mulPositionW(Matrix4dc mat, Vector3d dest);
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulDirection(Matrix4dc mat, Vector3d dest);
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulDirection(Matrix4fc mat, Vector3d dest);
/**
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulDirection(Matrix4x3dc mat, Vector3d dest);
/**
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulDirection(Matrix4x3fc mat, Vector3d dest);
/**
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix whose transpose to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulTransposeDirection(Matrix4dc mat, Vector3d dest);
/**
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix whose transpose to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mulTransposeDirection(Matrix4fc mat, Vector3d dest);
/**
* Multiply this Vector3d by the given scalar value and store the result in <code>dest</code>.
*
* @param scalar
* the scalar factor
* @param dest
* will hold the result
* @return dest
*/
Vector3d mul(double scalar, Vector3d dest);
/**
* Multiply the components of this Vector3f by the given scalar values and store the result in <code>dest</code>.
*
* @param x
* the x component to multiply this vector by
* @param y
* the y component to multiply this vector by
* @param z
* the z component to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d mul(double x, double y, double z, Vector3d dest);
/**
* Rotate this vector by the given quaternion <code>quat</code> and store the result in <code>dest</code>.
*
* @see Quaterniond#transform(Vector3d)
*
* @param quat
* the quaternion to rotate this vector
* @param dest
* will hold the result
* @return dest
*/
Vector3d rotate(Quaterniondc quat, Vector3d dest);
/**
* Compute the quaternion representing a rotation of <code>this</code> vector to point along <code>toDir</code>
* and store the result in <code>dest</code>.
* <p>
* Because there can be multiple possible rotations, this method chooses the one with the shortest arc.
*
* @see Quaterniond#rotationTo(Vector3dc, Vector3dc)
*
* @param toDir
* the destination direction
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotationTo(Vector3dc toDir, Quaterniond dest);
/**
* Compute the quaternion representing a rotation of <code>this</code> vector to point along <code>(toDirX, toDirY, toDirZ)</code>
* and store the result in <code>dest</code>.
* <p>
* Because there can be multiple possible rotations, this method chooses the one with the shortest arc.
*
* @see Quaterniond#rotationTo(double, double, double, double, double, double)
*
* @param toDirX
* the x coordinate of the destination direction
* @param toDirY
* the y coordinate of the destination direction
* @param toDirZ
* the z coordinate of the destination direction
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotationTo(double toDirX, double toDirY, double toDirZ, Quaterniond dest);
/**
* Rotate this vector the specified radians around the given rotation axis and store the result
* into <code>dest</code>.
*
* @param angle
* the angle in radians
* @param aX
* the x component of the rotation axis
* @param aY
* the y component of the rotation axis
* @param aZ
* the z component of the rotation axis
* @param dest
* will hold the result
* @return dest
*/
Vector3d rotateAxis(double angle, double aX, double aY, double aZ, Vector3d dest);
/**
* Rotate this vector the specified radians around the X axis and store the result
* into <code>dest</code>.
*
* @param angle
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Vector3d rotateX(double angle, Vector3d dest);
/**
* Rotate this vector the specified radians around the Y axis and store the result
* into <code>dest</code>.
*
* @param angle
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Vector3d rotateY(double angle, Vector3d dest);
/**
* Rotate this vector the specified radians around the Z axis and store the result
* into <code>dest</code>.
*
* @param angle
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Vector3d rotateZ(double angle, Vector3d dest);
/**
* Divide this Vector3d by the given scalar value and store the result in <code>dest</code>.
*
* @param scalar
* the scalar to divide this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d div(double scalar, Vector3d dest);
/**
* Divide the components of this Vector3f by the given scalar values and store the result in <code>dest</code>.
*
* @param x
* the x component to divide this vector by
* @param y
* the y component to divide this vector by
* @param z
* the z component to divide this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3d div(double x, double y, double z, Vector3d dest);
/**
* Return the length squared of this vector.
*
* @return the length squared
*/
double lengthSquared();
/**
* Return the length of this vector.
*
* @return the length
*/
double length();
/**
* Normalize this vector and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d normalize(Vector3d dest);
/**
* Scale this vector to have the given length and store the result in <code>dest</code>.
*
* @param length
* the desired length
* @param dest
* will hold the result
* @return dest
*/
Vector3d normalize(double length, Vector3d dest);
/**
* Calculate the cross product of this and v2 and store the result in <code>dest</code>.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3d cross(Vector3dc v, Vector3d dest);
/**
* Compute the cross product of this vector and <code>(x, y, z)</code> and store the result in <code>dest</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3d cross(double x, double y, double z, Vector3d dest);
/**
* Return the distance between this vector and <code>v</code>.
*
* @param v
* the other vector
* @return the distance
*/
double distance(Vector3dc v);
/**
* Return the distance between <code>this</code> vector and <code>(x, y, z)</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return the euclidean distance
*/
double distance(double x, double y, double z);
/**
* Return the square of the distance between this vector and <code>v</code>.
*
* @param v
* the other vector
* @return the squared of the distance
*/
double distanceSquared(Vector3dc v);
/**
* Return the square of the distance between <code>this</code> vector and <code>(x, y, z)</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return the square of the distance
*/
double distanceSquared(double x, double y, double z);
/**
* Return the dot product of this vector and the supplied vector.
*
* @param v
* the other vector
* @return the dot product
*/
double dot(Vector3dc v);
/**
* Return the dot product of this vector and the vector <code>(x, y, z)</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return the dot product
*/
double dot(double x, double y, double z);
/**
* Return the cosine of the angle between <code>this</code> vector and
* the supplied vector. Use this instead of <code>Math.cos(angle(v))</code>.
*
* @see #angle(Vector3dc)
*
* @param v
* the other vector
* @return the cosine of the angle
*/
double angleCos(Vector3dc v);
/**
* Return the angle between this vector and the supplied vector.
*
* @see #angleCos(Vector3dc)
*
* @param v
* the other vector
* @return the angle, in radians
*/
double angle(Vector3dc v);
/**
* Return the signed angle between this vector and the supplied vector with
* respect to the plane with the given normal vector <code>n</code>.
*
* @see #angleCos(Vector3dc)
*
* @param v
* the other vector
* @param n
* the plane's normal vector
* @return the angle, in radians
*/
double angleSigned(Vector3dc v, Vector3dc n);
/**
* Return the signed angle between this vector and the supplied vector with
* respect to the plane with the given normal vector <code>(nx, ny, nz)</code>.
*
* @param x
* the x coordinate of the other vector
* @param y
* the y coordinate of the other vector
* @param z
* the z coordinate of the other vector
* @param nx
* the x coordinate of the plane's normal vector
* @param ny
* the y coordinate of the plane's normal vector
* @param nz
* the z coordinate of the plane's normal vector
* @return the angle, in radians
*/
double angleSigned(double x, double y, double z, double nx, double ny, double nz);
/**
* Set the components of <code>dest</code> to be the component-wise minimum of this and the other vector.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3d min(Vector3dc v, Vector3d dest);
/**
* Set the components of <code>dest</code> to be the component-wise maximum of this and the other vector.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3d max(Vector3dc v, Vector3d dest);
/**
* Negate this vector and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d negate(Vector3d dest);
/**
* Compute the absolute values of the individual components of <code>this</code> and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d absolute(Vector3d dest);
/**
* Reflect this vector about the given normal vector and store the result in <code>dest</code>.
*
* @param normal
* the vector to reflect about
* @param dest
* will hold the result
* @return dest
*/
Vector3d reflect(Vector3dc normal, Vector3d dest);
/**
* Reflect this vector about the given normal vector and store the result in <code>dest</code>.
*
* @param x
* the x component of the normal
* @param y
* the y component of the normal
* @param z
* the z component of the normal
* @param dest
* will hold the result
* @return dest
*/
Vector3d reflect(double x, double y, double z, Vector3d dest);
/**
* Compute the half vector between this and the other vector and store the result in <code>dest</code>.
*
* @param other
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3d half(Vector3dc other, Vector3d dest);
/**
* Compute the half vector between this and the vector <code>(x, y, z)</code>
* and store the result in <code>dest</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3d half(double x, double y, double z, Vector3d dest);
/**
* Compute a smooth-step (i.e. hermite with zero tangents) interpolation
* between <code>this</code> vector and the given vector <code>v</code> and
* store the result in <code>dest</code>.
*
* @param v
* the other vector
* @param t
* the interpolation factor, within <code>[0..1]</code>
* @param dest
* will hold the result
* @return dest
*/
Vector3d smoothStep(Vector3dc v, double t, Vector3d dest);
/**
* Compute a hermite interpolation between <code>this</code> vector and its
* associated tangent <code>t0</code> and the given vector <code>v</code>
* with its tangent <code>t1</code> and store the result in
* <code>dest</code>.
*
* @param t0
* the tangent of <code>this</code> vector
* @param v1
* the other vector
* @param t1
* the tangent of the other vector
* @param t
* the interpolation factor, within <code>[0..1]</code>
* @param dest
* will hold the result
* @return dest
*/
Vector3d hermite(Vector3dc t0, Vector3dc v1, Vector3dc t1, double t, Vector3d dest);
/**
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
* then the result is <code>other</code>.
*
* @param other
* the other vector
* @param t
* the interpolation factor between 0.0 and 1.0
* @param dest
* will hold the result
* @return dest
*/
Vector3d lerp(Vector3dc other, double t, Vector3d dest);
/**
* Get the value of the specified component of this vector.
*
* @param component
* the component, within <code>[0..2]</code>
* @return the value
* @throws IllegalArgumentException if <code>component</code> is not within <code>[0..2]</code>
*/
double get(int component) throws IllegalArgumentException;
/**
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector
* using the given {@link RoundingMode}.
*
* @param mode
* the {@link RoundingMode} to use
* @param dest
* will hold the result
* @return dest
*/
Vector3i get(int mode, Vector3i dest);
/**
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f get(Vector3f dest);
/**
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d get(Vector3d dest);
/**
* Determine the component with the biggest absolute value.
*
* @return the component index, within <code>[0..2]</code>
*/
int maxComponent();
/**
* Determine the component with the smallest (towards zero) absolute value.
*
* @return the component index, within <code>[0..2]</code>
*/
int minComponent();
/**
* Transform <code>this</code> vector so that it is orthogonal to the given vector <code>v</code>, normalize the result and store it into <code>dest</code>.
* <p>
* Reference: <a href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">GramSchmidt process</a>
*
* @param v
* the reference vector which the result should be orthogonal to
* @param dest
* will hold the result
* @return dest
*/
Vector3d orthogonalize(Vector3dc v, Vector3d dest);
/**
* Transform <code>this</code> vector so that it is orthogonal to the given unit vector <code>v</code>, normalize the result and store it into <code>dest</code>.
* <p>
* The vector <code>v</code> is assumed to be a {@link #normalize(Vector3d) unit} vector.
* <p>
* Reference: <a href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">GramSchmidt process</a>
*
* @param v
* the reference unit vector which the result should be orthogonal to
* @param dest
* will hold the result
* @return dest
*/
Vector3d orthogonalizeUnit(Vector3dc v, Vector3d dest);
/**
* Compute for each component of this vector the largest (closest to positive
* infinity) {@code double} value that is less than or equal to that
* component and is equal to a mathematical integer and store the result in
* <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d floor(Vector3d dest);
/**
* Compute for each component of this vector the smallest (closest to negative
* infinity) {@code double} value that is greater than or equal to that
* component and is equal to a mathematical integer and store the result in
* <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d ceil(Vector3d dest);
/**
* Compute for each component of this vector the closest double that is equal to
* a mathematical integer, with ties rounding to positive infinity and store
* the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d round(Vector3d dest);
/**
* Determine whether all components are finite floating-point values, that
* is, they are not {@link Double#isNaN() NaN} and not
* {@link Double#isInfinite() infinity}.
*
* @return {@code true} if all components are finite floating-point values;
* {@code false} otherwise
*/
boolean isFinite();
/**
* Compare the vector components of <code>this</code> vector with the given vector using the given <code>delta</code>
* and return whether all of them are equal within a maximum difference of <code>delta</code>.
* <p>
* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap}
* and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those
* data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods.
*
* @param v
* the other vector
* @param delta
* the allowed maximum difference
* @return <code>true</code> whether all of the vector components are equal; <code>false</code> otherwise
*/
boolean equals(Vector3dc v, double delta);
/**
* Compare the vector components of <code>this</code> vector with the given <code>(x, y, z)</code>
* and return whether all of them are equal.
*
* @param x
* the x component to compare to
* @param y
* the y component to compare to
* @param z
* the z component to compare to
* @return <code>true</code> if all the vector components are equal
*/
boolean equals(double x, double y, double z);
}