Flywheel/joml/Vector3f.java
PepperCode1 a42c027b6f Scheme-a-version
- Fix Resources not being closed properly
- Change versioning scheme to match Create
- Add LICENSE to built jar
- Fix mods.toml version sync
- Move JOML code to non-src directory
- Update Gradle
- Organize imports
2022-07-15 00:00:54 -07:00

2087 lines
66 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* The MIT License
*
* Copyright (c) 2015-2021 Richard Greenlees
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.jozufozu.flywheel.repack.joml;
import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.text.DecimalFormat;
import java.text.NumberFormat;
/**
* Contains the definition of a Vector comprising 3 floats and associated
* transformations.
*
* @author Richard Greenlees
* @author Kai Burjack
* @author F. Neurath
*/
public class Vector3f implements Externalizable, Cloneable, Vector3fc {
private static final long serialVersionUID = 1L;
/**
* The x component of the vector.
*/
public float x;
/**
* The y component of the vector.
*/
public float y;
/**
* The z component of the vector.
*/
public float z;
/**
* Create a new {@link Vector3f} of <code>(0, 0, 0)</code>.
*/
public Vector3f() {
}
/**
* Create a new {@link Vector3f} and initialize all three components with the given value.
*
* @param d
* the value of all three components
*/
public Vector3f(float d) {
this.x = d;
this.y = d;
this.z = d;
}
/**
* Create a new {@link Vector3f} with the given component values.
*
* @param x
* the value of x
* @param y
* the value of y
* @param z
* the value of z
*/
public Vector3f(float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;
}
/**
* Create a new {@link Vector3f} with the same values as <code>v</code>.
*
* @param v
* the {@link Vector3fc} to copy the values from
*/
public Vector3f(Vector3fc v) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
}
/**
* Create a new {@link Vector3f} with the same values as <code>v</code>.
*
* @param v
* the {@link Vector3ic} to copy the values from
*/
public Vector3f(Vector3ic v) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
}
/**
* Create a new {@link Vector3f} with the first two components from the
* given <code>v</code> and the given <code>z</code>
*
* @param v
* the {@link Vector2fc} to copy the values from
* @param z
* the z component
*/
public Vector3f(Vector2fc v, float z) {
this.x = v.x();
this.y = v.y();
this.z = z;
}
/**
* Create a new {@link Vector3f} with the first two components from the
* given <code>v</code> and the given <code>z</code>
*
* @param v
* the {@link Vector2ic} to copy the values from
* @param z
* the z component
*/
public Vector3f(Vector2ic v, float z) {
this.x = v.x();
this.y = v.y();
this.z = z;
}
/**
* Create a new {@link Vector3f} and initialize its three components from the first
* three elements of the given array.
*
* @param xyz
* the array containing at least three elements
*/
public Vector3f(float[] xyz) {
this.x = xyz[0];
this.y = xyz[1];
this.z = xyz[2];
}
/**
* Create a new {@link Vector3f} and read this vector from the supplied {@link ByteBuffer}
* at the current buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the vector is read, use {@link #Vector3f(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer values will be read in <code>x, y, z</code> order
* @see #Vector3f(int, ByteBuffer)
*/
public Vector3f(ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
}
/**
* Create a new {@link Vector3f} and read this vector from the supplied {@link ByteBuffer}
* starting at the specified absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index the absolute position into the ByteBuffer
* @param buffer values will be read in <code>x, y, z</code> order
*/
public Vector3f(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
}
/**
* Create a new {@link Vector3f} and read this vector from the supplied {@link FloatBuffer}
* at the current buffer {@link FloatBuffer#position() position}.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the vector is read, use {@link #Vector3f(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer values will be read in <code>x, y, z</code> order
* @see #Vector3f(int, FloatBuffer)
*/
public Vector3f(FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
}
/**
* Create a new {@link Vector3f} and read this vector from the supplied {@link FloatBuffer}
* starting at the specified absolute buffer position/index.
* <p>
* This method will not increment the position of the given FloatBuffer.
*
* @param index the absolute position into the FloatBuffer
* @param buffer values will be read in <code>x, y, z</code> order
*/
public Vector3f(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
}
public float x() {
return this.x;
}
public float y() {
return this.y;
}
public float z() {
return this.z;
}
/**
* Set the x, y and z components to match the supplied vector.
*
* @param v
* contains the values of x, y and z to set
* @return this
*/
public Vector3f set(Vector3fc v) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
return this;
}
/**
* Set the x, y and z components to match the supplied vector.
* <p>
* Note that due to the given vector <code>v</code> storing the components in double-precision,
* there is the possibility to lose precision.
*
* @param v
* contains the values of x, y and z to set
* @return this
*/
public Vector3f set(Vector3dc v) {
this.x = (float) v.x();
this.y = (float) v.y();
this.z = (float) v.z();
return this;
}
/**
* Set the x, y and z components to match the supplied vector.
*
* @param v
* contains the values of x, y and z to set
* @return this
*/
public Vector3f set(Vector3ic v) {
this.x = v.x();
this.y = v.y();
this.z = v.z();
return this;
}
/**
* Set the first two components from the given <code>v</code>
* and the z component from the given <code>z</code>
*
* @param v
* the {@link Vector2fc} to copy the values from
* @param z
* the z component
* @return this
*/
public Vector3f set(Vector2fc v, float z) {
this.x = v.x();
this.y = v.y();
this.z = z;
return this;
}
/**
* Set the first two components from the given <code>v</code>
* and the z component from the given <code>z</code>
*
* @param v
* the {@link Vector2dc} to copy the values from
* @param z
* the z component
* @return this
*/
public Vector3f set(Vector2dc v, float z) {
this.x = (float) v.x();
this.y = (float) v.y();
this.z = z;
return this;
}
/**
* Set the first two components from the given <code>v</code>
* and the z component from the given <code>z</code>
*
* @param v
* the {@link Vector2ic} to copy the values from
* @param z
* the z component
* @return this
*/
public Vector3f set(Vector2ic v, float z) {
this.x = v.x();
this.y = v.y();
this.z = z;
return this;
}
/**
* Set the x, y, and z components to the supplied value.
*
* @param d
* the value of all three components
* @return this
*/
public Vector3f set(float d) {
this.x = d;
this.y = d;
this.z = d;
return this;
}
/**
* Set the x, y and z components to the supplied values.
*
* @param x
* the x component
* @param y
* the y component
* @param z
* the z component
* @return this
*/
public Vector3f set(float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;
return this;
}
/**
* Set the x, y, and z components to the supplied value.
*
* @param d
* the value of all three components
* @return this
*/
public Vector3f set(double d) {
this.x = (float) d;
this.y = (float) d;
this.z = (float) d;
return this;
}
/**
* Set the x, y and z components to the supplied values.
*
* @param x
* the x component
* @param y
* the y component
* @param z
* the z component
* @return this
*/
public Vector3f set(double x, double y, double z) {
this.x = (float) x;
this.y = (float) y;
this.z = (float) z;
return this;
}
/**
* Set the three components of this vector to the first three elements of the given array.
*
* @param xyz
* the array containing at least three elements
* @return this
*/
public Vector3f set(float[] xyz) {
this.x = xyz[0];
this.y = xyz[1];
this.z = xyz[2];
return this;
}
/**
* Read this vector from the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the vector is read, use {@link #set(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* values will be read in <code>x, y, z</code> order
* @return this
* @see #set(int, ByteBuffer)
*/
public Vector3f set(ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
return this;
}
/**
* Read this vector from the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* values will be read in <code>x, y, z</code> order
* @return this
*/
public Vector3f set(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
return this;
}
/**
* Read this vector from the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the vector is read, use {@link #set(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @param buffer
* values will be read in <code>x, y, z</code> order
* @return this
* @see #set(int, FloatBuffer)
*/
public Vector3f set(FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
return this;
}
/**
* Read this vector from the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* values will be read in <code>x, y, z</code> order
* @return this
*/
public Vector3f set(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.get(this, index, buffer);
return this;
}
/**
* Set the values of this vector by reading 3 float values from off-heap memory,
* starting at the given address.
* <p>
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
* <p>
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
*
* @param address
* the off-heap memory address to read the vector values from
* @return this
*/
public Vector3f setFromAddress(long address) {
if (Options.NO_UNSAFE)
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
MemUtil.MemUtilUnsafe.get(this, address);
return this;
}
/**
* Set the value of the specified component of this vector.
*
* @param component
* the component whose value to set, within <code>[0..2]</code>
* @param value
* the value to set
* @return this
* @throws IllegalArgumentException if <code>component</code> is not within <code>[0..2]</code>
*/
public Vector3f setComponent(int component, float value) throws IllegalArgumentException {
switch (component) {
case 0:
x = value;
break;
case 1:
y = value;
break;
case 2:
z = value;
break;
default:
throw new IllegalArgumentException();
}
return this;
}
public FloatBuffer get(FloatBuffer buffer) {
MemUtil.INSTANCE.put(this, buffer.position(), buffer);
return buffer;
}
public FloatBuffer get(int index, FloatBuffer buffer) {
MemUtil.INSTANCE.put(this, index, buffer);
return buffer;
}
public ByteBuffer get(ByteBuffer buffer) {
MemUtil.INSTANCE.put(this, buffer.position(), buffer);
return buffer;
}
public ByteBuffer get(int index, ByteBuffer buffer) {
MemUtil.INSTANCE.put(this, index, buffer);
return buffer;
}
public Vector3fc getToAddress(long address) {
if (Options.NO_UNSAFE)
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
MemUtil.MemUtilUnsafe.put(this, address);
return this;
}
/**
* Subtract the supplied vector from this one and store the result in <code>this</code>.
*
* @param v
* the vector to subtract
* @return this
*/
public Vector3f sub(Vector3fc v) {
this.x = x - v.x();
this.y = y - v.y();
this.z = z - v.z();
return this;
}
public Vector3f sub(Vector3fc v, Vector3f dest) {
dest.x = x - v.x();
dest.y = y - v.y();
dest.z = z - v.z();
return dest;
}
/**
* Decrement the components of this vector by the given values.
*
* @param x
* the x component to subtract
* @param y
* the y component to subtract
* @param z
* the z component to subtract
* @return this
*/
public Vector3f sub(float x, float y, float z) {
this.x = this.x - x;
this.y = this.y - y;
this.z = this.z - z;
return this;
}
public Vector3f sub(float x, float y, float z, Vector3f dest) {
dest.x = this.x - x;
dest.y = this.y - y;
dest.z = this.z - z;
return dest;
}
/**
* Add the supplied vector to this one.
*
* @param v
* the vector to add
* @return this
*/
public Vector3f add(Vector3fc v) {
this.x = this.x + v.x();
this.y = this.y + v.y();
this.z = this.z + v.z();
return this;
}
public Vector3f add(Vector3fc v, Vector3f dest) {
dest.x = this.x + v.x();
dest.y = this.y + v.y();
dest.z = this.z + v.z();
return dest;
}
/**
* Increment the components of this vector by the given values.
*
* @param x
* the x component to add
* @param y
* the y component to add
* @param z
* the z component to add
* @return this
*/
public Vector3f add(float x, float y, float z) {
this.x = this.x + x;
this.y = this.y + y;
this.z = this.z + z;
return this;
}
public Vector3f add(float x, float y, float z, Vector3f dest) {
dest.x = this.x + x;
dest.y = this.y + y;
dest.z = this.z + z;
return dest;
}
/**
* Add the component-wise multiplication of <code>a * b</code> to this vector.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @return this
*/
public Vector3f fma(Vector3fc a, Vector3fc b) {
this.x = Math.fma(a.x(), b.x(), x);
this.y = Math.fma(a.y(), b.y(), y);
this.z = Math.fma(a.z(), b.z(), z);
return this;
}
/**
* Add the component-wise multiplication of <code>a * b</code> to this vector.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @return this
*/
public Vector3f fma(float a, Vector3fc b) {
this.x = Math.fma(a, b.x(), x);
this.y = Math.fma(a, b.y(), y);
this.z = Math.fma(a, b.z(), z);
return this;
}
public Vector3f fma(Vector3fc a, Vector3fc b, Vector3f dest) {
dest.x = Math.fma(a.x(), b.x(), x);
dest.y = Math.fma(a.y(), b.y(), y);
dest.z = Math.fma(a.z(), b.z(), z);
return dest;
}
public Vector3f fma(float a, Vector3fc b, Vector3f dest) {
dest.x = Math.fma(a, b.x(), x);
dest.y = Math.fma(a, b.y(), y);
dest.z = Math.fma(a, b.z(), z);
return dest;
}
/**
* Add the component-wise multiplication of <code>this * a</code> to <code>b</code>
* and store the result in <code>this</code>.
*
* @param a
* the multiplicand
* @param b
* the addend
* @return this
*/
public Vector3f mulAdd(Vector3fc a, Vector3fc b) {
this.x = Math.fma(x, a.x(), b.x());
this.y = Math.fma(y, a.y(), b.y());
this.z = Math.fma(z, a.z(), b.z());
return this;
}
/**
* Add the component-wise multiplication of <code>this * a</code> to <code>b</code>
* and store the result in <code>this</code>.
*
* @param a
* the multiplicand
* @param b
* the addend
* @return this
*/
public Vector3f mulAdd(float a, Vector3fc b) {
this.x = Math.fma(x, a, b.x());
this.y = Math.fma(y, a, b.y());
this.z = Math.fma(z, a, b.z());
return this;
}
public Vector3f mulAdd(Vector3fc a, Vector3fc b, Vector3f dest) {
dest.x = Math.fma(x, a.x(), b.x());
dest.y = Math.fma(y, a.y(), b.y());
dest.z = Math.fma(z, a.z(), b.z());
return dest;
}
public Vector3f mulAdd(float a, Vector3fc b, Vector3f dest) {
dest.x = Math.fma(x, a, b.x());
dest.y = Math.fma(y, a, b.y());
dest.z = Math.fma(z, a, b.z());
return dest;
}
/**
* Multiply this Vector3f component-wise by another Vector3fc.
*
* @param v
* the vector to multiply by
* @return this
*/
public Vector3f mul(Vector3fc v) {
this.x = x * v.x();
this.y = y * v.y();
this.z = z * v.z();
return this;
}
public Vector3f mul(Vector3fc v, Vector3f dest) {
dest.x = x * v.x();
dest.y = y * v.y();
dest.z = z * v.z();
return dest;
}
/**
* Divide this Vector3f component-wise by another Vector3fc.
*
* @param v
* the vector to divide by
* @return this
*/
public Vector3f div(Vector3fc v) {
this.x = this.x / v.x();
this.y = this.y / v.y();
this.z = this.z / v.z();
return this;
}
public Vector3f div(Vector3fc v, Vector3f dest) {
dest.x = x / v.x();
dest.y = y / v.y();
dest.z = z / v.z();
return dest;
}
public Vector3f mulProject(Matrix4fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
float invW = 1.0f / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))) * invW;
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))) * invW;
dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))) * invW;
return dest;
}
public Vector3f mulProject(Matrix4fc mat, float w, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
float invW = 1.0f / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w)));
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))) * invW;
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))) * invW;
dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))) * invW;
return dest;
}
/**
* Multiply the given matrix <code>mat</code> with this Vector3f, perform perspective division.
* <p>
* This method uses <code>w=1.0</code> as the fourth vector component.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector3f mulProject(Matrix4fc mat) {
float x = this.x, y = this.y, z = this.z;
float invW = 1.0f / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))) * invW;
this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))) * invW;
this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))) * invW;
return this;
}
/**
* Multiply the given matrix with this Vector3f and store the result in <code>this</code>.
*
* @param mat
* the matrix
* @return this
*/
public Vector3f mul(Matrix3fc mat) {
float lx = x, ly = y, lz = z;
this.x = Math.fma(mat.m00(), lx, Math.fma(mat.m10(), ly, mat.m20() * lz));
this.y = Math.fma(mat.m01(), lx, Math.fma(mat.m11(), ly, mat.m21() * lz));
this.z = Math.fma(mat.m02(), lx, Math.fma(mat.m12(), ly, mat.m22() * lz));
return this;
}
public Vector3f mul(Matrix3fc mat, Vector3f dest) {
float lx = x, ly = y, lz = z;
dest.x = Math.fma(mat.m00(), lx, Math.fma(mat.m10(), ly, mat.m20() * lz));
dest.y = Math.fma(mat.m01(), lx, Math.fma(mat.m11(), ly, mat.m21() * lz));
dest.z = Math.fma(mat.m02(), lx, Math.fma(mat.m12(), ly, mat.m22() * lz));
return dest;
}
/**
* Multiply the given matrix with this Vector3f and store the result in <code>this</code>.
*
* @param mat
* the matrix
* @return this
*/
public Vector3f mul(Matrix3dc mat) {
float lx = x, ly = y, lz = z;
this.x = (float) Math.fma(mat.m00(), lx, Math.fma(mat.m10(), ly, mat.m20() * lz));
this.y = (float) Math.fma(mat.m01(), lx, Math.fma(mat.m11(), ly, mat.m21() * lz));
this.z = (float) Math.fma(mat.m02(), lx, Math.fma(mat.m12(), ly, mat.m22() * lz));
return this;
}
public Vector3f mul(Matrix3dc mat, Vector3f dest) {
float lx = x, ly = y, lz = z;
dest.x = (float) Math.fma(mat.m00(), lx, Math.fma(mat.m10(), ly, mat.m20() * lz));
dest.y = (float) Math.fma(mat.m01(), lx, Math.fma(mat.m11(), ly, mat.m21() * lz));
dest.z = (float) Math.fma(mat.m02(), lx, Math.fma(mat.m12(), ly, mat.m22() * lz));
return dest;
}
/**
* Multiply the given matrix with this Vector3f and store the result in <code>this</code>.
*
* @param mat
* the matrix
* @return this
*/
public Vector3f mul(Matrix3x2fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
this.z = z;
return this;
}
public Vector3f mul(Matrix3x2fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
dest.z = z;
return dest;
}
/**
* Multiply the transpose of the given matrix with this Vector3f store the result in <code>this</code>.
*
* @param mat
* the matrix
* @return this
*/
public Vector3f mulTranspose(Matrix3fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
this.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
this.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
return this;
}
public Vector3f mulTranspose(Matrix3fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
dest.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
dest.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
return dest;
}
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector3f mulPosition(Matrix4fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
return this;
}
/**
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector3f mulPosition(Matrix4x3fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
return this;
}
public Vector3f mulPosition(Matrix4fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
return dest;
}
public Vector3f mulPosition(Matrix4x3fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
return dest;
}
/**
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix whose transpose to multiply this vector by
* @return this
*/
public Vector3f mulTransposePosition(Matrix4fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03())));
this.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13())));
this.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23())));
return this;
}
public Vector3f mulTransposePosition(Matrix4fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03())));
dest.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13())));
dest.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23())));
return dest;
}
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and return the <i>w</i> component
* of the resulting 4D vector.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @return the <i>w</i> component of the resulting 4D vector after multiplication
*/
public float mulPositionW(Matrix4fc mat) {
float x = this.x, y = this.y, z = this.z;
float w = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
return w;
}
public float mulPositionW(Matrix4fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
float w = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
return w;
}
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector3f mulDirection(Matrix4dc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = (float) Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
this.y = (float) Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
this.z = (float) Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
return this;
}
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector3f mulDirection(Matrix4fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
return this;
}
/**
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @return this
*/
public Vector3f mulDirection(Matrix4x3fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
this.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
this.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
return this;
}
public Vector3f mulDirection(Matrix4dc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = (float) Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
dest.y = (float) Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
dest.z = (float) Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
return dest;
}
public Vector3f mulDirection(Matrix4fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
return dest;
}
public Vector3f mulDirection(Matrix4x3fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
dest.y = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
dest.z = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
return dest;
}
/**
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix whose transpose to multiply this vector by
* @return this
*/
public Vector3f mulTransposeDirection(Matrix4fc mat) {
float x = this.x, y = this.y, z = this.z;
this.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
this.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
this.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
return this;
}
public Vector3f mulTransposeDirection(Matrix4fc mat, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
dest.y = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
dest.z = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
return dest;
}
/**
* Multiply all components of this {@link Vector3f} by the given scalar
* value.
*
* @param scalar
* the scalar to multiply this vector by
* @return this
*/
public Vector3f mul(float scalar) {
this.x = this.x * scalar;
this.y = this.y * scalar;
this.z = this.z * scalar;
return this;
}
public Vector3f mul(float scalar, Vector3f dest) {
dest.x = this.x * scalar;
dest.y = this.y * scalar;
dest.z = this.z * scalar;
return dest;
}
/**
* Multiply the components of this Vector3f by the given scalar values and store the result in <code>this</code>.
*
* @param x
* the x component to multiply this vector by
* @param y
* the y component to multiply this vector by
* @param z
* the z component to multiply this vector by
* @return this
*/
public Vector3f mul(float x, float y, float z) {
this.x = this.x * x;
this.y = this.y * y;
this.z = this.z * z;
return this;
}
public Vector3f mul(float x, float y, float z, Vector3f dest) {
dest.x = this.x * x;
dest.y = this.y * y;
dest.z = this.z * z;
return dest;
}
/**
* Divide all components of this {@link Vector3f} by the given scalar
* value.
*
* @param scalar
* the scalar to divide by
* @return this
*/
public Vector3f div(float scalar) {
float inv = 1.0f / scalar;
this.x = this.x * inv;
this.y = this.y * inv;
this.z = this.z * inv;
return this;
}
public Vector3f div(float scalar, Vector3f dest) {
float inv = 1.0f / scalar;
dest.x = this.x * inv;
dest.y = this.y * inv;
dest.z = this.z * inv;
return dest;
}
/**
* Divide the components of this Vector3f by the given scalar values and store the result in <code>this</code>.
*
* @param x
* the x component to divide this vector by
* @param y
* the y component to divide this vector by
* @param z
* the z component to divide this vector by
* @return this
*/
public Vector3f div(float x, float y, float z) {
this.x = this.x / x;
this.y = this.y / y;
this.z = this.z / z;
return this;
}
public Vector3f div(float x, float y, float z, Vector3f dest) {
dest.x = this.x / x;
dest.y = this.y / y;
dest.z = this.z / z;
return dest;
}
/**
* Rotate this vector by the given quaternion <code>quat</code> and store the result in <code>this</code>.
*
* @see Quaternionfc#transform(Vector3f)
*
* @param quat
* the quaternion to rotate this vector
* @return this
*/
public Vector3f rotate(Quaternionfc quat) {
return quat.transform(this, this);
}
public Vector3f rotate(Quaternionfc quat, Vector3f dest) {
return quat.transform(this, dest);
}
public Quaternionf rotationTo(Vector3fc toDir, Quaternionf dest) {
return dest.rotationTo(this, toDir);
}
public Quaternionf rotationTo(float toDirX, float toDirY, float toDirZ, Quaternionf dest) {
return dest.rotationTo(x, y, z, toDirX, toDirY, toDirZ);
}
/**
* Rotate this vector the specified radians around the given rotation axis.
*
* @param angle
* the angle in radians
* @param x
* the x component of the rotation axis
* @param y
* the y component of the rotation axis
* @param z
* the z component of the rotation axis
* @return this
*/
public Vector3f rotateAxis(float angle, float x, float y, float z) {
if (y == 0.0f && z == 0.0f && Math.absEqualsOne(x))
return rotateX(x * angle, this);
else if (x == 0.0f && z == 0.0f && Math.absEqualsOne(y))
return rotateY(y * angle, this);
else if (x == 0.0f && y == 0.0f && Math.absEqualsOne(z))
return rotateZ(z * angle, this);
return rotateAxisInternal(angle, x, y, z, this);
}
public Vector3f rotateAxis(float angle, float aX, float aY, float aZ, Vector3f dest) {
if (aY == 0.0f && aZ == 0.0f && Math.absEqualsOne(aX))
return rotateX(aX * angle, dest);
else if (aX == 0.0f && aZ == 0.0f && Math.absEqualsOne(aY))
return rotateY(aY * angle, dest);
else if (aX == 0.0f && aY == 0.0f && Math.absEqualsOne(aZ))
return rotateZ(aZ * angle, dest);
return rotateAxisInternal(angle, aX, aY, aZ, dest);
}
private Vector3f rotateAxisInternal(float angle, float aX, float aY, float aZ, Vector3f dest) {
float hangle = angle * 0.5f;
float sinAngle = Math.sin(hangle);
float qx = aX * sinAngle, qy = aY * sinAngle, qz = aZ * sinAngle;
float qw = Math.cosFromSin(sinAngle, hangle);
float w2 = qw * qw, x2 = qx * qx, y2 = qy * qy, z2 = qz * qz, zw = qz * qw;
float xy = qx * qy, xz = qx * qz, yw = qy * qw, yz = qy * qz, xw = qx * qw;
float x = this.x, y = this.y, z = this.z;
dest.x = (w2 + x2 - z2 - y2) * x + (-zw + xy - zw + xy) * y + (yw + xz + xz + yw) * z;
dest.y = (xy + zw + zw + xy) * x + ( y2 - z2 + w2 - x2) * y + (yz + yz - xw - xw) * z;
dest.z = (xz - yw + xz - yw) * x + ( yz + yz + xw + xw) * y + (z2 - y2 - x2 + w2) * z;
return dest;
}
/**
* Rotate this vector the specified radians around the X axis.
*
* @param angle
* the angle in radians
* @return this
*/
public Vector3f rotateX(float angle) {
float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
float y = this.y * cos - this.z * sin;
float z = this.y * sin + this.z * cos;
this.y = y;
this.z = z;
return this;
}
public Vector3f rotateX(float angle, Vector3f dest) {
float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
float y = this.y * cos - this.z * sin;
float z = this.y * sin + this.z * cos;
dest.x = this.x;
dest.y = y;
dest.z = z;
return dest;
}
/**
* Rotate this vector the specified radians around the Y axis.
*
* @param angle
* the angle in radians
* @return this
*/
public Vector3f rotateY(float angle) {
float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
float x = this.x * cos + this.z * sin;
float z = -this.x * sin + this.z * cos;
this.x = x;
this.z = z;
return this;
}
public Vector3f rotateY(float angle, Vector3f dest) {
float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
float x = this.x * cos + this.z * sin;
float z = -this.x * sin + this.z * cos;
dest.x = x;
dest.y = this.y;
dest.z = z;
return dest;
}
/**
* Rotate this vector the specified radians around the Z axis.
*
* @param angle
* the angle in radians
* @return this
*/
public Vector3f rotateZ(float angle) {
float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
float x = this.x * cos - this.y * sin;
float y = this.x * sin + this.y * cos;
this.x = x;
this.y = y;
return this;
}
public Vector3f rotateZ(float angle, Vector3f dest) {
float sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
float x = this.x * cos - this.y * sin;
float y = this.x * sin + this.y * cos;
dest.x = x;
dest.y = y;
dest.z = this.z;
return dest;
}
public float lengthSquared() {
return Math.fma(x, x, Math.fma(y, y, z * z));
}
/**
* Get the length squared of a 3-dimensional single-precision vector.
*
* @param x The vector's x component
* @param y The vector's y component
* @param z The vector's z component
*
* @return the length squared of the given vector
*
* @author F. Neurath
*/
public static float lengthSquared(float x, float y, float z) {
return Math.fma(x, x, Math.fma(y, y, z * z));
}
public float length() {
return Math.sqrt(Math.fma(x, x, Math.fma(y, y, z * z)));
}
/**
* Get the length of a 3-dimensional single-precision vector.
*
* @param x The vector's x component
* @param y The vector's y component
* @param z The vector's z component
*
* @return the length of the given vector
*
* @author F. Neurath
*/
public static float length(float x, float y, float z) {
return Math.sqrt(Math.fma(x, x, Math.fma(y, y, z * z)));
}
/**
* Normalize this vector.
*
* @return this
*/
public Vector3f normalize() {
float scalar = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z)));
this.x = this.x * scalar;
this.y = this.y * scalar;
this.z = this.z * scalar;
return this;
}
public Vector3f normalize(Vector3f dest) {
float scalar = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z)));
dest.x = this.x * scalar;
dest.y = this.y * scalar;
dest.z = this.z * scalar;
return dest;
}
/**
* Scale this vector to have the given length.
*
* @param length
* the desired length
* @return this
*/
public Vector3f normalize(float length) {
float scalar = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))) * length;
this.x = this.x * scalar;
this.y = this.y * scalar;
this.z = this.z * scalar;
return this;
}
public Vector3f normalize(float length, Vector3f dest) {
float scalar = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))) * length;
dest.x = this.x * scalar;
dest.y = this.y * scalar;
dest.z = this.z * scalar;
return dest;
}
/**
* Set this vector to be the cross product of itself and <code>v</code>.
*
* @param v
* the other vector
* @return this
*/
public Vector3f cross(Vector3fc v) {
float rx = Math.fma(y, v.z(), -z * v.y());
float ry = Math.fma(z, v.x(), -x * v.z());
float rz = Math.fma(x, v.y(), -y * v.x());
this.x = rx;
this.y = ry;
this.z = rz;
return this;
}
/**
* Set this vector to be the cross product of itself and <code>(x, y, z)</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return this
*/
public Vector3f cross(float x, float y, float z) {
float rx = Math.fma(this.y, z, -this.z * y);
float ry = Math.fma(this.z, x, -this.x * z);
float rz = Math.fma(this.x, y, -this.y * x);
this.x = rx;
this.y = ry;
this.z = rz;
return this;
}
public Vector3f cross(Vector3fc v, Vector3f dest) {
float rx = Math.fma(y, v.z(), -z * v.y());
float ry = Math.fma(z, v.x(), -x * v.z());
float rz = Math.fma(x, v.y(), -y * v.x());
dest.x = rx;
dest.y = ry;
dest.z = rz;
return dest;
}
public Vector3f cross(float x, float y, float z, Vector3f dest) {
float rx = Math.fma(this.y, z, -this.z * y);
float ry = Math.fma(this.z, x, -this.x * z);
float rz = Math.fma(this.x, y, -this.y * x);
dest.x = rx;
dest.y = ry;
dest.z = rz;
return dest;
}
public float distance(Vector3fc v) {
float dx = this.x - v.x();
float dy = this.y - v.y();
float dz = this.z - v.z();
return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, dz * dz)));
}
public float distance(float x, float y, float z) {
float dx = this.x - x;
float dy = this.y - y;
float dz = this.z - z;
return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, dz * dz)));
}
public float distanceSquared(Vector3fc v) {
float dx = this.x - v.x();
float dy = this.y - v.y();
float dz = this.z - v.z();
return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz));
}
public float distanceSquared(float x, float y, float z) {
float dx = this.x - x;
float dy = this.y - y;
float dz = this.z - z;
return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz));
}
/**
* Return the distance between <code>(x1, y1, z1)</code> and <code>(x2, y2, z2)</code>.
*
* @param x1
* the x component of the first vector
* @param y1
* the y component of the first vector
* @param z1
* the z component of the first vector
* @param x2
* the x component of the second vector
* @param y2
* the y component of the second vector
* @param z2
* the z component of the second vector
* @return the euclidean distance
*/
public static float distance(float x1, float y1, float z1, float x2, float y2, float z2) {
return Math.sqrt(distanceSquared(x1, y1, z1, x2, y2, z2));
}
/**
* Return the squared distance between <code>(x1, y1, z1)</code> and <code>(x2, y2, z2)</code>.
*
* @param x1
* the x component of the first vector
* @param y1
* the y component of the first vector
* @param z1
* the z component of the first vector
* @param x2
* the x component of the second vector
* @param y2
* the y component of the second vector
* @param z2
* the z component of the second vector
* @return the euclidean distance squared
*/
public static float distanceSquared(float x1, float y1, float z1, float x2, float y2, float z2) {
float dx = x1 - x2;
float dy = y1 - y2;
float dz = z1 - z2;
return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz));
}
public float dot(Vector3fc v) {
return Math.fma(this.x, v.x(), Math.fma(this.y, v.y(), this.z * v.z()));
}
public float dot(float x, float y, float z) {
return Math.fma(this.x, x, Math.fma(this.y, y, this.z * z));
}
public float angleCos(Vector3fc v) {
float x = this.x, y = this.y, z = this.z;
float length1Squared = Math.fma(x, x, Math.fma(y, y, z * z));
float length2Squared = Math.fma(v.x(), v.x(), Math.fma(v.y(), v.y(), v.z() * v.z()));
float dot = Math.fma(x, v.x(), Math.fma(y, v.y(), z * v.z()));
return dot / (float)Math.sqrt(length1Squared * length2Squared);
}
public float angle(Vector3fc v) {
float cos = angleCos(v);
// This is because sometimes cos goes above 1 or below -1 because of lost precision
cos = cos < 1 ? cos : 1;
cos = cos > -1 ? cos : -1;
return Math.acos(cos);
}
public float angleSigned(Vector3fc v, Vector3fc n) {
return angleSigned(v.x(), v.y(), v.z(), n.x(), n.y(), n.z());
}
public float angleSigned(float x, float y, float z, float nx, float ny, float nz) {
float tx = this.x, ty = this.y, tz = this.z;
return Math.atan2(
(ty * z - tz * y) * nx + (tz * x - tx * z) * ny + (tx * y - ty * x) * nz,
tx * x + ty * y + tz * z);
}
/**
* Set the components of this vector to be the component-wise minimum of this and the other vector.
*
* @param v
* the other vector
* @return this
*/
public Vector3f min(Vector3fc v) {
float x = this.x, y = this.y, z = this.z;
this.x = x < v.x() ? x : v.x();
this.y = y < v.y() ? y : v.y();
this.z = z < v.z() ? z : v.z();
return this;
}
public Vector3f min(Vector3fc v, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = x < v.x() ? x : v.x();
dest.y = y < v.y() ? y : v.y();
dest.z = z < v.z() ? z : v.z();
return dest;
}
/**
* Set the components of this vector to be the component-wise maximum of this and the other vector.
*
* @param v
* the other vector
* @return this
*/
public Vector3f max(Vector3fc v) {
float x = this.x, y = this.y, z = this.z;
this.x = x > v.x() ? x : v.x();
this.y = y > v.y() ? y : v.y();
this.z = z > v.z() ? z : v.z();
return this;
}
public Vector3f max(Vector3fc v, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
dest.x = x > v.x() ? x : v.x();
dest.y = y > v.y() ? y : v.y();
dest.z = z > v.z() ? z : v.z();
return dest;
}
/**
* Set all components to zero.
*
* @return this
*/
public Vector3f zero() {
this.x = 0;
this.y = 0;
this.z = 0;
return this;
}
/**
* Return a string representation of this vector.
* <p>
* This method creates a new {@link DecimalFormat} on every invocation with the format string "<code>0.000E0;-</code>".
*
* @return the string representation
*/
public String toString() {
return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT));
}
/**
* Return a string representation of this vector by formatting the vector components with the given {@link NumberFormat}.
*
* @param formatter
* the {@link NumberFormat} used to format the vector components with
* @return the string representation
*/
public String toString(NumberFormat formatter) {
return "(" + Runtime.format(x, formatter) + " " + Runtime.format(y, formatter) + " " + Runtime.format(z, formatter) + ")";
}
public void writeExternal(ObjectOutput out) throws IOException {
out.writeFloat(x);
out.writeFloat(y);
out.writeFloat(z);
}
public void readExternal(ObjectInput in) throws IOException,
ClassNotFoundException {
set(in.readFloat(), in.readFloat(), in.readFloat());
}
/**
* Negate this vector.
*
* @return this
*/
public Vector3f negate() {
this.x = -x;
this.y = -y;
this.z = -z;
return this;
}
public Vector3f negate(Vector3f dest) {
dest.x = -x;
dest.y = -y;
dest.z = -z;
return dest;
}
/**
* Set <code>this</code> vector's components to their respective absolute values.
*
* @return this
*/
public Vector3f absolute() {
this.x = Math.abs(this.x);
this.y = Math.abs(this.y);
this.z = Math.abs(this.z);
return this;
}
public Vector3f absolute(Vector3f dest) {
dest.x = Math.abs(this.x);
dest.y = Math.abs(this.y);
dest.z = Math.abs(this.z);
return dest;
}
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + Float.floatToIntBits(x);
result = prime * result + Float.floatToIntBits(y);
result = prime * result + Float.floatToIntBits(z);
return result;
}
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Vector3f other = (Vector3f) obj;
if (Float.floatToIntBits(x) != Float.floatToIntBits(other.x))
return false;
if (Float.floatToIntBits(y) != Float.floatToIntBits(other.y))
return false;
if (Float.floatToIntBits(z) != Float.floatToIntBits(other.z))
return false;
return true;
}
public boolean equals(Vector3fc v, float delta) {
if (this == v)
return true;
if (v == null)
return false;
if (!(v instanceof Vector3fc))
return false;
if (!Runtime.equals(x, v.x(), delta))
return false;
if (!Runtime.equals(y, v.y(), delta))
return false;
if (!Runtime.equals(z, v.z(), delta))
return false;
return true;
}
public boolean equals(float x, float y, float z) {
if (Float.floatToIntBits(this.x) != Float.floatToIntBits(x))
return false;
if (Float.floatToIntBits(this.y) != Float.floatToIntBits(y))
return false;
if (Float.floatToIntBits(this.z) != Float.floatToIntBits(z))
return false;
return true;
}
/**
* Reflect this vector about the given <code>normal</code> vector.
*
* @param normal
* the vector to reflect about
* @return this
*/
public Vector3f reflect(Vector3fc normal) {
float x = normal.x();
float y = normal.y();
float z = normal.z();
float dot = Math.fma(this.x, x, Math.fma(this.y, y, this.z * z));
this.x = this.x - (dot + dot) * x;
this.y = this.y - (dot + dot) * y;
this.z = this.z - (dot + dot) * z;
return this;
}
/**
* Reflect this vector about the given normal vector.
*
* @param x
* the x component of the normal
* @param y
* the y component of the normal
* @param z
* the z component of the normal
* @return this
*/
public Vector3f reflect(float x, float y, float z) {
float dot = Math.fma(this.x, x, Math.fma(this.y, y, this.z * z));
this.x = this.x - (dot + dot) * x;
this.y = this.y - (dot + dot) * y;
this.z = this.z - (dot + dot) * z;
return this;
}
public Vector3f reflect(Vector3fc normal, Vector3f dest) {
return reflect(normal.x(), normal.y(), normal.z(), dest);
}
public Vector3f reflect(float x, float y, float z, Vector3f dest) {
float dot = this.dot(x, y, z);
dest.x = this.x - (dot + dot) * x;
dest.y = this.y - (dot + dot) * y;
dest.z = this.z - (dot + dot) * z;
return dest;
}
/**
* Compute the half vector between this and the other vector.
*
* @param other
* the other vector
* @return this
*/
public Vector3f half(Vector3fc other) {
return this.set(this).add(other.x(), other.y(), other.z()).normalize();
}
/**
* Compute the half vector between this and the vector <code>(x, y, z)</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return this
*/
public Vector3f half(float x, float y, float z) {
return half(x, y, z, this);
}
public Vector3f half(Vector3fc other, Vector3f dest) {
return half(other.x(), other.y(), other.z(), dest);
}
public Vector3f half(float x, float y, float z, Vector3f dest) {
return dest.set(this).add(x, y, z).normalize();
}
public Vector3f smoothStep(Vector3fc v, float t, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
float t2 = t * t;
float t3 = t2 * t;
dest.x = (x + x - v.x() - v.x()) * t3 + (3.0f * v.x() - 3.0f * x) * t2 + x * t + x;
dest.y = (y + y - v.y() - v.y()) * t3 + (3.0f * v.y() - 3.0f * y) * t2 + y * t + y;
dest.z = (z + z - v.z() - v.z()) * t3 + (3.0f * v.z() - 3.0f * z) * t2 + z * t + z;
return dest;
}
public Vector3f hermite(Vector3fc t0, Vector3fc v1, Vector3fc t1, float t, Vector3f dest) {
float x = this.x, y = this.y, z = this.z;
float t2 = t * t;
float t3 = t2 * t;
dest.x = (x + x - v1.x() - v1.x() + t1.x() + t0.x()) * t3 + (3.0f * v1.x() - 3.0f * x - t0.x() - t0.x() - t1.x()) * t2 + x * t + x;
dest.y = (y + y - v1.y() - v1.y() + t1.y() + t0.y()) * t3 + (3.0f * v1.y() - 3.0f * y - t0.y() - t0.y() - t1.y()) * t2 + y * t + y;
dest.z = (z + z - v1.z() - v1.z() + t1.z() + t0.z()) * t3 + (3.0f * v1.z() - 3.0f * z - t0.z() - t0.z() - t1.z()) * t2 + z * t + z;
return dest;
}
/**
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
* and store the result in <code>this</code>.
* <p>
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
* then the result is <code>other</code>.
*
* @param other
* the other vector
* @param t
* the interpolation factor between 0.0 and 1.0
* @return this
*/
public Vector3f lerp(Vector3fc other, float t) {
return lerp(other, t, this);
}
public Vector3f lerp(Vector3fc other, float t, Vector3f dest) {
dest.x = Math.fma(other.x() - x, t, x);
dest.y = Math.fma(other.y() - y, t, y);
dest.z = Math.fma(other.z() - z, t, z);
return dest;
}
public float get(int component) throws IllegalArgumentException {
switch (component) {
case 0:
return x;
case 1:
return y;
case 2:
return z;
default:
throw new IllegalArgumentException();
}
}
public Vector3i get(int mode, Vector3i dest) {
dest.x = Math.roundUsing(this.x(), mode);
dest.y = Math.roundUsing(this.y(), mode);
dest.z = Math.roundUsing(this.z(), mode);
return dest;
}
public Vector3f get(Vector3f dest) {
dest.x = this.x();
dest.y = this.y();
dest.z = this.z();
return dest;
}
public Vector3d get(Vector3d dest) {
dest.x = this.x();
dest.y = this.y();
dest.z = this.z();
return dest;
}
public int maxComponent() {
float absX = Math.abs(x);
float absY = Math.abs(y);
float absZ = Math.abs(z);
if (absX >= absY && absX >= absZ) {
return 0;
} else if (absY >= absZ) {
return 1;
}
return 2;
}
public int minComponent() {
float absX = Math.abs(x);
float absY = Math.abs(y);
float absZ = Math.abs(z);
if (absX < absY && absX < absZ) {
return 0;
} else if (absY < absZ) {
return 1;
}
return 2;
}
public Vector3f orthogonalize(Vector3fc v, Vector3f dest) {
/*
* http://lolengine.net/blog/2013/09/21/picking-orthogonal-vector-combing-coconuts
*/
float rx, ry, rz;
if (Math.abs(v.x()) > Math.abs(v.z())) {
rx = -v.y();
ry = v.x();
rz = 0.0f;
} else {
rx = 0.0f;
ry = -v.z();
rz = v.y();
}
float invLen = Math.invsqrt(rx * rx + ry * ry + rz * rz);
dest.x = rx * invLen;
dest.y = ry * invLen;
dest.z = rz * invLen;
return dest;
}
/**
* Transform <code>this</code> vector so that it is orthogonal to the given vector <code>v</code> and normalize the result.
* <p>
* Reference: <a href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">GramSchmidt process</a>
*
* @param v
* the reference vector which the result should be orthogonal to
* @return this
*/
public Vector3f orthogonalize(Vector3fc v) {
return orthogonalize(v, this);
}
public Vector3f orthogonalizeUnit(Vector3fc v, Vector3f dest) {
return orthogonalize(v, dest);
}
/**
* Transform <code>this</code> vector so that it is orthogonal to the given unit vector <code>v</code> and normalize the result.
* <p>
* The vector <code>v</code> is assumed to be a {@link #normalize() unit} vector.
* <p>
* Reference: <a href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">GramSchmidt process</a>
*
* @param v
* the reference unit vector which the result should be orthogonal to
* @return this
*/
public Vector3f orthogonalizeUnit(Vector3fc v) {
return orthogonalizeUnit(v, this);
}
/**
* Set each component of this vector to the largest (closest to positive
* infinity) {@code float} value that is less than or equal to that
* component and is equal to a mathematical integer.
*
* @return this
*/
public Vector3f floor() {
return floor(this);
}
public Vector3f floor(Vector3f dest) {
dest.x = Math.floor(x);
dest.y = Math.floor(y);
dest.z = Math.floor(z);
return dest;
}
/**
* Set each component of this vector to the smallest (closest to negative
* infinity) {@code float} value that is greater than or equal to that
* component and is equal to a mathematical integer.
*
* @return this
*/
public Vector3f ceil() {
return ceil(this);
}
public Vector3f ceil(Vector3f dest) {
dest.x = Math.ceil(x);
dest.y = Math.ceil(y);
dest.z = Math.ceil(z);
return dest;
}
/**
* Set each component of this vector to the closest float that is equal to
* a mathematical integer, with ties rounding to positive infinity.
*
* @return this
*/
public Vector3f round() {
return round(this);
}
public Vector3f round(Vector3f dest) {
dest.x = Math.round(x);
dest.y = Math.round(y);
dest.z = Math.round(z);
return dest;
}
public boolean isFinite() {
return Math.isFinite(x) && Math.isFinite(y) && Math.isFinite(z);
}
public Object clone() throws CloneNotSupportedException {
return super.clone();
}
}