mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2025-01-12 23:36:09 +01:00
a42c027b6f
- Fix Resources not being closed properly - Change versioning scheme to match Create - Add LICENSE to built jar - Fix mods.toml version sync - Move JOML code to non-src directory - Update Gradle - Organize imports
906 lines
31 KiB
Java
906 lines
31 KiB
Java
/*
|
|
* The MIT License
|
|
*
|
|
* Copyright (c) 2015-2021 Kai Burjack
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
package com.jozufozu.flywheel.repack.joml;
|
|
|
|
import java.io.Externalizable;
|
|
import java.io.IOException;
|
|
import java.io.ObjectInput;
|
|
import java.io.ObjectOutput;
|
|
import java.text.DecimalFormat;
|
|
import java.text.NumberFormat;
|
|
|
|
/**
|
|
* Represents a 3D rotation of a given radians about an axis represented as an
|
|
* unit 3D vector.
|
|
* <p>
|
|
* This class uses double-precision components.
|
|
*
|
|
* @author Kai Burjack
|
|
*/
|
|
public class AxisAngle4d implements Externalizable, Cloneable {
|
|
|
|
private static final long serialVersionUID = 1L;
|
|
|
|
/**
|
|
* The angle in radians.
|
|
*/
|
|
public double angle;
|
|
/**
|
|
* The x-component of the rotation axis.
|
|
*/
|
|
public double x;
|
|
/**
|
|
* The y-component of the rotation axis.
|
|
*/
|
|
public double y;
|
|
/**
|
|
* The z-component of the rotation axis.
|
|
*/
|
|
public double z;
|
|
|
|
/**
|
|
* Create a new {@link AxisAngle4d} with zero rotation about <code>(0, 0, 1)</code>.
|
|
*/
|
|
public AxisAngle4d() {
|
|
z = 1.0;
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link AxisAngle4d} with the same values of <code>a</code>.
|
|
*
|
|
* @param a
|
|
* the AngleAxis4d to copy the values from
|
|
*/
|
|
public AxisAngle4d(AxisAngle4d a) {
|
|
x = a.x;
|
|
y = a.y;
|
|
z = a.z;
|
|
angle = (a.angle < 0.0 ? Math.PI + Math.PI + a.angle % (Math.PI + Math.PI) : a.angle) % (Math.PI + Math.PI);
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link AxisAngle4d} with the same values of <code>a</code>.
|
|
*
|
|
* @param a
|
|
* the AngleAxis4f to copy the values from
|
|
*/
|
|
public AxisAngle4d(AxisAngle4f a) {
|
|
x = a.x;
|
|
y = a.y;
|
|
z = a.z;
|
|
angle = (a.angle < 0.0 ? Math.PI + Math.PI + a.angle % (Math.PI + Math.PI) : a.angle) % (Math.PI + Math.PI);
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link AxisAngle4d} from the given {@link Quaternionfc}.
|
|
* <p>
|
|
* Reference: <a href=
|
|
* "http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/"
|
|
* >http://www.euclideanspace.com</a>
|
|
*
|
|
* @param q
|
|
* the quaternion from which to create the new AngleAxis4f
|
|
*/
|
|
public AxisAngle4d(Quaternionfc q) {
|
|
float acos = Math.safeAcos(q.w());
|
|
float invSqrt = Math.invsqrt(1.0f - q.w() * q.w());
|
|
if (Float.isInfinite(invSqrt)) {
|
|
this.x = 0.0;
|
|
this.y = 0.0;
|
|
this.z = 1.0;
|
|
} else {
|
|
this.x = q.x() * invSqrt;
|
|
this.y = q.y() * invSqrt;
|
|
this.z = q.z() * invSqrt;
|
|
}
|
|
this.angle = acos + acos;
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link AxisAngle4d} from the given {@link Quaterniondc}.
|
|
* <p>
|
|
* Reference: <a href=
|
|
* "http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/"
|
|
* >http://www.euclideanspace.com</a>
|
|
*
|
|
* @param q
|
|
* the quaternion from which to create the new AngleAxis4d
|
|
*/
|
|
public AxisAngle4d(Quaterniondc q) {
|
|
double acos = Math.safeAcos(q.w());
|
|
double invSqrt = Math.invsqrt(1.0 - q.w() * q.w());
|
|
if (Double.isInfinite(invSqrt)) {
|
|
this.x = 0.0;
|
|
this.y = 0.0;
|
|
this.z = 1.0;
|
|
} else {
|
|
this.x = q.x() * invSqrt;
|
|
this.y = q.y() * invSqrt;
|
|
this.z = q.z() * invSqrt;
|
|
}
|
|
this.angle = acos + acos;
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link AxisAngle4d} with the given values.
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @param x
|
|
* the x-coordinate of the rotation axis
|
|
* @param y
|
|
* the y-coordinate of the rotation axis
|
|
* @param z
|
|
* the z-coordinate of the rotation axis
|
|
*/
|
|
public AxisAngle4d(double angle, double x, double y, double z) {
|
|
this.x = x;
|
|
this.y = y;
|
|
this.z = z;
|
|
this.angle = (angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI);
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link AxisAngle4d} with the given values.
|
|
*
|
|
* @param angle the angle in radians
|
|
* @param v the rotation axis as a {@link Vector3dc}
|
|
*/
|
|
public AxisAngle4d(double angle, Vector3dc v) {
|
|
this(angle, v.x(), v.y(), v.z());
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link AxisAngle4d} with the given values.
|
|
*
|
|
* @param angle the angle in radians
|
|
* @param v the rotation axis as a {@link Vector3f}
|
|
*/
|
|
public AxisAngle4d(double angle, Vector3f v) {
|
|
this(angle, v.x, v.y, v.z);
|
|
}
|
|
|
|
/**
|
|
* Set this {@link AxisAngle4d} to the values of <code>a</code>.
|
|
*
|
|
* @param a
|
|
* the AngleAxis4f to copy the values from
|
|
* @return this
|
|
*/
|
|
public AxisAngle4d set(AxisAngle4d a) {
|
|
x = a.x;
|
|
y = a.y;
|
|
z = a.z;
|
|
angle = (a.angle < 0.0 ? Math.PI + Math.PI + a.angle % (Math.PI + Math.PI) : a.angle) % (Math.PI + Math.PI);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this {@link AxisAngle4d} to the values of <code>a</code>.
|
|
*
|
|
* @param a
|
|
* the AngleAxis4f to copy the values from
|
|
* @return this
|
|
*/
|
|
public AxisAngle4d set(AxisAngle4f a) {
|
|
x = a.x;
|
|
y = a.y;
|
|
z = a.z;
|
|
angle = (a.angle < 0.0 ? Math.PI + Math.PI + a.angle % (Math.PI + Math.PI) : a.angle) % (Math.PI + Math.PI);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this {@link AxisAngle4d} to the given values.
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @param x
|
|
* the x-coordinate of the rotation axis
|
|
* @param y
|
|
* the y-coordinate of the rotation axis
|
|
* @param z
|
|
* the z-coordinate of the rotation axis
|
|
* @return this
|
|
*/
|
|
public AxisAngle4d set(double angle, double x, double y, double z) {
|
|
this.x = x;
|
|
this.y = y;
|
|
this.z = z;
|
|
this.angle = (angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this {@link AxisAngle4d} to the given values.
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @param v
|
|
* the rotation axis as a {@link Vector3dc}
|
|
* @return this
|
|
*/
|
|
public AxisAngle4d set(double angle, Vector3dc v) {
|
|
return set(angle, v.x(), v.y(), v.z());
|
|
}
|
|
|
|
/**
|
|
* Set this {@link AxisAngle4d} to the given values.
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @param v
|
|
* the rotation axis as a {@link Vector3f}
|
|
* @return this
|
|
*/
|
|
public AxisAngle4d set(double angle, Vector3f v) {
|
|
return set(angle, v.x, v.y, v.z);
|
|
}
|
|
|
|
/**
|
|
* Set this {@link AxisAngle4d} to be equivalent to the given
|
|
* {@link Quaternionfc}.
|
|
*
|
|
* @param q
|
|
* the quaternion to set this AngleAxis4d from
|
|
* @return this
|
|
*/
|
|
public AxisAngle4d set(Quaternionfc q) {
|
|
float acos = Math.safeAcos(q.w());
|
|
float invSqrt = Math.invsqrt(1.0f - q.w() * q.w());
|
|
if (Float.isInfinite(invSqrt)) {
|
|
this.x = 0.0;
|
|
this.y = 0.0;
|
|
this.z = 1.0;
|
|
} else {
|
|
this.x = q.x() * invSqrt;
|
|
this.y = q.y() * invSqrt;
|
|
this.z = q.z() * invSqrt;
|
|
}
|
|
this.angle = acos + acos;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this {@link AxisAngle4d} to be equivalent to the given
|
|
* {@link Quaterniondc}.
|
|
*
|
|
* @param q
|
|
* the quaternion to set this AngleAxis4d from
|
|
* @return this
|
|
*/
|
|
public AxisAngle4d set(Quaterniondc q) {
|
|
double acos = Math.safeAcos(q.w());
|
|
double invSqrt = Math.invsqrt(1.0f - q.w() * q.w());
|
|
if (Double.isInfinite(invSqrt)) {
|
|
this.x = 0.0;
|
|
this.y = 0.0;
|
|
this.z = 1.0;
|
|
} else {
|
|
this.x = q.x() * invSqrt;
|
|
this.y = q.y() * invSqrt;
|
|
this.z = q.z() * invSqrt;
|
|
}
|
|
this.angle = acos + acos;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this {@link AxisAngle4d} to be equivalent to the rotation
|
|
* of the given {@link Matrix3fc}.
|
|
* <p>
|
|
* Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a>
|
|
*
|
|
* @param m
|
|
* the Matrix3fc to set this AngleAxis4d from
|
|
* @return this
|
|
*/
|
|
public AxisAngle4d set(Matrix3fc m) {
|
|
double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02();
|
|
double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12();
|
|
double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22();
|
|
double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02());
|
|
double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12());
|
|
double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22());
|
|
nm00 *= lenX; nm01 *= lenX; nm02 *= lenX;
|
|
nm10 *= lenY; nm11 *= lenY; nm12 *= lenY;
|
|
nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ;
|
|
double epsilon = 1E-4, epsilon2 = 1E-3;
|
|
if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) {
|
|
if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2
|
|
&& Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) {
|
|
x = 0;
|
|
y = 0;
|
|
z = 1;
|
|
angle = 0;
|
|
return this;
|
|
}
|
|
angle = Math.PI;
|
|
double xx = (nm00 + 1) / 2;
|
|
double yy = (nm11 + 1) / 2;
|
|
double zz = (nm22 + 1) / 2;
|
|
double xy = (nm10 + nm01) / 4;
|
|
double xz = (nm20 + nm02) / 4;
|
|
double yz = (nm21 + nm12) / 4;
|
|
if ((xx > yy) && (xx > zz)) {
|
|
x = Math.sqrt(xx);
|
|
y = xy / x;
|
|
z = xz / x;
|
|
} else if (yy > zz) {
|
|
y = Math.sqrt(yy);
|
|
x = xy / y;
|
|
z = yz / y;
|
|
} else {
|
|
z = Math.sqrt(zz);
|
|
x = xz / z;
|
|
y = yz / z;
|
|
}
|
|
return this;
|
|
}
|
|
double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10));
|
|
angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2);
|
|
x = (nm12 - nm21) / s;
|
|
y = (nm20 - nm02) / s;
|
|
z = (nm01 - nm10) / s;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this {@link AxisAngle4d} to be equivalent to the rotation
|
|
* of the given {@link Matrix3dc}.
|
|
* <p>
|
|
* Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a>
|
|
*
|
|
* @param m
|
|
* the Matrix3dc to set this AngleAxis4d from
|
|
* @return this
|
|
*/
|
|
public AxisAngle4d set(Matrix3dc m) {
|
|
double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02();
|
|
double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12();
|
|
double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22();
|
|
double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02());
|
|
double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12());
|
|
double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22());
|
|
nm00 *= lenX; nm01 *= lenX; nm02 *= lenX;
|
|
nm10 *= lenY; nm11 *= lenY; nm12 *= lenY;
|
|
nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ;
|
|
double epsilon = 1E-4, epsilon2 = 1E-3;
|
|
if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) {
|
|
if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2
|
|
&& Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) {
|
|
x = 0;
|
|
y = 0;
|
|
z = 1;
|
|
angle = 0;
|
|
return this;
|
|
}
|
|
angle = Math.PI;
|
|
double xx = (nm00 + 1) / 2;
|
|
double yy = (nm11 + 1) / 2;
|
|
double zz = (nm22 + 1) / 2;
|
|
double xy = (nm10 + nm01) / 4;
|
|
double xz = (nm20 + nm02) / 4;
|
|
double yz = (nm21 + nm12) / 4;
|
|
if ((xx > yy) && (xx > zz)) {
|
|
x = Math.sqrt(xx);
|
|
y = xy / x;
|
|
z = xz / x;
|
|
} else if (yy > zz) {
|
|
y = Math.sqrt(yy);
|
|
x = xy / y;
|
|
z = yz / y;
|
|
} else {
|
|
z = Math.sqrt(zz);
|
|
x = xz / z;
|
|
y = yz / z;
|
|
}
|
|
return this;
|
|
}
|
|
double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10));
|
|
angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2);
|
|
x = (nm12 - nm21) / s;
|
|
y = (nm20 - nm02) / s;
|
|
z = (nm01 - nm10) / s;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this {@link AxisAngle4d} to be equivalent to the rotational component
|
|
* of the given {@link Matrix4fc}.
|
|
* <p>
|
|
* Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a>
|
|
*
|
|
* @param m
|
|
* the Matrix4fc to set this AngleAxis4d from
|
|
* @return this
|
|
*/
|
|
public AxisAngle4d set(Matrix4fc m) {
|
|
double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02();
|
|
double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12();
|
|
double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22();
|
|
double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02());
|
|
double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12());
|
|
double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22());
|
|
nm00 *= lenX; nm01 *= lenX; nm02 *= lenX;
|
|
nm10 *= lenY; nm11 *= lenY; nm12 *= lenY;
|
|
nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ;
|
|
double epsilon = 1E-4, epsilon2 = 1E-3;
|
|
if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) {
|
|
if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2
|
|
&& Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) {
|
|
x = 0;
|
|
y = 0;
|
|
z = 1;
|
|
angle = 0;
|
|
return this;
|
|
}
|
|
angle = Math.PI;
|
|
double xx = (nm00 + 1) / 2;
|
|
double yy = (nm11 + 1) / 2;
|
|
double zz = (nm22 + 1) / 2;
|
|
double xy = (nm10 + nm01) / 4;
|
|
double xz = (nm20 + nm02) / 4;
|
|
double yz = (nm21 + nm12) / 4;
|
|
if ((xx > yy) && (xx > zz)) {
|
|
x = Math.sqrt(xx);
|
|
y = xy / x;
|
|
z = xz / x;
|
|
} else if (yy > zz) {
|
|
y = Math.sqrt(yy);
|
|
x = xy / y;
|
|
z = yz / y;
|
|
} else {
|
|
z = Math.sqrt(zz);
|
|
x = xz / z;
|
|
y = yz / z;
|
|
}
|
|
return this;
|
|
}
|
|
double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10));
|
|
angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2);
|
|
x = (nm12 - nm21) / s;
|
|
y = (nm20 - nm02) / s;
|
|
z = (nm01 - nm10) / s;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this {@link AxisAngle4d} to be equivalent to the rotational component
|
|
* of the given {@link Matrix4x3fc}.
|
|
* <p>
|
|
* Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a>
|
|
*
|
|
* @param m
|
|
* the Matrix4x3fc to set this AngleAxis4d from
|
|
* @return this
|
|
*/
|
|
public AxisAngle4d set(Matrix4x3fc m) {
|
|
double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02();
|
|
double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12();
|
|
double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22();
|
|
double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02());
|
|
double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12());
|
|
double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22());
|
|
nm00 *= lenX; nm01 *= lenX; nm02 *= lenX;
|
|
nm10 *= lenY; nm11 *= lenY; nm12 *= lenY;
|
|
nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ;
|
|
double epsilon = 1E-4, epsilon2 = 1E-3;
|
|
if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) {
|
|
if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2
|
|
&& Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) {
|
|
x = 0;
|
|
y = 0;
|
|
z = 1;
|
|
angle = 0;
|
|
return this;
|
|
}
|
|
angle = Math.PI;
|
|
double xx = (nm00 + 1) / 2;
|
|
double yy = (nm11 + 1) / 2;
|
|
double zz = (nm22 + 1) / 2;
|
|
double xy = (nm10 + nm01) / 4;
|
|
double xz = (nm20 + nm02) / 4;
|
|
double yz = (nm21 + nm12) / 4;
|
|
if ((xx > yy) && (xx > zz)) {
|
|
x = Math.sqrt(xx);
|
|
y = xy / x;
|
|
z = xz / x;
|
|
} else if (yy > zz) {
|
|
y = Math.sqrt(yy);
|
|
x = xy / y;
|
|
z = yz / y;
|
|
} else {
|
|
z = Math.sqrt(zz);
|
|
x = xz / z;
|
|
y = yz / z;
|
|
}
|
|
return this;
|
|
}
|
|
double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10));
|
|
angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2);
|
|
x = (nm12 - nm21) / s;
|
|
y = (nm20 - nm02) / s;
|
|
z = (nm01 - nm10) / s;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this {@link AxisAngle4d} to be equivalent to the rotational component
|
|
* of the given {@link Matrix4dc}.
|
|
* <p>
|
|
* Reference: <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/">http://www.euclideanspace.com</a>
|
|
*
|
|
* @param m
|
|
* the Matrix4dc to set this AngleAxis4d from
|
|
* @return this
|
|
*/
|
|
public AxisAngle4d set(Matrix4dc m) {
|
|
double nm00 = m.m00(), nm01 = m.m01(), nm02 = m.m02();
|
|
double nm10 = m.m10(), nm11 = m.m11(), nm12 = m.m12();
|
|
double nm20 = m.m20(), nm21 = m.m21(), nm22 = m.m22();
|
|
double lenX = Math.invsqrt(m.m00() * m.m00() + m.m01() * m.m01() + m.m02() * m.m02());
|
|
double lenY = Math.invsqrt(m.m10() * m.m10() + m.m11() * m.m11() + m.m12() * m.m12());
|
|
double lenZ = Math.invsqrt(m.m20() * m.m20() + m.m21() * m.m21() + m.m22() * m.m22());
|
|
nm00 *= lenX; nm01 *= lenX; nm02 *= lenX;
|
|
nm10 *= lenY; nm11 *= lenY; nm12 *= lenY;
|
|
nm20 *= lenZ; nm21 *= lenZ; nm22 *= lenZ;
|
|
double epsilon = 1E-4, epsilon2 = 1E-3;
|
|
if (Math.abs(nm10 - nm01) < epsilon && Math.abs(nm20 - nm02) < epsilon && Math.abs(nm21 - nm12) < epsilon) {
|
|
if (Math.abs(nm10 + nm01) < epsilon2 && Math.abs(nm20 + nm02) < epsilon2 && Math.abs(nm21 + nm12) < epsilon2
|
|
&& Math.abs(nm00 + nm11 + nm22 - 3) < epsilon2) {
|
|
x = 0;
|
|
y = 0;
|
|
z = 1;
|
|
angle = 0;
|
|
return this;
|
|
}
|
|
angle = Math.PI;
|
|
double xx = (nm00 + 1) / 2;
|
|
double yy = (nm11 + 1) / 2;
|
|
double zz = (nm22 + 1) / 2;
|
|
double xy = (nm10 + nm01) / 4;
|
|
double xz = (nm20 + nm02) / 4;
|
|
double yz = (nm21 + nm12) / 4;
|
|
if ((xx > yy) && (xx > zz)) {
|
|
x = Math.sqrt(xx);
|
|
y = xy / x;
|
|
z = xz / x;
|
|
} else if (yy > zz) {
|
|
y = Math.sqrt(yy);
|
|
x = xy / y;
|
|
z = yz / y;
|
|
} else {
|
|
z = Math.sqrt(zz);
|
|
x = xz / z;
|
|
y = yz / z;
|
|
}
|
|
return this;
|
|
}
|
|
double s = Math.sqrt((nm12 - nm21) * (nm12 - nm21) + (nm20 - nm02) * (nm20 - nm02) + (nm01 - nm10) * (nm01 - nm10));
|
|
angle = Math.safeAcos((nm00 + nm11 + nm22 - 1) / 2);
|
|
x = (nm12 - nm21) / s;
|
|
y = (nm20 - nm02) / s;
|
|
z = (nm01 - nm10) / s;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the given {@link Quaternionf} to be equivalent to this {@link AxisAngle4d} rotation.
|
|
*
|
|
* @see Quaternionf#set(AxisAngle4d)
|
|
*
|
|
* @param q
|
|
* the quaternion to set
|
|
* @return q
|
|
*/
|
|
public Quaternionf get(Quaternionf q) {
|
|
return q.set(this);
|
|
}
|
|
|
|
/**
|
|
* Set the given {@link Quaterniond} to be equivalent to this {@link AxisAngle4d} rotation.
|
|
*
|
|
* @see Quaterniond#set(AxisAngle4d)
|
|
*
|
|
* @param q
|
|
* the quaternion to set
|
|
* @return q
|
|
*/
|
|
public Quaterniond get(Quaterniond q) {
|
|
return q.set(this);
|
|
}
|
|
|
|
/**
|
|
* Set the given {@link Matrix4f} to a rotation transformation equivalent to this {@link AxisAngle4d}.
|
|
*
|
|
* @see Matrix4f#set(AxisAngle4d)
|
|
*
|
|
* @param m
|
|
* the matrix to set
|
|
* @return m
|
|
*/
|
|
public Matrix4f get(Matrix4f m) {
|
|
return m.set(this);
|
|
}
|
|
|
|
/**
|
|
* Set the given {@link Matrix3f} to a rotation transformation equivalent to this {@link AxisAngle4d}.
|
|
*
|
|
* @see Matrix3f#set(AxisAngle4d)
|
|
*
|
|
* @param m
|
|
* the matrix to set
|
|
* @return m
|
|
*/
|
|
public Matrix3f get(Matrix3f m) {
|
|
return m.set(this);
|
|
}
|
|
|
|
/**
|
|
* Set the given {@link Matrix4d} to a rotation transformation equivalent to this {@link AxisAngle4d}.
|
|
*
|
|
* @see Matrix4f#set(AxisAngle4d)
|
|
*
|
|
* @param m
|
|
* the matrix to set
|
|
* @return m
|
|
*/
|
|
public Matrix4d get(Matrix4d m) {
|
|
return m.set(this);
|
|
}
|
|
|
|
/**
|
|
* Set the given {@link Matrix3d} to a rotation transformation equivalent to this {@link AxisAngle4d}.
|
|
*
|
|
* @see Matrix3f#set(AxisAngle4d)
|
|
*
|
|
* @param m
|
|
* the matrix to set
|
|
* @return m
|
|
*/
|
|
public Matrix3d get(Matrix3d m) {
|
|
return m.set(this);
|
|
}
|
|
|
|
/**
|
|
* Set the given {@link AxisAngle4d} to this {@link AxisAngle4d}.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public AxisAngle4d get(AxisAngle4d dest) {
|
|
return dest.set(this);
|
|
}
|
|
|
|
/**
|
|
* Set the given {@link AxisAngle4f} to this {@link AxisAngle4d}.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public AxisAngle4f get(AxisAngle4f dest) {
|
|
return dest.set(this);
|
|
}
|
|
|
|
public void writeExternal(ObjectOutput out) throws IOException {
|
|
out.writeDouble(angle);
|
|
out.writeDouble(x);
|
|
out.writeDouble(y);
|
|
out.writeDouble(z);
|
|
}
|
|
|
|
public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
|
|
angle = in.readDouble();
|
|
x = in.readDouble();
|
|
y = in.readDouble();
|
|
z = in.readDouble();
|
|
}
|
|
|
|
/**
|
|
* Normalize the axis vector.
|
|
*
|
|
* @return this
|
|
*/
|
|
public AxisAngle4d normalize() {
|
|
double invLength = Math.invsqrt(x * x + y * y + z * z);
|
|
x *= invLength;
|
|
y *= invLength;
|
|
z *= invLength;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Increase the rotation angle by the given amount.
|
|
* <p>
|
|
* This method also takes care of wrapping around.
|
|
*
|
|
* @param ang
|
|
* the angle increase
|
|
* @return this
|
|
*/
|
|
public AxisAngle4d rotate(double ang) {
|
|
angle += ang;
|
|
angle = (angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}.
|
|
*
|
|
* @param v
|
|
* the vector to transform
|
|
* @return v
|
|
*/
|
|
public Vector3d transform(Vector3d v) {
|
|
return transform(v, v);
|
|
}
|
|
|
|
/**
|
|
* Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param v
|
|
* the vector to transform
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Vector3d transform(Vector3dc v, Vector3d dest) {
|
|
double sin = Math.sin(angle);
|
|
double cos = Math.cosFromSin(sin, angle);
|
|
double dot = x * v.x() + y * v.y() + z * v.z();
|
|
dest.set(v.x() * cos + sin * (y * v.z() - z * v.y()) + (1.0 - cos) * dot * x,
|
|
v.y() * cos + sin * (z * v.x() - x * v.z()) + (1.0 - cos) * dot * y,
|
|
v.z() * cos + sin * (x * v.y() - y * v.x()) + (1.0 - cos) * dot * z);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}.
|
|
*
|
|
* @param v
|
|
* the vector to transform
|
|
* @return v
|
|
*/
|
|
public Vector3f transform(Vector3f v) {
|
|
return transform(v, v);
|
|
}
|
|
|
|
/**
|
|
* Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param v
|
|
* the vector to transform
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Vector3f transform(Vector3fc v, Vector3f dest) {
|
|
double sin = Math.sin(angle);
|
|
double cos = Math.cosFromSin(sin, angle);
|
|
double dot = x * v.x() + y * v.y() + z * v.z();
|
|
dest.set((float) (v.x() * cos + sin * (y * v.z() - z * v.y()) + (1.0 - cos) * dot * x),
|
|
(float) (v.y() * cos + sin * (z * v.x() - x * v.z()) + (1.0 - cos) * dot * y),
|
|
(float) (v.z() * cos + sin * (x * v.y() - y * v.x()) + (1.0 - cos) * dot * z));
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}.
|
|
*
|
|
* @param v
|
|
* the vector to transform
|
|
* @return v
|
|
*/
|
|
public Vector4d transform(Vector4d v) {
|
|
return transform(v, v);
|
|
}
|
|
|
|
/**
|
|
* Transform the given vector by the rotation transformation described by this {@link AxisAngle4d}
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param v
|
|
* the vector to transform
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Vector4d transform(Vector4dc v, Vector4d dest) {
|
|
double sin = Math.sin(angle);
|
|
double cos = Math.cosFromSin(sin, angle);
|
|
double dot = x * v.x() + y * v.y() + z * v.z();
|
|
dest.set(v.x() * cos + sin * (y * v.z() - z * v.y()) + (1.0 - cos) * dot * x,
|
|
v.y() * cos + sin * (z * v.x() - x * v.z()) + (1.0 - cos) * dot * y,
|
|
v.z() * cos + sin * (x * v.y() - y * v.x()) + (1.0 - cos) * dot * z,
|
|
dest.w);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Return a string representation of this {@link AxisAngle4d}.
|
|
* <p>
|
|
* This method creates a new {@link DecimalFormat} on every invocation with the format string "<code> 0.000E0;-</code>".
|
|
*
|
|
* @return the string representation
|
|
*/
|
|
public String toString() {
|
|
return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT));
|
|
}
|
|
|
|
/**
|
|
* Return a string representation of this {@link AxisAngle4d} by formatting the components with the given {@link NumberFormat}.
|
|
*
|
|
* @param formatter
|
|
* the {@link NumberFormat} used to format the vector components with
|
|
* @return the string representation
|
|
*/
|
|
public String toString(NumberFormat formatter) {
|
|
return "(" + Runtime.format(x, formatter) + " " + Runtime.format(y, formatter) + " " + Runtime.format(z, formatter) + " <| " + Runtime.format(angle, formatter) + ")";
|
|
}
|
|
|
|
public int hashCode() {
|
|
final int prime = 31;
|
|
int result = 1;
|
|
long temp;
|
|
temp = Double.doubleToLongBits((angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI));
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
temp = Double.doubleToLongBits(x);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
temp = Double.doubleToLongBits(y);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
temp = Double.doubleToLongBits(z);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
return result;
|
|
}
|
|
|
|
public boolean equals(Object obj) {
|
|
if (this == obj)
|
|
return true;
|
|
if (obj == null)
|
|
return false;
|
|
if (getClass() != obj.getClass())
|
|
return false;
|
|
AxisAngle4d other = (AxisAngle4d) obj;
|
|
if (Double.doubleToLongBits((angle < 0.0 ? Math.PI + Math.PI + angle % (Math.PI + Math.PI) : angle) % (Math.PI + Math.PI)) !=
|
|
Double.doubleToLongBits((other.angle < 0.0 ? Math.PI + Math.PI + other.angle % (Math.PI + Math.PI) : other.angle) % (Math.PI + Math.PI)))
|
|
return false;
|
|
if (Double.doubleToLongBits(x) != Double.doubleToLongBits(other.x))
|
|
return false;
|
|
if (Double.doubleToLongBits(y) != Double.doubleToLongBits(other.y))
|
|
return false;
|
|
if (Double.doubleToLongBits(z) != Double.doubleToLongBits(other.z))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
public Object clone() throws CloneNotSupportedException {
|
|
return super.clone();
|
|
}
|
|
|
|
}
|