Flywheel/joml/Quaterniondc.java
PepperCode1 a42c027b6f Scheme-a-version
- Fix Resources not being closed properly
- Change versioning scheme to match Create
- Add LICENSE to built jar
- Fix mods.toml version sync
- Move JOML code to non-src directory
- Update Gradle
- Organize imports
2022-07-15 00:00:54 -07:00

1967 lines
72 KiB
Java

/*
* The MIT License
*
* Copyright (c) 2015-2021 JOML
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.jozufozu.flywheel.repack.joml;
import java.util.*;
/**
* Interface to a read-only view of a quaternion of double-precision floats.
*
* @author Kai Burjack
*/
public interface Quaterniondc {
/**
* @return the first component of the vector part
*/
double x();
/**
* @return the second component of the vector part
*/
double y();
/**
* @return the third component of the vector part
*/
double z();
/**
* @return the real/scalar part of the quaternion
*/
double w();
/**
* Normalize this quaternion and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Quaterniond normalize(Quaterniond dest);
/**
* Add the quaternion <code>(x, y, z, w)</code> to this quaternion and store the result in <code>dest</code>.
*
* @param x
* the x component of the vector part
* @param y
* the y component of the vector part
* @param z
* the z component of the vector part
* @param w
* the real/scalar component
* @param dest
* will hold the result
* @return dest
*/
Quaterniond add(double x, double y, double z, double w, Quaterniond dest);
/**
* Add <code>q2</code> to this quaternion and store the result in <code>dest</code>.
*
* @param q2
* the quaternion to add to this
* @param dest
* will hold the result
* @return dest
*/
Quaterniond add(Quaterniondc q2, Quaterniond dest);
/**
* Return the dot product of this {@link Quaterniond} and <code>otherQuat</code>.
*
* @param otherQuat
* the other quaternion
* @return the dot product
*/
double dot(Quaterniondc otherQuat);
/**
* Return the angle in radians represented by this normalized quaternion rotation.
* <p>
* This quaternion must be {@link #normalize(Quaterniond) normalized}.
*
* @return the angle in radians
*/
double angle();
/**
* Set the given destination matrix to the rotation represented by <code>this</code>.
*
* @see Matrix3d#set(Quaterniondc)
*
* @param dest
* the matrix to write the rotation into
* @return the passed in destination
*/
Matrix3d get(Matrix3d dest);
/**
* Set the given destination matrix to the rotation represented by <code>this</code>.
*
* @see Matrix3f#set(Quaterniondc)
*
* @param dest
* the matrix to write the rotation into
* @return the passed in destination
*/
Matrix3f get(Matrix3f dest);
/**
* Set the given destination matrix to the rotation represented by <code>this</code>.
*
* @see Matrix4d#set(Quaterniondc)
*
* @param dest
* the matrix to write the rotation into
* @return the passed in destination
*/
Matrix4d get(Matrix4d dest);
/**
* Set the given destination matrix to the rotation represented by <code>this</code>.
*
* @see Matrix4f#set(Quaterniondc)
*
* @param dest
* the matrix to write the rotation into
* @return the passed in destination
*/
Matrix4f get(Matrix4f dest);
/**
* Set the given {@link AxisAngle4f} to represent the rotation of
* <code>this</code> quaternion.
*
* @param dest
* the {@link AxisAngle4f} to set
* @return the passed in destination
*/
AxisAngle4f get(AxisAngle4f dest);
/**
* Set the given {@link AxisAngle4d} to represent the rotation of
* <code>this</code> quaternion.
*
* @param dest
* the {@link AxisAngle4d} to set
* @return the passed in destination
*/
AxisAngle4d get(AxisAngle4d dest);
/**
* Set the given {@link Quaterniond} to the values of <code>this</code>.
*
* @param dest
* the {@link Quaterniond} to set
* @return the passed in destination
*/
Quaterniond get(Quaterniond dest);
/**
* Set the given {@link Quaternionf} to the values of <code>this</code>.
*
* @param dest
* the {@link Quaternionf} to set
* @return the passed in destination
*/
Quaternionf get(Quaternionf dest);
/**
* Multiply this quaternion by <code>q</code> and store the result in <code>dest</code>.
* <p>
* If <code>T</code> is <code>this</code> and <code>Q</code> is the given
* quaternion, then the resulting quaternion <code>R</code> is:
* <p>
* <code>R = T * Q</code>
* <p>
* So, this method uses post-multiplication like the matrix classes, resulting in a
* vector to be transformed by <code>Q</code> first, and then by <code>T</code>.
*
* @param q
* the quaternion to multiply <code>this</code> by
* @param dest
* will hold the result
* @return dest
*/
Quaterniond mul(Quaterniondc q, Quaterniond dest);
/**
* Multiply this quaternion by the quaternion represented via <code>(qx, qy, qz, qw)</code> and store the result in <code>dest</code>.
* <p>
* If <code>T</code> is <code>this</code> and <code>Q</code> is the given
* quaternion, then the resulting quaternion <code>R</code> is:
* <p>
* <code>R = T * Q</code>
* <p>
* So, this method uses post-multiplication like the matrix classes, resulting in a
* vector to be transformed by <code>Q</code> first, and then by <code>T</code>.
*
* @param qx
* the x component of the quaternion to multiply <code>this</code> by
* @param qy
* the y component of the quaternion to multiply <code>this</code> by
* @param qz
* the z component of the quaternion to multiply <code>this</code> by
* @param qw
* the w component of the quaternion to multiply <code>this</code> by
* @param dest
* will hold the result
* @return dest
*/
Quaterniond mul(double qx, double qy, double qz, double qw, Quaterniond dest);
/**
* Pre-multiply this quaternion by <code>q</code> and store the result in <code>dest</code>.
* <p>
* If <code>T</code> is <code>this</code> and <code>Q</code> is the given quaternion, then the resulting quaternion <code>R</code> is:
* <p>
* <code>R = Q * T</code>
* <p>
* So, this method uses pre-multiplication, resulting in a vector to be transformed by <code>T</code> first, and then by <code>Q</code>.
*
* @param q
* the quaternion to pre-multiply <code>this</code> by
* @param dest
* will hold the result
* @return dest
*/
Quaterniond premul(Quaterniondc q, Quaterniond dest);
/**
* Pre-multiply this quaternion by the quaternion represented via <code>(qx, qy, qz, qw)</code> and store the result in <code>dest</code>.
* <p>
* If <code>T</code> is <code>this</code> and <code>Q</code> is the given quaternion, then the resulting quaternion <code>R</code> is:
* <p>
* <code>R = Q * T</code>
* <p>
* So, this method uses pre-multiplication, resulting in a vector to be transformed by <code>T</code> first, and then by <code>Q</code>.
*
* @param qx
* the x component of the quaternion to multiply <code>this</code> by
* @param qy
* the y component of the quaternion to multiply <code>this</code> by
* @param qz
* the z component of the quaternion to multiply <code>this</code> by
* @param qw
* the w component of the quaternion to multiply <code>this</code> by
* @param dest
* will hold the result
* @return dest
*/
Quaterniond premul(double qx, double qy, double qz, double qw, Quaterniond dest);
/**
* Transform the given vector by this quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector3d transform(Vector3d vec);
/**
* Transform the given vector by the inverse of this quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector3d transformInverse(Vector3d vec);
/**
* Transform the given vector by this unit quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector3d transformUnit(Vector3d vec);
/**
* Transform the given vector by the inverse of this unit quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector3d transformInverseUnit(Vector3d vec);
/**
* Transform the vector <code>(1, 0, 0)</code> by this quaternion.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d transformPositiveX(Vector3d dest);
/**
* Transform the vector <code>(1, 0, 0)</code> by this quaternion.
* <p>
* Only the first three components of the given 4D vector are modified.
*
* @param dest
* will hold the result
* @return dest
*/
Vector4d transformPositiveX(Vector4d dest);
/**
* Transform the vector <code>(1, 0, 0)</code> by this unit quaternion.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
* <p>
* Reference: <a href="https://de.mathworks.com/help/aerotbx/ug/quatrotate.html?requestedDomain=true">https://de.mathworks.com/</a>
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d transformUnitPositiveX(Vector3d dest);
/**
* Transform the vector <code>(1, 0, 0)</code> by this unit quaternion.
* <p>
* Only the first three components of the given 4D vector are modified.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
* <p>
* Reference: <a href="https://de.mathworks.com/help/aerotbx/ug/quatrotate.html?requestedDomain=true">https://de.mathworks.com/</a>
*
* @param dest
* will hold the result
* @return dest
*/
Vector4d transformUnitPositiveX(Vector4d dest);
/**
* Transform the vector <code>(0, 1, 0)</code> by this quaternion.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d transformPositiveY(Vector3d dest);
/**
* Transform the vector <code>(0, 1, 0)</code> by this quaternion.
* <p>
* Only the first three components of the given 4D vector are modified.
*
* @param dest
* will hold the result
* @return dest
*/
Vector4d transformPositiveY(Vector4d dest);
/**
* Transform the vector <code>(0, 1, 0)</code> by this unit quaternion.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
* <p>
* Reference: <a href="https://de.mathworks.com/help/aerotbx/ug/quatrotate.html?requestedDomain=true">https://de.mathworks.com/</a>
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d transformUnitPositiveY(Vector3d dest);
/**
* Transform the vector <code>(0, 1, 0)</code> by this unit quaternion.
* <p>
* Only the first three components of the given 4D vector are modified.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
* <p>
* Reference: <a href="https://de.mathworks.com/help/aerotbx/ug/quatrotate.html?requestedDomain=true">https://de.mathworks.com/</a>
*
* @param dest
* will hold the result
* @return dest
*/
Vector4d transformUnitPositiveY(Vector4d dest);
/**
* Transform the vector <code>(0, 0, 1)</code> by this quaternion.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d transformPositiveZ(Vector3d dest);
/**
* Transform the vector <code>(0, 0, 1)</code> by this quaternion.
* <p>
* Only the first three components of the given 4D vector are modified.
*
* @param dest
* will hold the result
* @return dest
*/
Vector4d transformPositiveZ(Vector4d dest);
/**
* Transform the vector <code>(0, 0, 1)</code> by this unit quaternion.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
* <p>
* Reference: <a href="https://de.mathworks.com/help/aerotbx/ug/quatrotate.html?requestedDomain=true">https://de.mathworks.com/</a>
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d transformUnitPositiveZ(Vector3d dest);
/**
* Transform the vector <code>(0, 0, 1)</code> by this unit quaternion.
* <p>
* Only the first three components of the given 4D vector are modified.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
* <p>
* Reference: <a href="https://de.mathworks.com/help/aerotbx/ug/quatrotate.html?requestedDomain=true">https://de.mathworks.com/</a>
*
* @param dest
* will hold the result
* @return dest
*/
Vector4d transformUnitPositiveZ(Vector4d dest);
/**
* Transform the given vector by this quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and modified.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector4d transform(Vector4d vec);
/**
* Transform the given vector by the inverse of this quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and modified.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector4d transformInverse(Vector4d vec);
/**
* Transform the given vector by this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3d transform(Vector3dc vec, Vector3d dest);
/**
* Transform the given vector by the inverse of this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3d transformInverse(Vector3dc vec, Vector3d dest);
/**
* Transform the given vector <code>(x, y, z)</code> by this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3d transform(double x, double y, double z, Vector3d dest);
/**
* Transform the given vector <code>(x, y, z)</code> by the inverse of
* this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3d transformInverse(double x, double y, double z, Vector3d dest);
/**
* Transform the given vector by this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and set on the destination.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4d transform(Vector4dc vec, Vector4d dest);
/**
* Transform the given vector by the inverse of this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and set on the destination.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4d transformInverse(Vector4dc vec, Vector4d dest);
/**
* Transform the given vector <code>(x, y, z)</code> by this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4d transform(double x, double y, double z, Vector4d dest);
/**
* Transform the given vector <code>(x, y, z)</code> by the inverse of
* this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4d transformInverse(double x, double y, double z, Vector4d dest);
/**
* Transform the given vector by this quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector3f transform(Vector3f vec);
/**
* Transform the given vector by the inverse of this quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector3f transformInverse(Vector3f vec);
/**
* Transform the given vector by this unit quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and modified.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector4d transformUnit(Vector4d vec);
/**
* Transform the given vector by the inverse of this unit quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and modified.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector4d transformInverseUnit(Vector4d vec);
/**
* Transform the given vector by this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3d transformUnit(Vector3dc vec, Vector3d dest);
/**
* Transform the given vector by the inverse of this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3d transformInverseUnit(Vector3dc vec, Vector3d dest);
/**
* Transform the given vector <code>(x, y, z)</code> by this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3d transformUnit(double x, double y, double z, Vector3d dest);
/**
* Transform the given vector <code>(x, y, z)</code> by the inverse of
* this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3d transformInverseUnit(double x, double y, double z, Vector3d dest);
/**
* Transform the given vector by this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and set on the destination.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4d transformUnit(Vector4dc vec, Vector4d dest);
/**
* Transform the given vector by the inverse of this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and set on the destination.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4d transformInverseUnit(Vector4dc vec, Vector4d dest);
/**
* Transform the given vector <code>(x, y, z)</code> by this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4d transformUnit(double x, double y, double z, Vector4d dest);
/**
* Transform the given vector <code>(x, y, z)</code> by the inverse of
* this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4d transformInverseUnit(double x, double y, double z, Vector4d dest);
/**
* Transform the given vector by this unit quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector3f transformUnit(Vector3f vec);
/**
* Transform the given vector by the inverse of this unit quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector3f transformInverseUnit(Vector3f vec);
/**
* Transform the vector <code>(1, 0, 0)</code> by this quaternion.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformPositiveX(Vector3f dest);
/**
* Transform the vector <code>(1, 0, 0)</code> by this quaternion.
* <p>
* Only the first three components of the given 4D vector are modified.
*
* @param dest
* will hold the result
* @return dest
*/
Vector4f transformPositiveX(Vector4f dest);
/**
* Transform the vector <code>(1, 0, 0)</code> by this unit quaternion.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
* <p>
* Reference: <a href="https://de.mathworks.com/help/aerotbx/ug/quatrotate.html?requestedDomain=true">https://de.mathworks.com/</a>
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformUnitPositiveX(Vector3f dest);
/**
* Transform the vector <code>(1, 0, 0)</code> by this unit quaternion.
* <p>
* Only the first three components of the given 4D vector are modified.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
* <p>
* Reference: <a href="https://de.mathworks.com/help/aerotbx/ug/quatrotate.html?requestedDomain=true">https://de.mathworks.com/</a>
*
* @param dest
* will hold the result
* @return dest
*/
Vector4f transformUnitPositiveX(Vector4f dest);
/**
* Transform the vector <code>(0, 1, 0)</code> by this quaternion.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformPositiveY(Vector3f dest);
/**
* Transform the vector <code>(0, 1, 0)</code> by this quaternion.
* <p>
* Only the first three components of the given 4D vector are modified.
*
* @param dest
* will hold the result
* @return dest
*/
Vector4f transformPositiveY(Vector4f dest);
/**
* Transform the vector <code>(0, 1, 0)</code> by this unit quaternion.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
* <p>
* Reference: <a href="https://de.mathworks.com/help/aerotbx/ug/quatrotate.html?requestedDomain=true">https://de.mathworks.com/</a>
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformUnitPositiveY(Vector3f dest);
/**
* Transform the vector <code>(0, 1, 0)</code> by this unit quaternion.
* <p>
* Only the first three components of the given 4D vector are modified.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
* <p>
* Reference: <a href="https://de.mathworks.com/help/aerotbx/ug/quatrotate.html?requestedDomain=true">https://de.mathworks.com/</a>
*
* @param dest
* will hold the result
* @return dest
*/
Vector4f transformUnitPositiveY(Vector4f dest);
/**
* Transform the vector <code>(0, 0, 1)</code> by this quaternion.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformPositiveZ(Vector3f dest);
/**
* Transform the vector <code>(0, 0, 1)</code> by this quaternion.
* <p>
* Only the first three components of the given 4D vector are modified.
*
* @param dest
* will hold the result
* @return dest
*/
Vector4f transformPositiveZ(Vector4f dest);
/**
* Transform the vector <code>(0, 0, 1)</code> by this unit quaternion.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
* <p>
* Reference: <a href="https://de.mathworks.com/help/aerotbx/ug/quatrotate.html?requestedDomain=true">https://de.mathworks.com/</a>
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformUnitPositiveZ(Vector3f dest);
/**
* Transform the vector <code>(0, 0, 1)</code> by this unit quaternion.
* <p>
* Only the first three components of the given 4D vector are modified.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
* <p>
* Reference: <a href="https://de.mathworks.com/help/aerotbx/ug/quatrotate.html?requestedDomain=true">https://de.mathworks.com/</a>
*
* @param dest
* will hold the result
* @return dest
*/
Vector4f transformUnitPositiveZ(Vector4f dest);
/**
* Transform the given vector by this quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and modified.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector4f transform(Vector4f vec);
/**
* Transform the given vector by the inverse of this quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and modified.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector4f transformInverse(Vector4f vec);
/**
* Transform the given vector by this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3f transform(Vector3fc vec, Vector3f dest);
/**
* Transform the given vector by the inverse of this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformInverse(Vector3fc vec, Vector3f dest);
/**
* Transform the given vector <code>(x, y, z)</code> by this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3f transform(double x, double y, double z, Vector3f dest);
/**
* Transform the given vector <code>(x, y, z)</code> by the inverse of
* this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformInverse(double x, double y, double z, Vector3f dest);
/**
* Transform the given vector by this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and set on the destination.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4f transform(Vector4fc vec, Vector4f dest);
/**
* Transform the given vector by the inverse of this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and set on the destination.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4f transformInverse(Vector4fc vec, Vector4f dest);
/**
* Transform the given vector <code>(x, y, z)</code> by this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4f transform(double x, double y, double z, Vector4f dest);
/**
* Transform the given vector <code>(x, y, z)</code> by the inverse of
* this quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4f transformInverse(double x, double y, double z, Vector4f dest);
/**
* Transform the given vector by this unit quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and modified.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector4f transformUnit(Vector4f vec);
/**
* Transform the given vector by the inverse of this unit quaternion.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and modified.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @return vec
*/
Vector4f transformInverseUnit(Vector4f vec);
/**
* Transform the given vector by this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformUnit(Vector3fc vec, Vector3f dest);
/**
* Transform the given vector by the inverse of this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformInverseUnit(Vector3fc vec, Vector3f dest);
/**
* Transform the given vector <code>(x, y, z)</code> by this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformUnit(double x, double y, double z, Vector3f dest);
/**
* Transform the given vector <code>(x, y, z)</code> by the inverse of
* this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformInverseUnit(double x, double y, double z, Vector3f dest);
/**
* Transform the given vector by this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and set on the destination.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4f transformUnit(Vector4fc vec, Vector4f dest);
/**
* Transform the given vector by the inverse of this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* Only the first three components of the given 4D vector are being used and set on the destination.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param vec
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4f transformInverseUnit(Vector4fc vec, Vector4f dest);
/**
* Transform the given vector <code>(x, y, z)</code> by this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4f transformUnit(double x, double y, double z, Vector4f dest);
/**
* Transform the given vector <code>(x, y, z)</code> by the inverse of
* this unit quaternion and store the result in <code>dest</code>.
* <p>
* This will apply the rotation described by this quaternion to the given vector.
* <p>
* This method is only applicable when <code>this</code> is a unit quaternion.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param z
* the z coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector4f transformInverseUnit(double x, double y, double z, Vector4f dest);
/**
* Invert this quaternion and store the {@link #normalize(Quaterniond) normalized} result in <code>dest</code>.
* <p>
* If this quaternion is already normalized, then {@link #conjugate(Quaterniond)} should be used instead.
*
* @see #conjugate(Quaterniond)
*
* @param dest
* will hold the result
* @return dest
*/
Quaterniond invert(Quaterniond dest);
/**
* Divide <code>this</code> quaternion by <code>b</code> and store the result in <code>dest</code>.
* <p>
* The division expressed using the inverse is performed in the following way:
* <p>
* <code>dest = this * b^-1</code>, where <code>b^-1</code> is the inverse of <code>b</code>.
*
* @param b
* the {@link Quaterniondc} to divide this by
* @param dest
* will hold the result
* @return dest
*/
Quaterniond div(Quaterniondc b, Quaterniond dest);
/**
* Conjugate this quaternion and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Quaterniond conjugate(Quaterniond dest);
/**
* Return the square of the length of this quaternion.
*
* @return the length
*/
double lengthSquared();
/**
* Interpolate between <code>this</code> {@link #normalize(Quaterniond) unit} quaternion and the specified
* <code>target</code> {@link #normalize(Quaterniond) unit} quaternion using spherical linear interpolation using the specified interpolation factor <code>alpha</code>,
* and store the result in <code>dest</code>.
* <p>
* This method resorts to non-spherical linear interpolation when the absolute dot product between <code>this</code> and <code>target</code> is
* below <code>1E-6</code>.
* <p>
* Reference: <a href="http://fabiensanglard.net/doom3_documentation/37725-293747_293747.pdf">http://fabiensanglard.net</a>
*
* @param target
* the target of the interpolation, which should be reached with <code>alpha = 1.0</code>
* @param alpha
* the interpolation factor, within <code>[0..1]</code>
* @param dest
* will hold the result
* @return dest
*/
Quaterniond slerp(Quaterniondc target, double alpha, Quaterniond dest);
/**
* Apply scaling to this quaternion, which results in any vector transformed by the quaternion to change
* its length by the given <code>factor</code>, and store the result in <code>dest</code>.
*
* @param factor
* the scaling factor
* @param dest
* will hold the result
* @return dest
*/
Quaterniond scale(double factor, Quaterniond dest);
/**
* Integrate the rotation given by the angular velocity <code>(vx, vy, vz)</code> around the x, y and z axis, respectively,
* with respect to the given elapsed time delta <code>dt</code> and add the differentiate rotation to the rotation represented by this quaternion
* and store the result into <code>dest</code>.
* <p>
* This method pre-multiplies the rotation given by <code>dt</code> and <code>(vx, vy, vz)</code> by <code>this</code>, so
* the angular velocities are always relative to the local coordinate system of the rotation represented by <code>this</code> quaternion.
* <p>
* This method is equivalent to calling: <code>rotateLocal(dt * vx, dt * vy, dt * vz, dest)</code>
* <p>
* Reference: <a href="http://physicsforgames.blogspot.de/2010/02/quaternions.html">http://physicsforgames.blogspot.de/</a>
*
* @param dt
* the delta time
* @param vx
* the angular velocity around the x axis
* @param vy
* the angular velocity around the y axis
* @param vz
* the angular velocity around the z axis
* @param dest
* will hold the result
* @return dest
*/
Quaterniond integrate(double dt, double vx, double vy, double vz, Quaterniond dest);
/**
* Compute a linear (non-spherical) interpolation of <code>this</code> and the given quaternion <code>q</code>
* and store the result in <code>dest</code>.
* <p>
* Reference: <a href="http://fabiensanglard.net/doom3_documentation/37725-293747_293747.pdf">http://fabiensanglard.net</a>
*
* @param q
* the other quaternion
* @param factor
* the interpolation factor. It is between 0.0 and 1.0
* @param dest
* will hold the result
* @return dest
*/
Quaterniond nlerp(Quaterniondc q, double factor, Quaterniond dest);
/**
* Compute linear (non-spherical) interpolations of <code>this</code> and the given quaternion <code>q</code>
* iteratively and store the result in <code>dest</code>.
* <p>
* This method performs a series of small-step nlerp interpolations to avoid doing a costly spherical linear interpolation, like
* {@link #slerp(Quaterniondc, double, Quaterniond) slerp},
* by subdividing the rotation arc between <code>this</code> and <code>q</code> via non-spherical linear interpolations as long as
* the absolute dot product of <code>this</code> and <code>q</code> is greater than the given <code>dotThreshold</code> parameter.
* <p>
* Thanks to <code>@theagentd</code> at <a href="http://www.java-gaming.org/">http://www.java-gaming.org/</a> for providing the code.
*
* @param q
* the other quaternion
* @param alpha
* the interpolation factor, between 0.0 and 1.0
* @param dotThreshold
* the threshold for the dot product of <code>this</code> and <code>q</code> above which this method performs another iteration
* of a small-step linear interpolation
* @param dest
* will hold the result
* @return dest
*/
Quaterniond nlerpIterative(Quaterniondc q, double alpha, double dotThreshold, Quaterniond dest);
/**
* Apply a rotation to this quaternion that maps the given direction to the positive Z axis, and store the result in <code>dest</code>.
* <p>
* Because there are multiple possibilities for such a rotation, this method will choose the one that ensures the given up direction to remain
* parallel to the plane spanned by the <code>up</code> and <code>dir</code> vectors.
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>Q * R</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>Q * R * v</code>, the
* rotation added by this method will be applied first!
* <p>
* Reference: <a href="http://answers.unity3d.com/questions/467614/what-is-the-source-code-of-quaternionlookrotation.html">http://answers.unity3d.com</a>
*
* @see #lookAlong(double, double, double, double, double, double, Quaterniond)
*
* @param dir
* the direction to map to the positive Z axis
* @param up
* the vector which will be mapped to a vector parallel to the plane
* spanned by the given <code>dir</code> and <code>up</code>
* @param dest
* will hold the result
* @return dest
*/
Quaterniond lookAlong(Vector3dc dir, Vector3dc up, Quaterniond dest);
/**
* Apply a rotation to this quaternion that maps the given direction to the positive Z axis, and store the result in <code>dest</code>.
* <p>
* Because there are multiple possibilities for such a rotation, this method will choose the one that ensures the given up direction to remain
* parallel to the plane spanned by the <code>up</code> and <code>dir</code> vectors.
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>Q * R</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>Q * R * v</code>, the
* rotation added by this method will be applied first!
* <p>
* Reference: <a href="http://answers.unity3d.com/questions/467614/what-is-the-source-code-of-quaternionlookrotation.html">http://answers.unity3d.com</a>
*
* @param dirX
* the x-coordinate of the direction to look along
* @param dirY
* the y-coordinate of the direction to look along
* @param dirZ
* the z-coordinate of the direction to look along
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @param dest
* will hold the result
* @return dest
*/
Quaterniond lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Quaterniond dest);
/**
* Compute the difference between <code>this</code> and the <code>other</code> quaternion
* and store the result in <code>dest</code>.
* <p>
* The difference is the rotation that has to be applied to get from
* <code>this</code> rotation to <code>other</code>. If <code>T</code> is <code>this</code>, <code>Q</code>
* is <code>other</code> and <code>D</code> is the computed difference, then the following equation holds:
* <p>
* <code>T * D = Q</code>
* <p>
* It is defined as: <code>D = T^-1 * Q</code>, where <code>T^-1</code> denotes the {@link #invert(Quaterniond) inverse} of <code>T</code>.
*
* @param other
* the other quaternion
* @param dest
* will hold the result
* @return dest
*/
Quaterniond difference(Quaterniondc other, Quaterniond dest);
/**
* Apply a rotation to <code>this</code> that rotates the <code>fromDir</code> vector to point along <code>toDir</code> and
* store the result in <code>dest</code>.
* <p>
* Since there can be multiple possible rotations, this method chooses the one with the shortest arc.
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>Q * R</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>Q * R * v</code>, the
* rotation added by this method will be applied first!
* <p>
* Reference: <a href="http://stackoverflow.com/questions/1171849/finding-quaternion-representing-the-rotation-from-one-vector-to-another#answer-1171995">stackoverflow.com</a>
*
* @param fromDirX
* the x-coordinate of the direction to rotate into the destination direction
* @param fromDirY
* the y-coordinate of the direction to rotate into the destination direction
* @param fromDirZ
* the z-coordinate of the direction to rotate into the destination direction
* @param toDirX
* the x-coordinate of the direction to rotate to
* @param toDirY
* the y-coordinate of the direction to rotate to
* @param toDirZ
* the z-coordinate of the direction to rotate to
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotateTo(double fromDirX, double fromDirY, double fromDirZ, double toDirX, double toDirY, double toDirZ, Quaterniond dest);
/**
* Apply a rotation to <code>this</code> that rotates the <code>fromDir</code> vector to point along <code>toDir</code> and
* store the result in <code>dest</code>.
* <p>
* Because there can be multiple possible rotations, this method chooses the one with the shortest arc.
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>Q * R</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>Q * R * v</code>, the
* rotation added by this method will be applied first!
*
* @see #rotateTo(double, double, double, double, double, double, Quaterniond)
*
* @param fromDir
* the starting direction
* @param toDir
* the destination direction
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotateTo(Vector3dc fromDir, Vector3dc toDir, Quaterniond dest);
/**
* Apply a rotation to <code>this</code> quaternion rotating the given radians about the x axis
* and store the result in <code>dest</code>.
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>Q * R</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>Q * R * v</code>, the
* rotation added by this method will be applied first!
*
* @param angle
* the angle in radians to rotate about the x axis
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotateX(double angle, Quaterniond dest);
/**
* Apply a rotation to <code>this</code> quaternion rotating the given radians about the y axis
* and store the result in <code>dest</code>.
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>Q * R</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>Q * R * v</code>, the
* rotation added by this method will be applied first!
*
* @param angle
* the angle in radians to rotate about the y axis
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotateY(double angle, Quaterniond dest);
/**
* Apply a rotation to <code>this</code> quaternion rotating the given radians about the z axis
* and store the result in <code>dest</code>.
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>Q * R</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>Q * R * v</code>, the
* rotation added by this method will be applied first!
*
* @param angle
* the angle in radians to rotate about the z axis
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotateZ(double angle, Quaterniond dest);
/**
* Apply a rotation to <code>this</code> quaternion rotating the given radians about the local x axis
* and store the result in <code>dest</code>.
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>R * Q</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>R * Q * v</code>, the
* rotation represented by <code>this</code> will be applied first!
*
* @param angle
* the angle in radians to rotate about the local x axis
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotateLocalX(double angle, Quaterniond dest);
/**
* Apply a rotation to <code>this</code> quaternion rotating the given radians about the local y axis
* and store the result in <code>dest</code>.
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>R * Q</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>R * Q * v</code>, the
* rotation represented by <code>this</code> will be applied first!
*
* @param angle
* the angle in radians to rotate about the local y axis
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotateLocalY(double angle, Quaterniond dest);
/**
* Apply a rotation to <code>this</code> quaternion rotating the given radians about the local z axis
* and store the result in <code>dest</code>.
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>R * Q</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>R * Q * v</code>, the
* rotation represented by <code>this</code> will be applied first!
*
* @param angle
* the angle in radians to rotate about the local z axis
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotateLocalZ(double angle, Quaterniond dest);
/**
* Apply a rotation to <code>this</code> quaternion rotating the given radians about the cartesian base unit axes,
* called the euler angles using rotation sequence <code>XYZ</code> and store the result in <code>dest</code>.
* <p>
* This method is equivalent to calling: <code>rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)</code>
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>Q * R</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>Q * R * v</code>, the
* rotation added by this method will be applied first!
*
* @param angleX
* the angle in radians to rotate about the x axis
* @param angleY
* the angle in radians to rotate about the y axis
* @param angleZ
* the angle in radians to rotate about the z axis
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotateXYZ(double angleX, double angleY, double angleZ, Quaterniond dest);
/**
* Apply a rotation to <code>this</code> quaternion rotating the given radians about the cartesian base unit axes,
* called the euler angles, using the rotation sequence <code>ZYX</code> and store the result in <code>dest</code>.
* <p>
* This method is equivalent to calling: <code>rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)</code>
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>Q * R</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>Q * R * v</code>, the
* rotation added by this method will be applied first!
*
* @param angleZ
* the angle in radians to rotate about the z axis
* @param angleY
* the angle in radians to rotate about the y axis
* @param angleX
* the angle in radians to rotate about the x axis
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotateZYX(double angleZ, double angleY, double angleX, Quaterniond dest);
/**
* Apply a rotation to <code>this</code> quaternion rotating the given radians about the cartesian base unit axes,
* called the euler angles, using the rotation sequence <code>YXZ</code> and store the result in <code>dest</code>.
* <p>
* This method is equivalent to calling: <code>rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)</code>
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>Q * R</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>Q * R * v</code>, the
* rotation added by this method will be applied first!
*
* @param angleY
* the angle in radians to rotate about the y axis
* @param angleX
* the angle in radians to rotate about the x axis
* @param angleZ
* the angle in radians to rotate about the z axis
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotateYXZ(double angleY, double angleX, double angleZ, Quaterniond dest);
/**
* Get the euler angles in radians in rotation sequence <code>XYZ</code> of this quaternion and store them in the
* provided parameter <code>eulerAngles</code>.
* <p>
* The Euler angles are always returned as the angle around X in the {@link Vector3d#x} field, the angle around Y in the {@link Vector3d#y}
* field and the angle around Z in the {@link Vector3d#z} field of the supplied {@link Vector3d} instance.
*
* @param eulerAngles
* will hold the euler angles in radians
* @return the passed in vector
*/
Vector3d getEulerAnglesXYZ(Vector3d eulerAngles);
/**
* Get the euler angles in radians in rotation sequence <code>ZYX</code> of this quaternion and store them in the
* provided parameter <code>eulerAngles</code>.
* <p>
* The Euler angles are always returned as the angle around X in the {@link Vector3d#x} field, the angle around Y in the {@link Vector3d#y}
* field and the angle around Z in the {@link Vector3d#z} field of the supplied {@link Vector3d} instance.
*
* @param eulerAngles
* will hold the euler angles in radians
* @return the passed in vector
*/
Vector3d getEulerAnglesZYX(Vector3d eulerAngles);
/**
* Apply a rotation to <code>this</code> quaternion rotating the given radians about the specified axis
* and store the result in <code>dest</code>.
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>Q * R</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>Q * R * v</code>, the
* rotation added by this method will be applied first!
*
* @param angle
* the angle in radians to rotate about the specified axis
* @param axisX
* the x coordinate of the rotation axis
* @param axisY
* the y coordinate of the rotation axis
* @param axisZ
* the z coordinate of the rotation axis
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotateAxis(double angle, double axisX, double axisY, double axisZ, Quaterniond dest);
/**
* Apply a rotation to <code>this</code> quaternion rotating the given radians about the specified axis
* and store the result in <code>dest</code>.
* <p>
* If <code>Q</code> is <code>this</code> quaternion and <code>R</code> the quaternion representing the
* specified rotation, then the new quaternion will be <code>Q * R</code>. So when transforming a
* vector <code>v</code> with the new quaternion by using <code>Q * R * v</code>, the
* rotation added by this method will be applied first!
*
* @see #rotateAxis(double, double, double, double, Quaterniond)
*
* @param angle
* the angle in radians to rotate about the specified axis
* @param axis
* the rotation axis
* @param dest
* will hold the result
* @return dest
*/
Quaterniond rotateAxis(double angle, Vector3dc axis, Quaterniond dest);
/**
* Obtain the direction of <code>+X</code> before the rotation transformation represented by <code>this</code> quaternion is applied.
* <p>
* This method is equivalent to the following code:
* <pre>
* Quaterniond inv = new Quaterniond(this).invert();
* inv.transform(dir.set(1, 0, 0));
* </pre>
*
* @param dir
* will hold the direction of <code>+X</code>
* @return dir
*/
Vector3d positiveX(Vector3d dir);
/**
* Obtain the direction of <code>+X</code> before the rotation transformation represented by <code>this</code> <i>normalized</i> quaternion is applied.
* The quaternion <i>must</i> be {@link #normalize(Quaterniond) normalized} for this method to work.
* <p>
* This method is equivalent to the following code:
* <pre>
* Quaterniond inv = new Quaterniond(this).conjugate();
* inv.transform(dir.set(1, 0, 0));
* </pre>
*
* @param dir
* will hold the direction of <code>+X</code>
* @return dir
*/
Vector3d normalizedPositiveX(Vector3d dir);
/**
* Obtain the direction of <code>+Y</code> before the rotation transformation represented by <code>this</code> quaternion is applied.
* <p>
* This method is equivalent to the following code:
* <pre>
* Quaterniond inv = new Quaterniond(this).invert();
* inv.transform(dir.set(0, 1, 0));
* </pre>
*
* @param dir
* will hold the direction of <code>+Y</code>
* @return dir
*/
Vector3d positiveY(Vector3d dir);
/**
* Obtain the direction of <code>+Y</code> before the rotation transformation represented by <code>this</code> <i>normalized</i> quaternion is applied.
* The quaternion <i>must</i> be {@link #normalize(Quaterniond) normalized} for this method to work.
* <p>
* This method is equivalent to the following code:
* <pre>
* Quaterniond inv = new Quaterniond(this).conjugate();
* inv.transform(dir.set(0, 1, 0));
* </pre>
*
* @param dir
* will hold the direction of <code>+Y</code>
* @return dir
*/
Vector3d normalizedPositiveY(Vector3d dir);
/**
* Obtain the direction of <code>+Z</code> before the rotation transformation represented by <code>this</code> quaternion is applied.
* <p>
* This method is equivalent to the following code:
* <pre>
* Quaterniond inv = new Quaterniond(this).invert();
* inv.transform(dir.set(0, 0, 1));
* </pre>
*
* @param dir
* will hold the direction of <code>+Z</code>
* @return dir
*/
Vector3d positiveZ(Vector3d dir);
/**
* Obtain the direction of <code>+Z</code> before the rotation transformation represented by <code>this</code> <i>normalized</i> quaternion is applied.
* The quaternion <i>must</i> be {@link #normalize(Quaterniond) normalized} for this method to work.
* <p>
* This method is equivalent to the following code:
* <pre>
* Quaterniond inv = new Quaterniond(this).conjugate();
* inv.transform(dir.set(0, 0, 1));
* </pre>
*
* @param dir
* will hold the direction of <code>+Z</code>
* @return dir
*/
Vector3d normalizedPositiveZ(Vector3d dir);
/**
* Conjugate <code>this</code> by the given quaternion <code>q</code> by computing <code>q * this * q^-1</code>
* and store the result into <code>dest</code>.
*
* @param q
* the {@link Quaterniondc} to conjugate <code>this</code> by
* @param dest
* will hold the result
* @return dest
*/
Quaterniond conjugateBy(Quaterniondc q, Quaterniond dest);
/**
* Determine whether all components are finite floating-point values, that
* is, they are not {@link Double#isNaN() NaN} and not
* {@link Double#isInfinite() infinity}.
*
* @return {@code true} if all components are finite floating-point values;
* {@code false} otherwise
*/
boolean isFinite();
/**
Compare the quaternion components of <code>this</code> quaternion with the given quaternion using the given <code>delta</code>
* and return whether all of them are equal within a maximum difference of <code>delta</code>.
* <p>
* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap}
* and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those
* data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods.
*
* @param q
* the other quaternion
* @param delta
* the allowed maximum difference
* @return <code>true</code> whether all of the quaternion components are equal; <code>false</code> otherwise
*/
boolean equals(Quaterniondc q, double delta);
/**
*
* @param x
* the x component to compare to
* @param y
* the y component to compare to
* @param z
* the z component to compare to
* @param w
* the w component to compare to
* @return <code>true</code> if all the quaternion components are equal
*/
boolean equals(double x, double y, double z, double w);
}