mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2025-01-15 00:36:08 +01:00
a42c027b6f
- Fix Resources not being closed properly - Change versioning scheme to match Create - Add LICENSE to built jar - Fix mods.toml version sync - Move JOML code to non-src directory - Update Gradle - Organize imports
1536 lines
45 KiB
Java
1536 lines
45 KiB
Java
/*
|
|
* The MIT License
|
|
*
|
|
* Copyright (c) 2020-2021 JOML
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
package com.jozufozu.flywheel.repack.joml;
|
|
|
|
import java.nio.ByteBuffer;
|
|
import java.nio.DoubleBuffer;
|
|
import java.io.Externalizable;
|
|
import java.io.IOException;
|
|
import java.io.ObjectInput;
|
|
import java.io.ObjectOutput;
|
|
import java.text.DecimalFormat;
|
|
import java.text.NumberFormat;
|
|
|
|
/**
|
|
* Contains the definition of a 2x2 matrix of doubles, and associated functions to transform
|
|
* it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:
|
|
* <p>
|
|
* m00 m10<br>
|
|
* m01 m11<br>
|
|
*
|
|
* @author Joseph Burton
|
|
*/
|
|
public class Matrix2d implements Externalizable, Cloneable, Matrix2dc {
|
|
|
|
private static final long serialVersionUID = 1L;
|
|
|
|
public double m00, m01;
|
|
public double m10, m11;
|
|
|
|
/**
|
|
* Create a new {@link Matrix2d} and set it to {@link #identity() identity}.
|
|
*/
|
|
public Matrix2d() {
|
|
m00 = 1.0;
|
|
m11 = 1.0;
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link Matrix2d} and make it a copy of the given matrix.
|
|
*
|
|
* @param mat
|
|
* the {@link Matrix2dc} to copy the values from
|
|
*/
|
|
public Matrix2d(Matrix2dc mat) {
|
|
if (mat instanceof Matrix2d) {
|
|
MemUtil.INSTANCE.copy((Matrix2d) mat, this);
|
|
} else {
|
|
setMatrix2dc(mat);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link Matrix2d} and initialize it with the values from the given matrix.
|
|
*
|
|
* @param mat
|
|
* the matrix to initialize this matrix with
|
|
*/
|
|
public Matrix2d(Matrix2fc mat) {
|
|
m00 = mat.m00();
|
|
m01 = mat.m01();
|
|
m10 = mat.m10();
|
|
m11 = mat.m11();
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link Matrix2d} and make it a copy of the upper left 2x2 of the given {@link Matrix3dc}.
|
|
*
|
|
* @param mat
|
|
* the {@link Matrix3dc} to copy the values from
|
|
*/
|
|
public Matrix2d(Matrix3dc mat) {
|
|
if (mat instanceof Matrix3d) {
|
|
MemUtil.INSTANCE.copy((Matrix3d) mat, this);
|
|
} else {
|
|
setMatrix3dc(mat);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link Matrix2d} and make it a copy of the upper left 2x2 of the given {@link Matrix3fc}.
|
|
*
|
|
* @param mat
|
|
* the {@link Matrix3fc} to copy the values from
|
|
*/
|
|
public Matrix2d(Matrix3fc mat) {
|
|
m00 = mat.m00();
|
|
m01 = mat.m01();
|
|
m10 = mat.m10();
|
|
m11 = mat.m11();
|
|
}
|
|
|
|
/**
|
|
* Create a new 2x2 matrix using the supplied double values. The order of the parameter is column-major,
|
|
* so the first two parameters specify the two elements of the first column.
|
|
*
|
|
* @param m00
|
|
* the value of m00
|
|
* @param m01
|
|
* the value of m01
|
|
* @param m10
|
|
* the value of m10
|
|
* @param m11
|
|
* the value of m11
|
|
*/
|
|
public Matrix2d(double m00, double m01,
|
|
double m10, double m11) {
|
|
this.m00 = m00;
|
|
this.m01 = m01;
|
|
this.m10 = m10;
|
|
this.m11 = m11;
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link Matrix2d} by reading its 4 double components from the given {@link DoubleBuffer}
|
|
* at the buffer's current position.
|
|
* <p>
|
|
* That DoubleBuffer is expected to hold the values in column-major order.
|
|
* <p>
|
|
* The buffer's position will not be changed by this method.
|
|
*
|
|
* @param buffer
|
|
* the {@link DoubleBuffer} to read the matrix values from
|
|
*/
|
|
public Matrix2d(DoubleBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link Matrix2d} and initialize its two columns using the supplied vectors.
|
|
*
|
|
* @param col0
|
|
* the first column
|
|
* @param col1
|
|
* the second column
|
|
*/
|
|
public Matrix2d(Vector2dc col0, Vector2dc col1) {
|
|
m00 = col0.x();
|
|
m01 = col0.y();
|
|
m10 = col1.x();
|
|
m11 = col1.y();
|
|
}
|
|
|
|
public double m00() {
|
|
return m00;
|
|
}
|
|
public double m01() {
|
|
return m01;
|
|
}
|
|
public double m10() {
|
|
return m10;
|
|
}
|
|
public double m11() {
|
|
return m11;
|
|
}
|
|
|
|
/**
|
|
* Set the value of the matrix element at column 0 and row 0.
|
|
*
|
|
* @param m00
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix2d m00(double m00) {
|
|
this.m00 = m00;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 0 and row 1.
|
|
*
|
|
* @param m01
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix2d m01(double m01) {
|
|
this.m01 = m01;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 1 and row 0.
|
|
*
|
|
* @param m10
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix2d m10(double m10) {
|
|
this.m10 = m10;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 1 and row 1.
|
|
*
|
|
* @param m11
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix2d m11(double m11) {
|
|
this.m11 = m11;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the value of the matrix element at column 0 and row 0.
|
|
*
|
|
* @param m00
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix2d _m00(double m00) {
|
|
this.m00 = m00;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 0 and row 1.
|
|
*
|
|
* @param m01
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix2d _m01(double m01) {
|
|
this.m01 = m01;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 1 and row 0.
|
|
*
|
|
* @param m10
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix2d _m10(double m10) {
|
|
this.m10 = m10;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 1 and row 1.
|
|
*
|
|
* @param m11
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix2d _m11(double m11) {
|
|
this.m11 = m11;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the elements of this matrix to the ones in <code>m</code>.
|
|
*
|
|
* @param m
|
|
* the matrix to copy the elements from
|
|
* @return this
|
|
*/
|
|
public Matrix2d set(Matrix2dc m) {
|
|
if (m instanceof Matrix2d) {
|
|
MemUtil.INSTANCE.copy((Matrix2d) m, this);
|
|
} else {
|
|
setMatrix2dc(m);
|
|
}
|
|
return this;
|
|
}
|
|
private void setMatrix2dc(Matrix2dc mat) {
|
|
m00 = mat.m00();
|
|
m01 = mat.m01();
|
|
m10 = mat.m10();
|
|
m11 = mat.m11();
|
|
}
|
|
|
|
/**
|
|
* Set the elements of this matrix to the ones in <code>m</code>.
|
|
*
|
|
* @param m
|
|
* the matrix to copy the elements from
|
|
* @return this
|
|
*/
|
|
public Matrix2d set(Matrix2fc m) {
|
|
m00 = m.m00();
|
|
m01 = m.m01();
|
|
m10 = m.m10();
|
|
m11 = m.m11();
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the elements of this matrix to the left 2x2 submatrix of <code>m</code>.
|
|
*
|
|
* @param m
|
|
* the matrix to copy the elements from
|
|
* @return this
|
|
*/
|
|
public Matrix2d set(Matrix3x2dc m) {
|
|
if (m instanceof Matrix3x2d) {
|
|
MemUtil.INSTANCE.copy((Matrix3x2d) m, this);
|
|
} else {
|
|
setMatrix3x2dc(m);
|
|
}
|
|
return this;
|
|
}
|
|
private void setMatrix3x2dc(Matrix3x2dc mat) {
|
|
m00 = mat.m00();
|
|
m01 = mat.m01();
|
|
m10 = mat.m10();
|
|
m11 = mat.m11();
|
|
}
|
|
|
|
/**
|
|
* Set the elements of this matrix to the left 2x2 submatrix of <code>m</code>.
|
|
*
|
|
* @param m
|
|
* the matrix to copy the elements from
|
|
* @return this
|
|
*/
|
|
public Matrix2d set(Matrix3x2fc m) {
|
|
m00 = m.m00();
|
|
m01 = m.m01();
|
|
m10 = m.m10();
|
|
m11 = m.m11();
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the elements of this matrix to the upper left 2x2 of the given {@link Matrix3dc}.
|
|
*
|
|
* @param m
|
|
* the {@link Matrix3dc} to copy the values from
|
|
* @return this
|
|
*/
|
|
public Matrix2d set(Matrix3dc m) {
|
|
if (m instanceof Matrix3d) {
|
|
MemUtil.INSTANCE.copy((Matrix3d) m, this);
|
|
} else {
|
|
setMatrix3dc(m);
|
|
}
|
|
return this;
|
|
}
|
|
private void setMatrix3dc(Matrix3dc mat) {
|
|
m00 = mat.m00();
|
|
m01 = mat.m01();
|
|
m10 = mat.m10();
|
|
m11 = mat.m11();
|
|
}
|
|
|
|
/**
|
|
* Set the elements of this matrix to the upper left 2x2 of the given {@link Matrix3dc}.
|
|
*
|
|
* @param m
|
|
* the {@link Matrix3fc} to copy the values from
|
|
* @return this
|
|
*/
|
|
public Matrix2d set(Matrix3fc m) {
|
|
m00 = m.m00();
|
|
m01 = m.m01();
|
|
m10 = m.m10();
|
|
m11 = m.m11();
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Multiply this matrix by the supplied <code>right</code> matrix.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* transformation of the right matrix will be applied first!
|
|
*
|
|
* @param right
|
|
* the right operand of the matrix multiplication
|
|
* @return this
|
|
*/
|
|
public Matrix2d mul(Matrix2dc right) {
|
|
return mul(right, this);
|
|
}
|
|
|
|
public Matrix2d mul(Matrix2dc right, Matrix2d dest) {
|
|
double nm00 = m00 * right.m00() + m10 * right.m01();
|
|
double nm01 = m01 * right.m00() + m11 * right.m01();
|
|
double nm10 = m00 * right.m10() + m10 * right.m11();
|
|
double nm11 = m01 * right.m10() + m11 * right.m11();
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Multiply this matrix by the supplied <code>right</code> matrix.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* transformation of the right matrix will be applied first!
|
|
*
|
|
* @param right
|
|
* the right operand of the matrix multiplication
|
|
* @return this
|
|
*/
|
|
public Matrix2d mul(Matrix2fc right) {
|
|
return mul(right, this);
|
|
}
|
|
|
|
public Matrix2d mul(Matrix2fc right, Matrix2d dest) {
|
|
double nm00 = m00 * right.m00() + m10 * right.m01();
|
|
double nm01 = m01 * right.m00() + m11 * right.m01();
|
|
double nm10 = m00 * right.m10() + m10 * right.m11();
|
|
double nm11 = m01 * right.m10() + m11 * right.m11();
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply this matrix by the supplied <code>left</code> matrix and store the result in <code>this</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the <code>left</code> matrix,
|
|
* then the new matrix will be <code>L * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>L * M * v</code>, the
|
|
* transformation of <code>this</code> matrix will be applied first!
|
|
*
|
|
* @param left
|
|
* the left operand of the matrix multiplication
|
|
* @return this
|
|
*/
|
|
public Matrix2d mulLocal(Matrix2dc left) {
|
|
return mulLocal(left, this);
|
|
}
|
|
|
|
public Matrix2d mulLocal(Matrix2dc left, Matrix2d dest) {
|
|
double nm00 = left.m00() * m00 + left.m10() * m01;
|
|
double nm01 = left.m01() * m00 + left.m11() * m01;
|
|
double nm10 = left.m00() * m10 + left.m10() * m11;
|
|
double nm11 = left.m01() * m10 + left.m11() * m11;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Set the values within this matrix to the supplied double values. The result looks like this:
|
|
* <p>
|
|
* m00, m10<br>
|
|
* m01, m11<br>
|
|
*
|
|
* @param m00
|
|
* the new value of m00
|
|
* @param m01
|
|
* the new value of m01
|
|
* @param m10
|
|
* the new value of m10
|
|
* @param m11
|
|
* the new value of m11
|
|
* @return this
|
|
*/
|
|
public Matrix2d set(double m00, double m01,
|
|
double m10, double m11) {
|
|
this.m00 = m00;
|
|
this.m01 = m01;
|
|
this.m10 = m10;
|
|
this.m11 = m11;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the values in this matrix based on the supplied double array. The result looks like this:
|
|
* <p>
|
|
* 0, 2<br>
|
|
* 1, 3<br>
|
|
*
|
|
* This method only uses the first 4 values, all others are ignored.
|
|
*
|
|
* @param m
|
|
* the array to read the matrix values from
|
|
* @return this
|
|
*/
|
|
public Matrix2d set(double m[]) {
|
|
MemUtil.INSTANCE.copy(m, 0, this);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the two columns of this matrix to the supplied vectors, respectively.
|
|
*
|
|
* @param col0
|
|
* the first column
|
|
* @param col1
|
|
* the second column
|
|
* @return this
|
|
*/
|
|
public Matrix2d set(Vector2dc col0, Vector2dc col1) {
|
|
m00 = col0.x();
|
|
m01 = col0.y();
|
|
m10 = col1.x();
|
|
m11 = col1.y();
|
|
return this;
|
|
}
|
|
|
|
public double determinant() {
|
|
return m00 * m11 - m10 * m01;
|
|
}
|
|
|
|
/**
|
|
* Invert this matrix.
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix2d invert() {
|
|
return invert(this);
|
|
}
|
|
|
|
public Matrix2d invert(Matrix2d dest) {
|
|
double s = 1.0 / determinant();
|
|
double nm00 = m11 * s;
|
|
double nm01 = -m01 * s;
|
|
double nm10 = -m10 * s;
|
|
double nm11 = m00 * s;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Transpose this matrix.
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix2d transpose() {
|
|
return transpose(this);
|
|
}
|
|
|
|
public Matrix2d transpose(Matrix2d dest) {
|
|
dest.set(m00, m10,
|
|
m01, m11);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Return a string representation of this matrix.
|
|
* <p>
|
|
* This method creates a new {@link DecimalFormat} on every invocation with the format string "<code>0.000E0;-</code>".
|
|
*
|
|
* @return the string representation
|
|
*/
|
|
public String toString() {
|
|
String str = toString(Options.NUMBER_FORMAT);
|
|
StringBuffer res = new StringBuffer();
|
|
int eIndex = Integer.MIN_VALUE;
|
|
for (int i = 0; i < str.length(); i++) {
|
|
char c = str.charAt(i);
|
|
if (c == 'E') {
|
|
eIndex = i;
|
|
} else if (c == ' ' && eIndex == i - 1) {
|
|
// workaround Java 1.4 DecimalFormat bug
|
|
res.append('+');
|
|
continue;
|
|
} else if (Character.isDigit(c) && eIndex == i - 1) {
|
|
res.append('+');
|
|
}
|
|
res.append(c);
|
|
}
|
|
return res.toString();
|
|
}
|
|
|
|
/**
|
|
* Return a string representation of this matrix by formatting the matrix elements with the given {@link NumberFormat}.
|
|
*
|
|
* @param formatter
|
|
* the {@link NumberFormat} used to format the matrix values with
|
|
* @return the string representation
|
|
*/
|
|
public String toString(NumberFormat formatter) {
|
|
return Runtime.format(m00, formatter) + " " + Runtime.format(m10, formatter) + "\n"
|
|
+ Runtime.format(m01, formatter) + " " + Runtime.format(m11, formatter) + "\n";
|
|
}
|
|
|
|
/**
|
|
* Get the current values of <code>this</code> matrix and store them into
|
|
* <code>dest</code>.
|
|
* <p>
|
|
* This is the reverse method of {@link #set(Matrix2dc)} and allows to obtain
|
|
* intermediate calculation results when chaining multiple transformations.
|
|
*
|
|
* @see #set(Matrix2dc)
|
|
*
|
|
* @param dest
|
|
* the destination matrix
|
|
* @return the passed in destination
|
|
*/
|
|
public Matrix2d get(Matrix2d dest) {
|
|
return dest.set(this);
|
|
}
|
|
|
|
public Matrix3x2d get(Matrix3x2d dest) {
|
|
return dest.set(this);
|
|
}
|
|
|
|
public Matrix3d get(Matrix3d dest) {
|
|
return dest.set(this);
|
|
}
|
|
|
|
public double getRotation() {
|
|
return (double) Math.atan2(m01, m11);
|
|
}
|
|
|
|
|
|
public DoubleBuffer get(DoubleBuffer buffer) {
|
|
return get(buffer.position(), buffer);
|
|
}
|
|
|
|
public DoubleBuffer get(int index, DoubleBuffer buffer) {
|
|
MemUtil.INSTANCE.put(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
public ByteBuffer get(ByteBuffer buffer) {
|
|
return get(buffer.position(), buffer);
|
|
}
|
|
|
|
public ByteBuffer get(int index, ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.put(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
public DoubleBuffer getTransposed(DoubleBuffer buffer) {
|
|
return get(buffer.position(), buffer);
|
|
}
|
|
|
|
public DoubleBuffer getTransposed(int index, DoubleBuffer buffer) {
|
|
MemUtil.INSTANCE.putTransposed(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
public ByteBuffer getTransposed(ByteBuffer buffer) {
|
|
return get(buffer.position(), buffer);
|
|
}
|
|
|
|
public ByteBuffer getTransposed(int index, ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.putTransposed(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
public Matrix2dc getToAddress(long address) {
|
|
if (Options.NO_UNSAFE)
|
|
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
|
|
MemUtil.MemUtilUnsafe.put(this, address);
|
|
return this;
|
|
}
|
|
|
|
public double[] get(double[] arr, int offset) {
|
|
MemUtil.INSTANCE.copy(this, arr, offset);
|
|
return arr;
|
|
}
|
|
|
|
public double[] get(double[] arr) {
|
|
return get(arr, 0);
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 4 double values from the given {@link DoubleBuffer} in column-major order,
|
|
* starting at its current position.
|
|
* <p>
|
|
* The DoubleBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the DoubleBuffer will not be changed by this method.
|
|
*
|
|
* @param buffer
|
|
* the DoubleBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix2d set(DoubleBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 4 double values from the given {@link ByteBuffer} in column-major order,
|
|
* starting at its current position.
|
|
* <p>
|
|
* The ByteBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the ByteBuffer will not be changed by this method.
|
|
*
|
|
* @param buffer
|
|
* the ByteBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix2d set(ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 4 double values from the given {@link DoubleBuffer} in column-major order,
|
|
* starting at the specified absolute buffer position/index.
|
|
* <p>
|
|
* The DoubleBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the DoubleBuffer will not be changed by this method.
|
|
*
|
|
* @param index
|
|
* the absolute position into the DoubleBuffer
|
|
* @param buffer
|
|
* the DoubleBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix2d set(int index, DoubleBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, index, buffer);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 4 double values from the given {@link ByteBuffer} in column-major order,
|
|
* starting at the specified absolute buffer position/index.
|
|
* <p>
|
|
* The ByteBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the ByteBuffer will not be changed by this method.
|
|
*
|
|
* @param index
|
|
* the absolute position into the ByteBuffer
|
|
* @param buffer
|
|
* the ByteBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix2d set(int index, ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, index, buffer);
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the values of this matrix by reading 4 double values from off-heap memory in column-major order,
|
|
* starting at the given address.
|
|
* <p>
|
|
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
|
|
* <p>
|
|
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
|
|
*
|
|
* @param address
|
|
* the off-heap memory address to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix2d setFromAddress(long address) {
|
|
if (Options.NO_UNSAFE)
|
|
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
|
|
MemUtil.MemUtilUnsafe.get(this, address);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set all values within this matrix to zero.
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix2d zero() {
|
|
MemUtil.INSTANCE.zero(this);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to the identity.
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix2d identity() {
|
|
m00 = 1.0;
|
|
m01 = 0.0;
|
|
m10 = 0.0;
|
|
m11 = 1.0;
|
|
return this;
|
|
}
|
|
|
|
public Matrix2d scale(Vector2dc xy, Matrix2d dest) {
|
|
return scale(xy.x(), xy.y(), dest);
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by scaling the base axes by the given <code>xy.x</code> and
|
|
* <code>xy.y</code> factors, respectively.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* scaling will be applied first!
|
|
*
|
|
* @param xy
|
|
* the factors of the x and y component, respectively
|
|
* @return this
|
|
*/
|
|
public Matrix2d scale(Vector2dc xy) {
|
|
return scale(xy.x(), xy.y(), this);
|
|
}
|
|
|
|
public Matrix2d scale(double x, double y, Matrix2d dest) {
|
|
// scale matrix elements:
|
|
// m00 = x, m11 = y
|
|
// all others = 0
|
|
dest.m00 = m00 * x;
|
|
dest.m01 = m01 * x;
|
|
dest.m10 = m10 * y;
|
|
dest.m11 = m11 * y;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by scaling the base axes by the given x and
|
|
* y factors.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
|
|
* , the scaling will be applied first!
|
|
*
|
|
* @param x
|
|
* the factor of the x component
|
|
* @param y
|
|
* the factor of the y component
|
|
* @return this
|
|
*/
|
|
public Matrix2d scale(double x, double y) {
|
|
return scale(x, y, this);
|
|
}
|
|
|
|
public Matrix2d scale(double xy, Matrix2d dest) {
|
|
return scale(xy, xy, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by uniformly scaling all base axes by the given <code>xy</code> factor.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
|
|
* , the scaling will be applied first!
|
|
*
|
|
* @see #scale(double, double)
|
|
*
|
|
* @param xy
|
|
* the factor for all components
|
|
* @return this
|
|
*/
|
|
public Matrix2d scale(double xy) {
|
|
return scale(xy, xy);
|
|
}
|
|
|
|
public Matrix2d scaleLocal(double x, double y, Matrix2d dest) {
|
|
dest.m00 = x * m00;
|
|
dest.m01 = y * m01;
|
|
dest.m10 = x * m10;
|
|
dest.m11 = y * m11;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply scaling to this matrix by scaling the base axes by the given x and
|
|
* y factors.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>S * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>, the
|
|
* scaling will be applied last!
|
|
*
|
|
* @param x
|
|
* the factor of the x component
|
|
* @param y
|
|
* the factor of the y component
|
|
* @return this
|
|
*/
|
|
public Matrix2d scaleLocal(double x, double y) {
|
|
return scaleLocal(x, y, this);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional scaling.
|
|
* <p>
|
|
* In order to post-multiply a scaling transformation directly to a
|
|
* matrix, use {@link #scale(double) scale()} instead.
|
|
*
|
|
* @see #scale(double)
|
|
*
|
|
* @param factor
|
|
* the scale factor in x and y
|
|
* @return this
|
|
*/
|
|
public Matrix2d scaling(double factor) {
|
|
MemUtil.INSTANCE.zero(this);
|
|
m00 = factor;
|
|
m11 = factor;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a simple scale matrix.
|
|
*
|
|
* @param x
|
|
* the scale in x
|
|
* @param y
|
|
* the scale in y
|
|
* @return this
|
|
*/
|
|
public Matrix2d scaling(double x, double y) {
|
|
MemUtil.INSTANCE.zero(this);
|
|
m00 = x;
|
|
m11 = y;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a simple scale matrix which scales the base axes by <code>xy.x</code> and <code>xy.y</code> respectively.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional scaling.
|
|
* <p>
|
|
* In order to post-multiply a scaling transformation directly to a
|
|
* matrix use {@link #scale(Vector2dc) scale()} instead.
|
|
*
|
|
* @see #scale(Vector2dc)
|
|
*
|
|
* @param xy
|
|
* the scale in x and y respectively
|
|
* @return this
|
|
*/
|
|
public Matrix2d scaling(Vector2dc xy) {
|
|
return scaling(xy.x(), xy.y());
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation matrix which rotates the given radians about the origin.
|
|
* <p>
|
|
* The produced rotation will rotate a vector counter-clockwise around the origin.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional rotation.
|
|
* <p>
|
|
* In order to post-multiply a rotation transformation directly to a
|
|
* matrix, use {@link #rotate(double) rotate()} instead.
|
|
*
|
|
* @see #rotate(double)
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @return this
|
|
*/
|
|
public Matrix2d rotation(double angle) {
|
|
double sin = Math.sin(angle);
|
|
double cos = Math.cosFromSin(sin, angle);
|
|
m00 = cos;
|
|
m01 = sin;
|
|
m10 = -sin;
|
|
m11 = cos;
|
|
return this;
|
|
}
|
|
|
|
public Vector2d transform(Vector2d v) {
|
|
return v.mul(this);
|
|
}
|
|
|
|
public Vector2d transform(Vector2dc v, Vector2d dest) {
|
|
v.mul(this, dest);
|
|
return dest;
|
|
}
|
|
|
|
public Vector2d transform(double x, double y, Vector2d dest) {
|
|
dest.set(m00 * x + m10 * y,
|
|
m01 * x + m11 * y);
|
|
return dest;
|
|
}
|
|
|
|
public Vector2d transformTranspose(Vector2d v) {
|
|
return v.mulTranspose(this);
|
|
}
|
|
|
|
public Vector2d transformTranspose(Vector2dc v, Vector2d dest) {
|
|
v.mulTranspose(this, dest);
|
|
return dest;
|
|
}
|
|
|
|
public Vector2d transformTranspose(double x, double y, Vector2d dest) {
|
|
dest.set(m00 * x + m01 * y,
|
|
m10 * x + m11 * y);
|
|
return dest;
|
|
}
|
|
|
|
public void writeExternal(ObjectOutput out) throws IOException {
|
|
out.writeDouble(m00);
|
|
out.writeDouble(m01);
|
|
out.writeDouble(m10);
|
|
out.writeDouble(m11);
|
|
}
|
|
|
|
public void readExternal(ObjectInput in) throws IOException {
|
|
m00 = in.readDouble();
|
|
m01 = in.readDouble();
|
|
m10 = in.readDouble();
|
|
m11 = in.readDouble();
|
|
}
|
|
|
|
/**
|
|
* Apply rotation about the origin to this matrix by rotating the given amount of radians.
|
|
* <p>
|
|
* The produced rotation will rotate a vector counter-clockwise around the origin.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>
|
|
* , the rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="https://en.wikipedia.org/wiki/Rotation_matrix#In_two_dimensions">http://en.wikipedia.org</a>
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @return this
|
|
*/
|
|
public Matrix2d rotate(double angle) {
|
|
return rotate(angle, this);
|
|
}
|
|
|
|
public Matrix2d rotate(double angle, Matrix2d dest) {
|
|
double s = Math.sin(angle);
|
|
double c = Math.cosFromSin(s, angle);
|
|
// rotation matrix elements:
|
|
// m00 = c, m01 = s, m10 = -s, m11 = c
|
|
double nm00 = m00 * c + m10 * s;
|
|
double nm01 = m01 * c + m11 * s;
|
|
double nm10 = m10 * c - m00 * s;
|
|
double nm11 = m11 * c - m01 * s;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a rotation to this matrix by rotating the given amount of radians about the origin.
|
|
* <p>
|
|
* The produced rotation will rotate a vector counter-clockwise around the origin.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>R * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
|
|
* rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
|
|
* transformation, use {@link #rotation(double) rotation()}.
|
|
* <p>
|
|
* Reference: <a href="https://en.wikipedia.org/wiki/Rotation_matrix#In_two_dimensions">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(double)
|
|
*
|
|
* @param angle
|
|
* the angle in radians to rotate about the X axis
|
|
* @return this
|
|
*/
|
|
public Matrix2d rotateLocal(double angle) {
|
|
return rotateLocal(angle, this);
|
|
}
|
|
|
|
public Matrix2d rotateLocal(double angle, Matrix2d dest) {
|
|
double s = Math.sin(angle);
|
|
double c = Math.cosFromSin(s, angle);
|
|
// rotation matrix elements:
|
|
// m00 = c, m01 = s, m10 = -s, m11 = c
|
|
double nm00 = c * m00 - s * m01;
|
|
double nm01 = s * m00 + c * m01;
|
|
double nm10 = c * m10 - s * m11;
|
|
double nm11 = s * m10 + c * m11;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
return dest;
|
|
}
|
|
|
|
public Vector2d getRow(int row, Vector2d dest) throws IndexOutOfBoundsException {
|
|
switch (row) {
|
|
case 0:
|
|
dest.x = m00;
|
|
dest.y = m10;
|
|
break;
|
|
case 1:
|
|
dest.x = m01;
|
|
dest.y = m11;
|
|
break;
|
|
default:
|
|
throw new IndexOutOfBoundsException();
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Set the row at the given <code>row</code> index, starting with <code>0</code>.
|
|
*
|
|
* @param row
|
|
* the row index in <code>[0..1]</code>
|
|
* @param src
|
|
* the row components to set
|
|
* @return this
|
|
* @throws IndexOutOfBoundsException if <code>row</code> is not in <code>[0..1]</code>
|
|
*/
|
|
public Matrix2d setRow(int row, Vector2dc src) throws IndexOutOfBoundsException {
|
|
return setRow(row, src.x(), src.y());
|
|
}
|
|
|
|
/**
|
|
* Set the row at the given <code>row</code> index, starting with <code>0</code>.
|
|
*
|
|
* @param row
|
|
* the row index in <code>[0..1]</code>
|
|
* @param x
|
|
* the first element in the row
|
|
* @param y
|
|
* the second element in the row
|
|
* @return this
|
|
* @throws IndexOutOfBoundsException if <code>row</code> is not in <code>[0..1]</code>
|
|
*/
|
|
public Matrix2d setRow(int row, double x, double y) throws IndexOutOfBoundsException {
|
|
switch (row) {
|
|
case 0:
|
|
this.m00 = x;
|
|
this.m10 = y;
|
|
break;
|
|
case 1:
|
|
this.m01 = x;
|
|
this.m11 = y;
|
|
break;
|
|
default:
|
|
throw new IndexOutOfBoundsException();
|
|
}
|
|
return this;
|
|
}
|
|
|
|
public Vector2d getColumn(int column, Vector2d dest) throws IndexOutOfBoundsException {
|
|
switch (column) {
|
|
case 0:
|
|
dest.x = m00;
|
|
dest.y = m01;
|
|
break;
|
|
case 1:
|
|
dest.x = m10;
|
|
dest.y = m11;
|
|
break;
|
|
default:
|
|
throw new IndexOutOfBoundsException();
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Set the column at the given <code>column</code> index, starting with <code>0</code>.
|
|
*
|
|
* @param column
|
|
* the column index in <code>[0..1]</code>
|
|
* @param src
|
|
* the column components to set
|
|
* @return this
|
|
* @throws IndexOutOfBoundsException if <code>column</code> is not in <code>[0..1]</code>
|
|
*/
|
|
public Matrix2d setColumn(int column, Vector2dc src) throws IndexOutOfBoundsException {
|
|
return setColumn(column, src.x(), src.y());
|
|
}
|
|
|
|
/**
|
|
* Set the column at the given <code>column</code> index, starting with <code>0</code>.
|
|
*
|
|
* @param column
|
|
* the column index in <code>[0..1]</code>
|
|
* @param x
|
|
* the first element in the column
|
|
* @param y
|
|
* the second element in the column
|
|
* @return this
|
|
* @throws IndexOutOfBoundsException if <code>column</code> is not in <code>[0..1]</code>
|
|
*/
|
|
public Matrix2d setColumn(int column, double x, double y) throws IndexOutOfBoundsException {
|
|
switch (column) {
|
|
case 0:
|
|
this.m00 = x;
|
|
this.m01 = y;
|
|
break;
|
|
case 1:
|
|
this.m10 = x;
|
|
this.m11 = y;
|
|
break;
|
|
default:
|
|
throw new IndexOutOfBoundsException();
|
|
}
|
|
return this;
|
|
}
|
|
|
|
public double get(int column, int row) {
|
|
switch (column) {
|
|
case 0:
|
|
switch (row) {
|
|
case 0:
|
|
return m00;
|
|
case 1:
|
|
return m01;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case 1:
|
|
switch (row) {
|
|
case 0:
|
|
return m10;
|
|
case 1:
|
|
return m11;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
throw new IndexOutOfBoundsException();
|
|
}
|
|
|
|
/**
|
|
* Set the matrix element at the given column and row to the specified value.
|
|
*
|
|
* @param column
|
|
* the colum index in <code>[0..1]</code>
|
|
* @param row
|
|
* the row index in <code>[0..1]</code>
|
|
* @param value
|
|
* the value
|
|
* @return this
|
|
*/
|
|
public Matrix2d set(int column, int row, double value) {
|
|
switch (column) {
|
|
case 0:
|
|
switch (row) {
|
|
case 0:
|
|
this.m00 = value;
|
|
return this;
|
|
case 1:
|
|
this.m01 = value;
|
|
return this;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case 1:
|
|
switch (row) {
|
|
case 0:
|
|
this.m10 = value;
|
|
return this;
|
|
case 1:
|
|
this.m11 = value;
|
|
return this;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
throw new IndexOutOfBoundsException();
|
|
}
|
|
|
|
/**
|
|
* Set <code>this</code> matrix to its own normal matrix.
|
|
* <p>
|
|
* Please note that, if <code>this</code> is an orthogonal matrix or a matrix whose columns are orthogonal vectors,
|
|
* then this method <i>need not</i> be invoked, since in that case <code>this</code> itself is its normal matrix.
|
|
* In this case, use {@link #set(Matrix2dc)} to set a given Matrix2d to this matrix.
|
|
*
|
|
* @see #set(Matrix2dc)
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix2d normal() {
|
|
return normal(this);
|
|
}
|
|
|
|
/**
|
|
* Compute a normal matrix from <code>this</code> matrix and store it into <code>dest</code>.
|
|
* <p>
|
|
* Please note that, if <code>this</code> is an orthogonal matrix or a matrix whose columns are orthogonal vectors,
|
|
* then this method <i>need not</i> be invoked, since in that case <code>this</code> itself is its normal matrix.
|
|
* In this case, use {@link #set(Matrix2dc)} to set a given Matrix2d to this matrix.
|
|
*
|
|
* @see #set(Matrix2dc)
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix2d normal(Matrix2d dest) {
|
|
double det = m00 * m11 - m10 * m01;
|
|
double s = 1.0 / det;
|
|
/* Invert and transpose in one go */
|
|
double nm00 = m11 * s;
|
|
double nm01 = -m10 * s;
|
|
double nm10 = -m01 * s;
|
|
double nm11 = m00 * s;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
return dest;
|
|
}
|
|
|
|
public Vector2d getScale(Vector2d dest) {
|
|
dest.x = Math.sqrt(m00 * m00 + m01 * m01);
|
|
dest.y = Math.sqrt(m10 * m10 + m11 * m11);
|
|
return dest;
|
|
}
|
|
|
|
public Vector2d positiveX(Vector2d dir) {
|
|
if (m00 * m11 < m01 * m10) { // negative determinant?
|
|
dir.x = -m11;
|
|
dir.y = m01;
|
|
} else {
|
|
dir.x = m11;
|
|
dir.y = -m01;
|
|
}
|
|
return dir.normalize(dir);
|
|
}
|
|
|
|
public Vector2d normalizedPositiveX(Vector2d dir) {
|
|
if (m00 * m11 < m01 * m10) { // negative determinant?
|
|
dir.x = -m11;
|
|
dir.y = m01;
|
|
} else {
|
|
dir.x = m11;
|
|
dir.y = -m01;
|
|
}
|
|
return dir;
|
|
}
|
|
|
|
public Vector2d positiveY(Vector2d dir) {
|
|
if (m00 * m11 < m01 * m10) { // negative determinant?
|
|
dir.x = m10;
|
|
dir.y = -m00;
|
|
} else {
|
|
dir.x = -m10;
|
|
dir.y = m00;
|
|
}
|
|
return dir.normalize(dir);
|
|
}
|
|
|
|
public Vector2d normalizedPositiveY(Vector2d dir) {
|
|
if (m00 * m11 < m01 * m10) { // negative determinant?
|
|
dir.x = m10;
|
|
dir.y = -m00;
|
|
} else {
|
|
dir.x = -m10;
|
|
dir.y = m00;
|
|
}
|
|
return dir;
|
|
}
|
|
|
|
public int hashCode() {
|
|
final int prime = 31;
|
|
int result = 1;
|
|
long temp;
|
|
temp = Double.doubleToLongBits(m00);
|
|
result = prime * result + (int) ((temp >>> 32) ^ temp);
|
|
temp = Double.doubleToLongBits(m01);
|
|
result = prime * result + (int) ((temp >>> 32) ^ temp);
|
|
temp = Double.doubleToLongBits(m10);
|
|
result = prime * result + (int) ((temp >>> 32) ^ temp);
|
|
temp = Double.doubleToLongBits(m11);
|
|
result = prime * result + (int) ((temp >>> 32) ^ temp);
|
|
return result;
|
|
}
|
|
|
|
public boolean equals(Object obj) {
|
|
if (this == obj)
|
|
return true;
|
|
if (obj == null)
|
|
return false;
|
|
if (getClass() != obj.getClass())
|
|
return false;
|
|
Matrix2d other = (Matrix2d) obj;
|
|
if (Double.doubleToLongBits(m00) != Double.doubleToLongBits(other.m00))
|
|
return false;
|
|
if (Double.doubleToLongBits(m01) != Double.doubleToLongBits(other.m01))
|
|
return false;
|
|
if (Double.doubleToLongBits(m10) != Double.doubleToLongBits(other.m10))
|
|
return false;
|
|
if (Double.doubleToLongBits(m11) != Double.doubleToLongBits(other.m11))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
public boolean equals(Matrix2dc m, double delta) {
|
|
if (this == m)
|
|
return true;
|
|
if (m == null)
|
|
return false;
|
|
if (!(m instanceof Matrix2d))
|
|
return false;
|
|
if (!Runtime.equals(m00, m.m00(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m01, m.m01(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m10, m.m10(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m11, m.m11(), delta))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Exchange the values of <code>this</code> matrix with the given <code>other</code> matrix.
|
|
*
|
|
* @param other
|
|
* the other matrix to exchange the values with
|
|
* @return this
|
|
*/
|
|
public Matrix2d swap(Matrix2d other) {
|
|
MemUtil.INSTANCE.swap(this, other);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Component-wise add <code>this</code> and <code>other</code>.
|
|
*
|
|
* @param other
|
|
* the other addend
|
|
* @return this
|
|
*/
|
|
public Matrix2d add(Matrix2dc other) {
|
|
return add(other, this);
|
|
}
|
|
|
|
public Matrix2d add(Matrix2dc other, Matrix2d dest) {
|
|
dest.m00 = m00 + other.m00();
|
|
dest.m01 = m01 + other.m01();
|
|
dest.m10 = m10 + other.m10();
|
|
dest.m11 = m11 + other.m11();
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Component-wise subtract <code>subtrahend</code> from <code>this</code>.
|
|
*
|
|
* @param subtrahend
|
|
* the subtrahend
|
|
* @return this
|
|
*/
|
|
public Matrix2d sub(Matrix2dc subtrahend) {
|
|
return sub(subtrahend, this);
|
|
}
|
|
|
|
public Matrix2d sub(Matrix2dc other, Matrix2d dest) {
|
|
dest.m00 = m00 - other.m00();
|
|
dest.m01 = m01 - other.m01();
|
|
dest.m10 = m10 - other.m10();
|
|
dest.m11 = m11 - other.m11();
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Component-wise multiply <code>this</code> by <code>other</code>.
|
|
*
|
|
* @param other
|
|
* the other matrix
|
|
* @return this
|
|
*/
|
|
public Matrix2d mulComponentWise(Matrix2dc other) {
|
|
return sub(other, this);
|
|
}
|
|
|
|
public Matrix2d mulComponentWise(Matrix2dc other, Matrix2d dest) {
|
|
dest.m00 = m00 * other.m00();
|
|
dest.m01 = m01 * other.m01();
|
|
dest.m10 = m10 * other.m10();
|
|
dest.m11 = m11 * other.m11();
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
|
|
* and store the result in <code>this</code>.
|
|
* <p>
|
|
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
|
|
* then the result is <code>other</code>.
|
|
*
|
|
* @param other
|
|
* the other matrix
|
|
* @param t
|
|
* the interpolation factor between 0.0 and 1.0
|
|
* @return this
|
|
*/
|
|
public Matrix2d lerp(Matrix2dc other, double t) {
|
|
return lerp(other, t, this);
|
|
}
|
|
|
|
public Matrix2d lerp(Matrix2dc other, double t, Matrix2d dest) {
|
|
dest.m00 = Math.fma(other.m00() - m00, t, m00);
|
|
dest.m01 = Math.fma(other.m01() - m01, t, m01);
|
|
dest.m10 = Math.fma(other.m10() - m10, t, m10);
|
|
dest.m11 = Math.fma(other.m11() - m11, t, m11);
|
|
return dest;
|
|
}
|
|
|
|
public boolean isFinite() {
|
|
return Math.isFinite(m00) && Math.isFinite(m01) &&
|
|
Math.isFinite(m10) && Math.isFinite(m11);
|
|
}
|
|
|
|
public Object clone() throws CloneNotSupportedException {
|
|
return super.clone();
|
|
}
|
|
|
|
}
|