Flywheel/joml/Matrix3fc.java
PepperCode1 a42c027b6f Scheme-a-version
- Fix Resources not being closed properly
- Change versioning scheme to match Create
- Add LICENSE to built jar
- Fix mods.toml version sync
- Move JOML code to non-src directory
- Update Gradle
- Organize imports
2022-07-15 00:00:54 -07:00

2199 lines
76 KiB
Java

/*
* The MIT License
*
* Copyright (c) 2016-2021 JOML
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.jozufozu.flywheel.repack.joml;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.util.*;
/**
* Interface to a read-only view of a 3x3 matrix of single-precision floats.
*
* @author Kai Burjack
*/
public interface Matrix3fc {
/**
* Return the value of the matrix element at column 0 and row 0.
*
* @return the value of the matrix element
*/
float m00();
/**
* Return the value of the matrix element at column 0 and row 1.
*
* @return the value of the matrix element
*/
float m01();
/**
* Return the value of the matrix element at column 0 and row 2.
*
* @return the value of the matrix element
*/
float m02();
/**
* Return the value of the matrix element at column 1 and row 0.
*
* @return the value of the matrix element
*/
float m10();
/**
* Return the value of the matrix element at column 1 and row 1.
*
* @return the value of the matrix element
*/
float m11();
/**
* Return the value of the matrix element at column 1 and row 2.
*
* @return the value of the matrix element
*/
float m12();
/**
* Return the value of the matrix element at column 2 and row 0.
*
* @return the value of the matrix element
*/
float m20();
/**
* Return the value of the matrix element at column 2 and row 1.
*
* @return the value of the matrix element
*/
float m21();
/**
* Return the value of the matrix element at column 2 and row 2.
*
* @return the value of the matrix element
*/
float m22();
/**
* Multiply this matrix by the supplied <code>right</code> matrix and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* transformation of the right matrix will be applied first!
*
* @param right
* the right operand of the matrix multiplication
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mul(Matrix3fc right, Matrix3f dest);
/**
* Pre-multiply this matrix by the supplied <code>left</code> matrix and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the <code>left</code> matrix,
* then the new matrix will be <code>L * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>L * M * v</code>, the
* transformation of <code>this</code> matrix will be applied first!
*
* @param left
* the left operand of the matrix multiplication
* @param dest
* the destination matrix, which will hold the result
* @return dest
*/
Matrix3f mulLocal(Matrix3fc left, Matrix3f dest);
/**
* Return the determinant of this matrix.
*
* @return the determinant
*/
float determinant();
/**
* Invert the <code>this</code> matrix and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f invert(Matrix3f dest);
/**
* Transpose <code>this</code> matrix and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f transpose(Matrix3f dest);
/**
* Get the current values of <code>this</code> matrix and store them into
* <code>dest</code>.
*
* @param dest
* the destination matrix
* @return the passed in destination
*/
Matrix3f get(Matrix3f dest);
/**
* Get the current values of <code>this</code> matrix and store them as
* the rotational component of <code>dest</code>. All other values of <code>dest</code> will
* be set to identity.
*
* @see Matrix4f#set(Matrix3fc)
*
* @param dest
* the destination matrix
* @return the passed in destination
*/
Matrix4f get(Matrix4f dest);
/**
* Get the current values of <code>this</code> matrix and store the represented rotation
* into the given {@link AxisAngle4f}.
*
* @see AxisAngle4f#set(Matrix3fc)
*
* @param dest
* the destination {@link AxisAngle4f}
* @return the passed in destination
*/
AxisAngle4f getRotation(AxisAngle4f dest);
/**
* Get the current values of <code>this</code> matrix and store the represented rotation
* into the given {@link Quaternionf}.
* <p>
* This method assumes that the three column vectors of this matrix are not normalized and
* thus allows to ignore any additional scaling factor that is applied to the matrix.
*
* @see Quaternionf#setFromUnnormalized(Matrix3fc)
*
* @param dest
* the destination {@link Quaternionf}
* @return the passed in destination
*/
Quaternionf getUnnormalizedRotation(Quaternionf dest);
/**
* Get the current values of <code>this</code> matrix and store the represented rotation
* into the given {@link Quaternionf}.
* <p>
* This method assumes that the three column vectors of this matrix are normalized.
*
* @see Quaternionf#setFromNormalized(Matrix3fc)
*
* @param dest
* the destination {@link Quaternionf}
* @return the passed in destination
*/
Quaternionf getNormalizedRotation(Quaternionf dest);
/**
* Get the current values of <code>this</code> matrix and store the represented rotation
* into the given {@link Quaterniond}.
* <p>
* This method assumes that the three column vectors of this matrix are not normalized and
* thus allows to ignore any additional scaling factor that is applied to the matrix.
*
* @see Quaterniond#setFromUnnormalized(Matrix3fc)
*
* @param dest
* the destination {@link Quaterniond}
* @return the passed in destination
*/
Quaterniond getUnnormalizedRotation(Quaterniond dest);
/**
* Get the current values of <code>this</code> matrix and store the represented rotation
* into the given {@link Quaterniond}.
* <p>
* This method assumes that the three column vectors of this matrix are normalized.
*
* @see Quaterniond#setFromNormalized(Matrix3fc)
*
* @param dest
* the destination {@link Quaterniond}
* @return the passed in destination
*/
Quaterniond getNormalizedRotation(Quaterniond dest);
/**
* Store this matrix in column-major order into the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the matrix is stored, use {@link #get(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @see #get(int, FloatBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
FloatBuffer get(FloatBuffer buffer);
/**
* Store this matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
FloatBuffer get(int index, FloatBuffer buffer);
/**
* Store this matrix in column-major order into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the matrix is stored, use {@link #get(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @see #get(int, ByteBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
ByteBuffer get(ByteBuffer buffer);
/**
* Store this matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
ByteBuffer get(int index, ByteBuffer buffer);
/**
* Store this matrix as 3x4 matrix in column-major order into the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}, with the m03, m13 and m23 components being zero.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the matrix is stored, use {@link #get3x4(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @see #get3x4(int, FloatBuffer)
*
* @param buffer
* will receive the values of this 3x3 matrix as 3x4 matrix in column-major order at its current position
* @return the passed in buffer
*/
FloatBuffer get3x4(FloatBuffer buffer);
/**
* Store this matrix as 3x4 matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index, with the m03, m13 and m23 components being zero.
* <p>
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* will receive the values of this 3x3 matrix as 3x4 matrix in column-major order
* @return the passed in buffer
*/
FloatBuffer get3x4(int index, FloatBuffer buffer);
/**
* Store this matrix as 3x4 matrix in column-major order into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}, with the m03, m13 and m23 components being zero.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the matrix is stored, use {@link #get3x4(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @see #get3x4(int, ByteBuffer)
*
* @param buffer
* will receive the values of this 3x3 matrix as 3x4 matrix in column-major order at its current position
* @return the passed in buffer
*/
ByteBuffer get3x4(ByteBuffer buffer);
/**
* Store this matrix as 3x4 matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index, with the m03, m13 and m23 components being zero.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this 3x3 matrix as 3x4 matrix in column-major order
* @return the passed in buffer
*/
ByteBuffer get3x4(int index, ByteBuffer buffer);
/**
* Store the transpose of this matrix in column-major order into the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the matrix is stored, use {@link #getTransposed(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @see #getTransposed(int, FloatBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
FloatBuffer getTransposed(FloatBuffer buffer);
/**
* Store the transpose of this matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
FloatBuffer getTransposed(int index, FloatBuffer buffer);
/**
* Store the transpose of this matrix in column-major order into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the matrix is stored, use {@link #getTransposed(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @see #getTransposed(int, ByteBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
ByteBuffer getTransposed(ByteBuffer buffer);
/**
* Store the transpose of this matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
ByteBuffer getTransposed(int index, ByteBuffer buffer);
/**
* Store this matrix in column-major order at the given off-heap address.
* <p>
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
* <p>
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
*
* @param address
* the off-heap address where to store this matrix
* @return this
*/
Matrix3fc getToAddress(long address);
/**
* Store this matrix into the supplied float array in column-major order at the given offset.
*
* @param arr
* the array to write the matrix values into
* @param offset
* the offset into the array
* @return the passed in array
*/
float[] get(float[] arr, int offset);
/**
* Store this matrix into the supplied float array in column-major order.
* <p>
* In order to specify an explicit offset into the array, use the method {@link #get(float[], int)}.
*
* @see #get(float[], int)
*
* @param arr
* the array to write the matrix values into
* @return the passed in array
*/
float[] get(float[] arr);
/**
* Apply scaling to <code>this</code> matrix by scaling the base axes by the given <code>xyz.x</code>,
* <code>xyz.y</code> and <code>xyz.z</code> factors, respectively and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
* , the scaling will be applied first!
*
* @param xyz
* the factors of the x, y and z component, respectively
* @param dest
* will hold the result
* @return dest
*/
Matrix3f scale(Vector3fc xyz, Matrix3f dest);
/**
* Apply scaling to this matrix by scaling the base axes by the given x,
* y and z factors and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
* , the scaling will be applied first!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @param z
* the factor of the z component
* @param dest
* will hold the result
* @return dest
*/
Matrix3f scale(float x, float y, float z, Matrix3f dest);
/**
* Apply scaling to this matrix by uniformly scaling all base axes by the given <code>xyz</code> factor
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
* , the scaling will be applied first!
*
* @see #scale(float, float, float, Matrix3f)
*
* @param xyz
* the factor for all components
* @param dest
* will hold the result
* @return dest
*/
Matrix3f scale(float xyz, Matrix3f dest);
/**
* Pre-multiply scaling to <code>this</code> matrix by scaling the base axes by the given x,
* y and z factors and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>S * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>
* , the scaling will be applied last!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @param z
* the factor of the z component
* @param dest
* will hold the result
* @return dest
*/
Matrix3f scaleLocal(float x, float y, float z, Matrix3f dest);
/**
* Transform the given vector by this matrix.
*
* @param v
* the vector to transform
* @return v
*/
Vector3f transform(Vector3f v);
/**
* Transform the given vector by this matrix and store the result in <code>dest</code>.
*
* @param v
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3f transform(Vector3fc v, Vector3f dest);
/**
* Transform the vector <code>(x, y, z)</code> by this matrix and store the result in <code>dest</code>.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3f transform(float x, float y, float z, Vector3f dest);
/**
* Transform the given vector by the transpose of this matrix.
*
* @param v
* the vector to transform
* @return v
*/
Vector3f transformTranspose(Vector3f v);
/**
* Transform the given vector by the transpose of this matrix and store the result in <code>dest</code>.
*
* @param v
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformTranspose(Vector3fc v, Vector3f dest);
/**
* Transform the vector <code>(x, y, z)</code> by the transpose of this matrix and store the result in <code>dest</code>.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformTranspose(float x, float y, float z, Vector3f dest);
/**
* Apply rotation about the X axis to this matrix by rotating the given amount of radians
* and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>
* , the rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotateX(float ang, Matrix3f dest);
/**
* Apply rotation about the Y axis to this matrix by rotating the given amount of radians
* and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>
* , the rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotateY(float ang, Matrix3f dest);
/**
* Apply rotation about the Z axis to this matrix by rotating the given amount of radians
* and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>
* , the rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotateZ(float ang, Matrix3f dest);
/**
* Apply rotation of <code>angleX</code> radians about the X axis, followed by a rotation of <code>angleY</code> radians about the Y axis and
* followed by a rotation of <code>angleZ</code> radians about the Z axis and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* rotation will be applied first!
* <p>
* This method is equivalent to calling: <code>rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)</code>
*
* @param angleX
* the angle to rotate about X
* @param angleY
* the angle to rotate about Y
* @param angleZ
* the angle to rotate about Z
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotateXYZ(float angleX, float angleY, float angleZ, Matrix3f dest);
/**
* Apply rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and
* followed by a rotation of <code>angleX</code> radians about the X axis and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* rotation will be applied first!
* <p>
* This method is equivalent to calling: <code>rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)</code>
*
* @param angleZ
* the angle to rotate about Z
* @param angleY
* the angle to rotate about Y
* @param angleX
* the angle to rotate about X
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotateZYX(float angleZ, float angleY, float angleX, Matrix3f dest);
/**
* Apply rotation of <code>angleY</code> radians about the Y axis, followed by a rotation of <code>angleX</code> radians about the X axis and
* followed by a rotation of <code>angleZ</code> radians about the Z axis and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* rotation will be applied first!
* <p>
* This method is equivalent to calling: <code>rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)</code>
*
* @param angleY
* the angle to rotate about Y
* @param angleX
* the angle to rotate about X
* @param angleZ
* the angle to rotate about Z
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotateYXZ(float angleY, float angleX, float angleZ, Matrix3f dest);
/**
* Apply rotation to this matrix by rotating the given amount of radians
* about the given axis specified as x, y and z components, and store the result in <code>dest</code>.
* <p>
* The axis described by the three components needs to be a unit vector.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>
* , the rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians
* @param x
* the x component of the axis
* @param y
* the y component of the axis
* @param z
* the z component of the axis
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotate(float ang, float x, float y, float z, Matrix3f dest);
/**
* Pre-multiply a rotation to this matrix by rotating the given amount of radians
* about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>.
* <p>
* The axis described by the three components needs to be a unit vector.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>R * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
* rotation will be applied last!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians
* @param x
* the x component of the axis
* @param y
* the y component of the axis
* @param z
* the z component of the axis
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotateLocal(float ang, float x, float y, float z, Matrix3f dest);
/**
* Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians
* about the X axis and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>R * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
* rotation will be applied last!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians to rotate about the X axis
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotateLocalX(float ang, Matrix3f dest);
/**
* Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians
* about the Y axis and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>R * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
* rotation will be applied last!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians to rotate about the Y axis
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotateLocalY(float ang, Matrix3f dest);
/**
* Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians
* about the Z axis and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>R * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
* rotation will be applied last!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians to rotate about the Z axis
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotateLocalZ(float ang, Matrix3f dest);
/**
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix and store
* the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
* then the new matrix will be <code>M * Q</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
* the quaternion rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
*
* @param quat
* the {@link Quaternionfc}
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotate(Quaternionfc quat, Matrix3f dest);
/**
* Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix and store
* the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
* then the new matrix will be <code>Q * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>Q * M * v</code>,
* the quaternion rotation will be applied last!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
*
* @param quat
* the {@link Quaternionfc}
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotateLocal(Quaternionfc quat, Matrix3f dest);
/**
* Apply a rotation transformation, rotating about the given {@link AxisAngle4f} and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4f},
* then the new matrix will be <code>M * A</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
* the {@link AxisAngle4f} rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
*
* @see #rotate(float, float, float, float, Matrix3f)
*
* @param axisAngle
* the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized})
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotate(AxisAngle4f axisAngle, Matrix3f dest);
/**
* Apply a rotation transformation, rotating the given radians about the specified axis and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given angle and axis,
* then the new matrix will be <code>M * A</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
* the axis-angle rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
*
* @see #rotate(float, float, float, float, Matrix3f)
*
* @param angle
* the angle in radians
* @param axis
* the rotation axis (needs to be {@link Vector3f#normalize() normalized})
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotate(float angle, Vector3fc axis, Matrix3f dest);
/**
* Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix,
* then the new matrix will be <code>M * L</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the
* lookalong rotation transformation will be applied first!
*
* @see #lookAlong(float, float, float, float, float, float, Matrix3f)
*
* @param dir
* the direction in space to look along
* @param up
* the direction of 'up'
* @param dest
* will hold the result
* @return dest
*/
Matrix3f lookAlong(Vector3fc dir, Vector3fc up, Matrix3f dest);
/**
* Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix,
* then the new matrix will be <code>M * L</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the
* lookalong rotation transformation will be applied first!
*
* @param dirX
* the x-coordinate of the direction to look along
* @param dirY
* the y-coordinate of the direction to look along
* @param dirZ
* the z-coordinate of the direction to look along
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @param dest
* will hold the result
* @return dest
*/
Matrix3f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix3f dest);
/**
* Get the row at the given <code>row</code> index, starting with <code>0</code>.
*
* @param row
* the row index in <code>[0..2]</code>
* @param dest
* will hold the row components
* @return the passed in destination
* @throws IndexOutOfBoundsException if <code>row</code> is not in <code>[0..2]</code>
*/
Vector3f getRow(int row, Vector3f dest) throws IndexOutOfBoundsException;
/**
* Get the column at the given <code>column</code> index, starting with <code>0</code>.
*
* @param column
* the column index in <code>[0..2]</code>
* @param dest
* will hold the column components
* @return the passed in destination
* @throws IndexOutOfBoundsException if <code>column</code> is not in <code>[0..2]</code>
*/
Vector3f getColumn(int column, Vector3f dest) throws IndexOutOfBoundsException;
/**
* Get the matrix element value at the given column and row.
*
* @param column
* the colum index in <code>[0..2]</code>
* @param row
* the row index in <code>[0..2]</code>
* @return the element value
*/
float get(int column, int row);
/**
* Get the matrix element value at the given row and column.
*
* @param row
* the row index in <code>[0..2]</code>
* @param column
* the colum index in <code>[0..2]</code>
* @return the element value
*/
float getRowColumn(int row, int column);
/**
* Compute a normal matrix from <code>this</code> matrix and store it into <code>dest</code>.
* <p>
* The normal matrix of <code>m</code> is the transpose of the inverse of <code>m</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f normal(Matrix3f dest);
/**
* Compute the cofactor matrix of <code>this</code> and store it into <code>dest</code>.
* <p>
* The cofactor matrix can be used instead of {@link #normal(Matrix3f)} to transform normals
* when the orientation of the normals with respect to the surface should be preserved.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f cofactor(Matrix3f dest);
/**
* Get the scaling factors of <code>this</code> matrix for the three base axes.
*
* @param dest
* will hold the scaling factors for <code>x</code>, <code>y</code> and <code>z</code>
* @return dest
*/
Vector3f getScale(Vector3f dest);
/**
* Obtain the direction of <code>+Z</code> before the transformation represented by <code>this</code> matrix is applied.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix3f inv = new Matrix3f(this).invert();
* inv.transform(dir.set(0, 0, 1)).normalize();
* </pre>
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveZ(Vector3f)} instead.
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+Z</code>
* @return dir
*/
Vector3f positiveZ(Vector3f dir);
/**
* Obtain the direction of <code>+Z</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix3f inv = new Matrix3f(this).transpose();
* inv.transform(dir.set(0, 0, 1));
* </pre>
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+Z</code>
* @return dir
*/
Vector3f normalizedPositiveZ(Vector3f dir);
/**
* Obtain the direction of <code>+X</code> before the transformation represented by <code>this</code> matrix is applied.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix3f inv = new Matrix3f(this).invert();
* inv.transform(dir.set(1, 0, 0)).normalize();
* </pre>
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveX(Vector3f)} instead.
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+X</code>
* @return dir
*/
Vector3f positiveX(Vector3f dir);
/**
* Obtain the direction of <code>+X</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix3f inv = new Matrix3f(this).transpose();
* inv.transform(dir.set(1, 0, 0));
* </pre>
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+X</code>
* @return dir
*/
Vector3f normalizedPositiveX(Vector3f dir);
/**
* Obtain the direction of <code>+Y</code> before the transformation represented by <code>this</code> matrix is applied.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix3f inv = new Matrix3f(this).invert();
* inv.transform(dir.set(0, 1, 0)).normalize();
* </pre>
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveY(Vector3f)} instead.
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+Y</code>
* @return dir
*/
Vector3f positiveY(Vector3f dir);
/**
* Obtain the direction of <code>+Y</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix3f inv = new Matrix3f(this).transpose();
* inv.transform(dir.set(0, 1, 0));
* </pre>
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+Y</code>
* @return dir
*/
Vector3f normalizedPositiveY(Vector3f dir);
/**
* Component-wise add <code>this</code> and <code>other</code> and store the result in <code>dest</code>.
*
* @param other
* the other addend
* @param dest
* will hold the result
* @return dest
*/
Matrix3f add(Matrix3fc other, Matrix3f dest);
/**
* Component-wise subtract <code>subtrahend</code> from <code>this</code> and store the result in <code>dest</code>.
*
* @param subtrahend
* the subtrahend
* @param dest
* will hold the result
* @return dest
*/
Matrix3f sub(Matrix3fc subtrahend, Matrix3f dest);
/**
* Component-wise multiply <code>this</code> by <code>other</code> and store the result in <code>dest</code>.
*
* @param other
* the other matrix
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mulComponentWise(Matrix3fc other, Matrix3f dest);
/**
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
* then the result is <code>other</code>.
*
* @param other
* the other matrix
* @param t
* the interpolation factor between 0.0 and 1.0
* @param dest
* will hold the result
* @return dest
*/
Matrix3f lerp(Matrix3fc other, float t, Matrix3f dest);
/**
* Apply a model transformation to this matrix for a right-handed coordinate system,
* that aligns the local <code>+Z</code> axis with <code>direction</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
* then the new matrix will be <code>M * L</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
* the lookat transformation will be applied first!
* <p>
* This method is equivalent to calling: <code>mul(new Matrix3f().lookAlong(new Vector3f(dir).negate(), up).invert(), dest)</code>
*
* @see #rotateTowards(float, float, float, float, float, float, Matrix3f)
*
* @param direction
* the direction to rotate towards
* @param up
* the model's up vector
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotateTowards(Vector3fc direction, Vector3fc up, Matrix3f dest);
/**
* Apply a model transformation to this matrix for a right-handed coordinate system,
* that aligns the local <code>+Z</code> axis with <code>dir</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
* then the new matrix will be <code>M * L</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
* the lookat transformation will be applied first!
* <p>
* This method is equivalent to calling: <code>mul(new Matrix3f().lookAlong(-dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)</code>
*
* @see #rotateTowards(Vector3fc, Vector3fc, Matrix3f)
*
* @param dirX
* the x-coordinate of the direction to rotate towards
* @param dirY
* the y-coordinate of the direction to rotate towards
* @param dirZ
* the z-coordinate of the direction to rotate towards
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @param dest
* will hold the result
* @return dest
*/
Matrix3f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix3f dest);
/**
* Extract the Euler angles from the rotation represented by <code>this</code> matrix and store the extracted Euler angles in <code>dest</code>.
* <p>
* This method assumes that <code>this</code> matrix only represents a rotation without scaling.
* <p>
* The Euler angles are always returned as the angle around X in the {@link Vector3f#x} field, the angle around Y in the {@link Vector3f#y}
* field and the angle around Z in the {@link Vector3f#z} field of the supplied {@link Vector3f} instance.
* <p>
* Note that the returned Euler angles must be applied in the order <code>X * Y * Z</code> to obtain the identical matrix.
* This means that calling {@link Matrix3fc#rotateXYZ(float, float, float, Matrix3f)} using the obtained Euler angles will yield
* the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrix
* <code>m2</code> should be identical to <code>m</code> (disregarding possible floating-point inaccuracies).
* <pre>
* Matrix3f m = ...; // &lt;- matrix only representing rotation
* Matrix3f n = new Matrix3f();
* n.rotateXYZ(m.getEulerAnglesXYZ(new Vector3f()));
* </pre>
* <p>
* Reference: <a href="https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix">http://en.wikipedia.org/</a>
*
* @param dest
* will hold the extracted Euler angles
* @return dest
*/
Vector3f getEulerAnglesXYZ(Vector3f dest);
/**
* Extract the Euler angles from the rotation represented by <code>this</code> matrix and store the extracted Euler angles in <code>dest</code>.
* <p>
* This method assumes that <code>this</code> matrix only represents a rotation without scaling.
* <p>
* The Euler angles are always returned as the angle around X in the {@link Vector3f#x} field, the angle around Y in the {@link Vector3f#y}
* field and the angle around Z in the {@link Vector3f#z} field of the supplied {@link Vector3f} instance.
* <p>
* Note that the returned Euler angles must be applied in the order <code>Z * Y * X</code> to obtain the identical matrix.
* This means that calling {@link Matrix3fc#rotateZYX(float, float, float, Matrix3f)} using the obtained Euler angles will yield
* the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrix
* <code>m2</code> should be identical to <code>m</code> (disregarding possible floating-point inaccuracies).
* <pre>
* Matrix3f m = ...; // &lt;- matrix only representing rotation
* Matrix3f n = new Matrix3f();
* n.rotateZYX(m.getEulerAnglesZYX(new Vector3f()));
* </pre>
* <p>
* Reference: <a href="https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix">http://en.wikipedia.org/</a>
*
* @param dest
* will hold the extracted Euler angles
* @return dest
*/
Vector3f getEulerAnglesZYX(Vector3f dest);
/**
* Apply an oblique projection transformation to this matrix with the given values for <code>a</code> and
* <code>b</code> and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the oblique transformation matrix,
* then the new matrix will be <code>M * O</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
* oblique transformation will be applied first!
* <p>
* The oblique transformation is defined as:
* <pre>
* x' = x + a*z
* y' = y + a*z
* z' = z
* </pre>
* or in matrix form:
* <pre>
* 1 0 a
* 0 1 b
* 0 0 1
* </pre>
*
* @param a
* the value for the z factor that applies to x
* @param b
* the value for the z factor that applies to y
* @param dest
* will hold the result
* @return dest
*/
Matrix3f obliqueZ(float a, float b, Matrix3f dest);
/**
* Compare the matrix elements of <code>this</code> matrix with the given matrix using the given <code>delta</code>
* and return whether all of them are equal within a maximum difference of <code>delta</code>.
* <p>
* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap}
* and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those
* data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods.
*
* @param m
* the other matrix
* @param delta
* the allowed maximum difference
* @return <code>true</code> whether all of the matrix elements are equal; <code>false</code> otherwise
*/
boolean equals(Matrix3fc m, float delta);
/**
* Apply a mirror/reflection transformation to this matrix that reflects through the given plane
* specified via the plane normal <code>(nx, ny, nz)</code>, and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* reflection will be applied first!
*
* @param nx
* the x-coordinate of the plane normal
* @param ny
* the y-coordinate of the plane normal
* @param nz
* the z-coordinate of the plane normal
* @param dest
* will hold the result
* @return this
*/
Matrix3f reflect(float nx, float ny, float nz, Matrix3f dest);
/**
* Apply a mirror/reflection transformation to this matrix that reflects through a plane
* specified via the plane orientation, and store the result in <code>dest</code>.
* <p>
* This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene.
* It is assumed that the default mirror plane's normal is <code>(0, 0, 1)</code>. So, if the given {@link Quaternionfc} is
* the identity (does not apply any additional rotation), the reflection plane will be <code>z=0</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* reflection will be applied first!
*
* @param orientation
* the plane orientation
* @param dest
* will hold the result
* @return this
*/
Matrix3f reflect(Quaternionfc orientation, Matrix3f dest);
/**
* Apply a mirror/reflection transformation to this matrix that reflects through the given plane
* specified via the plane normal, and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* reflection will be applied first!
*
* @param normal
* the plane normal
* @param dest
* will hold the result
* @return this
*/
Matrix3f reflect(Vector3fc normal, Matrix3f dest);
/**
* Determine whether all matrix elements are finite floating-point values, that
* is, they are not {@link Float#isNaN() NaN} and not
* {@link Float#isInfinite() infinity}.
*
* @return {@code true} if all components are finite floating-point values;
* {@code false} otherwise
*/
boolean isFinite();
/**
* Compute <code>(x, y, z)^T * this * (x, y, z)</code>.
*
* @param x
* the x coordinate of the vector to multiply
* @param y
* the y coordinate of the vector to multiply
* @param z
* the z coordinate of the vector to multiply
* @return the result
*/
float quadraticFormProduct(float x, float y, float z);
/**
* Compute <code>v^T * this * v</code>.
*
* @param v
* the vector to multiply
* @return the result
*/
float quadraticFormProduct(Vector3fc v);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 1 0 0
* 0 0 1
* 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapXZY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 1 0 0
* 0 0 -1
* 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapXZnY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 1 0 0
* 0 -1 0
* 0 0 -1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapXnYnZ(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 1 0 0
* 0 0 1
* 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapXnZY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 1 0 0
* 0 0 -1
* 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapXnZnY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0
* 1 0 0
* 0 0 1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapYXZ(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0
* 1 0 0
* 0 0 -1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapYXnZ(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1
* 1 0 0
* 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapYZX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1
* 1 0 0
* 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapYZnX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0
* 1 0 0
* 0 0 1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapYnXZ(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0
* 1 0 0
* 0 0 -1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapYnXnZ(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1
* 1 0 0
* 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapYnZX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1
* 1 0 0
* 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapYnZnX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0
* 0 0 1
* 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapZXY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0
* 0 0 -1
* 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapZXnY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1
* 0 1 0
* 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapZYX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1
* 0 1 0
* 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapZYnX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0
* 0 0 1
* 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapZnXY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0
* 0 0 -1
* 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapZnXnY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1
* 0 -1 0
* 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapZnYX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1
* 0 -1 0
* 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapZnYnX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0
* 0 1 0
* 0 0 -1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnXYnZ(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0
* 0 0 1
* 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnXZY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0
* 0 0 -1
* 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnXZnY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0
* 0 -1 0
* 0 0 1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnXnYZ(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0
* 0 -1 0
* 0 0 -1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnXnYnZ(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0
* 0 0 1
* 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnXnZY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0
* 0 0 -1
* 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnXnZnY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0
* -1 0 0
* 0 0 1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnYXZ(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0
* -1 0 0
* 0 0 -1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnYXnZ(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1
* -1 0 0
* 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnYZX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1
* -1 0 0
* 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnYZnX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0
* -1 0 0
* 0 0 1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnYnXZ(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0
* -1 0 0
* 0 0 -1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnYnXnZ(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1
* -1 0 0
* 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnYnZX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1
* -1 0 0
* 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnYnZnX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0
* 0 0 1
* -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnZXY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0
* 0 0 -1
* -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnZXnY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1
* 0 1 0
* -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnZYX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1
* 0 1 0
* -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnZYnX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0
* 0 0 1
* -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnZnXY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0
* 0 0 -1
* -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnZnXnY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1
* 0 -1 0
* -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnZnYX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1
* 0 -1 0
* -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f mapnZnYnX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0
* 0 1 0
* 0 0 1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f negateX(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 1 0 0
* 0 -1 0
* 0 0 1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f negateY(Matrix3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 1 0 0
* 0 1 0
* 0 0 -1
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f negateZ(Matrix3f dest);
}