mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2025-01-12 23:36:09 +01:00
a42c027b6f
- Fix Resources not being closed properly - Change versioning scheme to match Create - Add LICENSE to built jar - Fix mods.toml version sync - Move JOML code to non-src directory - Update Gradle - Organize imports
337 lines
14 KiB
Java
337 lines
14 KiB
Java
/*
|
|
* The MIT License
|
|
*
|
|
* Copyright (c) 2015-2021 Kai Burjack
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
package com.jozufozu.flywheel.repack.joml;
|
|
|
|
/**
|
|
* Contains various interpolation functions.
|
|
*
|
|
* @author Kai Burjack
|
|
*/
|
|
public class Interpolationd {
|
|
|
|
/**
|
|
* Bilinearly interpolate the single scalar value <i>f</i> over the given triangle.
|
|
* <p>
|
|
* Reference: <a href="https://en.wikipedia.org/wiki/Barycentric_coordinate_system">https://en.wikipedia.org/</a>
|
|
*
|
|
* @param v0X
|
|
* the x coordinate of the first triangle vertex
|
|
* @param v0Y
|
|
* the y coordinate of the first triangle vertex
|
|
* @param f0
|
|
* the value of <i>f</i> at the first vertex
|
|
* @param v1X
|
|
* the x coordinate of the second triangle vertex
|
|
* @param v1Y
|
|
* the y coordinate of the second triangle vertex
|
|
* @param f1
|
|
* the value of <i>f</i> at the second vertex
|
|
* @param v2X
|
|
* the x coordinate of the third triangle vertex
|
|
* @param v2Y
|
|
* the y coordinate of the third triangle vertex
|
|
* @param f2
|
|
* the value of <i>f</i> at the third vertex
|
|
* @param x
|
|
* the x coordinate of the point to interpolate <i>f</i> at
|
|
* @param y
|
|
* the y coordinate of the point to interpolate <i>f</i> at
|
|
* @return the interpolated value of <i>f</i>
|
|
*/
|
|
public static double interpolateTriangle(
|
|
double v0X, double v0Y, double f0,
|
|
double v1X, double v1Y, double f1,
|
|
double v2X, double v2Y, double f2,
|
|
double x, double y) {
|
|
double v12Y = v1Y - v2Y;
|
|
double v21X = v2X - v1X;
|
|
double v02X = v0X - v2X;
|
|
double yv2Y = y - v2Y;
|
|
double xv2X = x - v2X;
|
|
double v02Y = v0Y - v2Y;
|
|
double invDen = 1.0 / (v12Y * v02X + v21X * v02Y);
|
|
double l1 = (v12Y * xv2X + v21X * yv2Y) * invDen;
|
|
double l2 = (v02X * yv2Y - v02Y * xv2X) * invDen;
|
|
return l1 * f0 + l2 * f1 + (1.0f - l1 - l2) * f2;
|
|
}
|
|
|
|
/**
|
|
* Bilinearly interpolate the two-dimensional vector <i>f</i> over the given triangle and store the result in <code>dest</code>.
|
|
* <p>
|
|
* Reference: <a href="https://en.wikipedia.org/wiki/Barycentric_coordinate_system">https://en.wikipedia.org/</a>
|
|
*
|
|
* @param v0X
|
|
* the x coordinate of the first triangle vertex
|
|
* @param v0Y
|
|
* the y coordinate of the first triangle vertex
|
|
* @param f0X
|
|
* the x component of the value of <i>f</i> at the first vertex
|
|
* @param f0Y
|
|
* the y component of the value of <i>f</i> at the first vertex
|
|
* @param v1X
|
|
* the x coordinate of the second triangle vertex
|
|
* @param v1Y
|
|
* the y coordinate of the second triangle vertex
|
|
* @param f1X
|
|
* the x component of the value of <i>f</i> at the second vertex
|
|
* @param f1Y
|
|
* the y component of the value of <i>f</i> at the second vertex
|
|
* @param v2X
|
|
* the x coordinate of the third triangle vertex
|
|
* @param v2Y
|
|
* the y coordinate of the third triangle vertex
|
|
* @param f2X
|
|
* the x component of the value of <i>f</i> at the third vertex
|
|
* @param f2Y
|
|
* the y component of the value of <i>f</i> at the third vertex
|
|
* @param x
|
|
* the x coordinate of the point to interpolate <i>f</i> at
|
|
* @param y
|
|
* the y coordinate of the point to interpolate <i>f</i> at
|
|
* @param dest
|
|
* will hold the interpolation result
|
|
* @return dest
|
|
*/
|
|
public static Vector2d interpolateTriangle(
|
|
double v0X, double v0Y, double f0X, double f0Y,
|
|
double v1X, double v1Y, double f1X, double f1Y,
|
|
double v2X, double v2Y, double f2X, double f2Y,
|
|
double x, double y, Vector2d dest) {
|
|
double v12Y = v1Y - v2Y;
|
|
double v21X = v2X - v1X;
|
|
double v02X = v0X - v2X;
|
|
double yv2Y = y - v2Y;
|
|
double xv2X = x - v2X;
|
|
double v02Y = v0Y - v2Y;
|
|
double invDen = 1.0 / (v12Y * v02X + v21X * v02Y);
|
|
double l1 = (v12Y * xv2X + v21X * yv2Y) * invDen;
|
|
double l2 = (v02X * yv2Y - v02Y * xv2X) * invDen;
|
|
double l3 = 1.0 - l1 - l2;
|
|
dest.x = l1 * f0X + l2 * f1X + l3 * f2X;
|
|
dest.y = l1 * f0Y + l2 * f1Y + l3 * f2Y;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Compute the first-order derivative of a linear two-dimensional function <i>f</i> with respect to X
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method computes the constant rate of change for <i>f</i> given the three values of <i>f</i>
|
|
* at the specified three inputs <code>(v0X, v0Y)</code>, <code>(v1X, v1Y)</code> and <code>(v2X, v2Y)</code>.
|
|
*
|
|
* @param v0X
|
|
* the x coordinate of the first triangle vertex
|
|
* @param v0Y
|
|
* the y coordinate of the first triangle vertex
|
|
* @param f0X
|
|
* the x component of the value of <i>f</i> at the first vertex
|
|
* @param f0Y
|
|
* the y component of the value of <i>f</i> at the first vertex
|
|
* @param v1X
|
|
* the x coordinate of the second triangle vertex
|
|
* @param v1Y
|
|
* the y coordinate of the second triangle vertex
|
|
* @param f1X
|
|
* the x component of the value of <i>f</i> at the second vertex
|
|
* @param f1Y
|
|
* the y component of the value of <i>f</i> at the second vertex
|
|
* @param v2X
|
|
* the x coordinate of the third triangle vertex
|
|
* @param v2Y
|
|
* the y coordinate of the third triangle vertex
|
|
* @param f2X
|
|
* the x component of the value of <i>f</i> at the third vertex
|
|
* @param f2Y
|
|
* the y component of the value of <i>f</i> at the third vertex
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public static Vector2d dFdxLinear(
|
|
double v0X, double v0Y, double f0X, double f0Y,
|
|
double v1X, double v1Y, double f1X, double f1Y,
|
|
double v2X, double v2Y, double f2X, double f2Y, Vector2d dest) {
|
|
double v12Y = v1Y - v2Y;
|
|
double v02Y = v0Y - v2Y;
|
|
double den = v12Y * (v0X - v2X) + (v2X - v1X) * v02Y;
|
|
double l3_1 = den - v12Y + v02Y;
|
|
double invDen = 1.0f / den;
|
|
dest.x = invDen * (v12Y * f0X - v02Y * f1X + l3_1 * f2X) - f2X;
|
|
dest.y = invDen * (v12Y * f0Y - v02Y * f1Y + l3_1 * f2Y) - f2Y;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Compute the first-order derivative of a linear two-dimensional function <i>f</i> with respect to Y
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method computes the constant rate of change for <i>f</i> given the three values of <i>f</i>
|
|
* at the specified three inputs <code>(v0X, v0Y)</code>, <code>(v1X, v1Y)</code> and <code>(v2X, v2Y)</code>.
|
|
*
|
|
* @param v0X
|
|
* the x coordinate of the first triangle vertex
|
|
* @param v0Y
|
|
* the y coordinate of the first triangle vertex
|
|
* @param f0X
|
|
* the x component of the value of <i>f</i> at the first vertex
|
|
* @param f0Y
|
|
* the y component of the value of <i>f</i> at the first vertex
|
|
* @param v1X
|
|
* the x coordinate of the second triangle vertex
|
|
* @param v1Y
|
|
* the y coordinate of the second triangle vertex
|
|
* @param f1X
|
|
* the x component of the value of <i>f</i> at the second vertex
|
|
* @param f1Y
|
|
* the y component of the value of <i>f</i> at the second vertex
|
|
* @param v2X
|
|
* the x coordinate of the third triangle vertex
|
|
* @param v2Y
|
|
* the y coordinate of the third triangle vertex
|
|
* @param f2X
|
|
* the x component of the value of <i>f</i> at the third vertex
|
|
* @param f2Y
|
|
* the y component of the value of <i>f</i> at the third vertex
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public static Vector2d dFdyLinear(
|
|
double v0X, double v0Y, double f0X, double f0Y,
|
|
double v1X, double v1Y, double f1X, double f1Y,
|
|
double v2X, double v2Y, double f2X, double f2Y,
|
|
Vector2d dest) {
|
|
double v21X = v2X - v1X;
|
|
double v02X = v0X - v2X;
|
|
double den = (v1Y - v2Y) * v02X + v21X * (v0Y - v2Y);
|
|
double l3_1 = den - v21X - v02X;
|
|
double invDen = 1.0f / den;
|
|
dest.x = invDen * (v21X * f0X + v02X * f1X + l3_1 * f2X) - f2X;
|
|
dest.y = invDen * (v21X * f0Y + v02X * f1Y + l3_1 * f2Y) - f2Y;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Bilinearly interpolate the three-dimensional vector <i>f</i> over the given triangle and store the result in <code>dest</code>.
|
|
* <p>
|
|
* Reference: <a href="https://en.wikipedia.org/wiki/Barycentric_coordinate_system">https://en.wikipedia.org/</a>
|
|
*
|
|
* @param v0X
|
|
* the x coordinate of the first triangle vertex
|
|
* @param v0Y
|
|
* the y coordinate of the first triangle vertex
|
|
* @param f0X
|
|
* the x component of the value of <i>f</i> at the first vertex
|
|
* @param f0Y
|
|
* the y component of the value of <i>f</i> at the first vertex
|
|
* @param f0Z
|
|
* the z component of the value of <i>f</i> at the first vertex
|
|
* @param v1X
|
|
* the x coordinate of the second triangle vertex
|
|
* @param v1Y
|
|
* the y coordinate of the second triangle vertex
|
|
* @param f1X
|
|
* the x component of the value of <i>f</i> at the second vertex
|
|
* @param f1Y
|
|
* the y component of the value of <i>f</i> at the second vertex
|
|
* @param f1Z
|
|
* the z component of the value of <i>f</i> at the second vertex
|
|
* @param v2X
|
|
* the x coordinate of the third triangle vertex
|
|
* @param v2Y
|
|
* the y coordinate of the third triangle vertex
|
|
* @param f2X
|
|
* the x component of the value of <i>f</i> at the third vertex
|
|
* @param f2Y
|
|
* the y component of the value of <i>f</i> at the third vertex
|
|
* @param f2Z
|
|
* the z component of the value of <i>f</i> at the third vertex
|
|
* @param x
|
|
* the x coordinate of the point to interpolate <i>f</i> at
|
|
* @param y
|
|
* the y coordinate of the point to interpolate <i>f</i> at
|
|
* @param dest
|
|
* will hold the interpolation result
|
|
* @return dest
|
|
*/
|
|
public static Vector3d interpolateTriangle(
|
|
double v0X, double v0Y, double f0X, double f0Y, double f0Z,
|
|
double v1X, double v1Y, double f1X, double f1Y, double f1Z,
|
|
double v2X, double v2Y, double f2X, double f2Y, double f2Z,
|
|
double x, double y, Vector3d dest) {
|
|
// compute interpolation factors
|
|
Vector3d t = dest;
|
|
interpolationFactorsTriangle(v0X, v0Y, v1X, v1Y, v2X, v2Y, x, y, t);
|
|
// interpolate using these factors
|
|
return dest.set(t.x * f0X + t.y * f1X + t.z * f2X,
|
|
t.x * f0Y + t.y * f1Y + t.z * f2Y,
|
|
t.x * f0Z + t.y * f1Z + t.z * f2Z);
|
|
}
|
|
|
|
/**
|
|
* Compute the interpolation factors <code>(t0, t1, t2)</code> in order to interpolate an arbitrary value over a given
|
|
* triangle at the given point <code>(x, y)</code>.
|
|
* <p>
|
|
* This method takes in the 2D vertex positions of the three vertices of a triangle and stores in <code>dest</code> the
|
|
* factors <code>(t0, t1, t2)</code> in the equation <code>v' = v0 * t0 + v1 * t1 + v2 * t2</code> where <code>(v0, v1, v2)</code> are
|
|
* arbitrary (scalar or vector) values associated with the respective vertices of the triangle. The computed value <code>v'</code>
|
|
* is the interpolated value at the given position <code>(x, y)</code>.
|
|
*
|
|
* @param v0X
|
|
* the x coordinate of the first triangle vertex
|
|
* @param v0Y
|
|
* the y coordinate of the first triangle vertex
|
|
* @param v1X
|
|
* the x coordinate of the second triangle vertex
|
|
* @param v1Y
|
|
* the y coordinate of the second triangle vertex
|
|
* @param v2X
|
|
* the x coordinate of the third triangle vertex
|
|
* @param v2Y
|
|
* the y coordinate of the third triangle vertex
|
|
* @param x
|
|
* the x coordinate of the point to interpolate at
|
|
* @param y
|
|
* the y coordinate of the point to interpolate at
|
|
* @param dest
|
|
* will hold the interpolation factors <code>(t0, t1, t2)</code>
|
|
* @return dest
|
|
*/
|
|
public static Vector3d interpolationFactorsTriangle(
|
|
double v0X, double v0Y, double v1X, double v1Y, double v2X, double v2Y,
|
|
double x, double y, Vector3d dest) {
|
|
double v12Y = v1Y - v2Y;
|
|
double v21X = v2X - v1X;
|
|
double v02X = v0X - v2X;
|
|
double yv2Y = y - v2Y;
|
|
double xv2X = x - v2X;
|
|
double v02Y = v0Y - v2Y;
|
|
double invDen = 1.0 / (v12Y * v02X + v21X * v02Y);
|
|
dest.x = (v12Y * xv2X + v21X * yv2Y) * invDen;
|
|
dest.y = (v02X * yv2Y - v02Y * xv2X) * invDen;
|
|
dest.z = 1.0 - dest.x - dest.y;
|
|
return dest;
|
|
}
|
|
|
|
}
|