mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2025-01-26 12:57:57 +01:00
a42c027b6f
- Fix Resources not being closed properly - Change versioning scheme to match Create - Add LICENSE to built jar - Fix mods.toml version sync - Move JOML code to non-src directory - Update Gradle - Organize imports
4789 lines
234 KiB
Java
4789 lines
234 KiB
Java
/*
|
||
* The MIT License
|
||
*
|
||
* Copyright (c) 2015-2021 Kai Burjack
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
* of this software and associated documentation files (the "Software"), to deal
|
||
* in the Software without restriction, including without limitation the rights
|
||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
* copies of the Software, and to permit persons to whom the Software is
|
||
* furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice shall be included in
|
||
* all copies or substantial portions of the Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
* THE SOFTWARE.
|
||
*/
|
||
package com.jozufozu.flywheel.repack.joml;
|
||
|
||
/**
|
||
* Contains intersection and distance tests for some 2D and 3D geometric primitives.
|
||
*
|
||
* @author Kai Burjack
|
||
*/
|
||
public class Intersectiond {
|
||
|
||
/**
|
||
* Return value of
|
||
* {@link #findClosestPointOnTriangle(double, double, double, double, double, double, double, double, double, double, double, double, Vector3d)},
|
||
* {@link #findClosestPointOnTriangle(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector3d)},
|
||
* {@link #findClosestPointOnTriangle(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #findClosestPointOnTriangle(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)} or
|
||
* {@link #intersectSweptSphereTriangle}
|
||
* to signal that the closest point is the first vertex of the triangle.
|
||
*/
|
||
public static final int POINT_ON_TRIANGLE_VERTEX_0 = 1;
|
||
/**
|
||
* Return value of
|
||
* {@link #findClosestPointOnTriangle(double, double, double, double, double, double, double, double, double, double, double, double, Vector3d)},
|
||
* {@link #findClosestPointOnTriangle(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector3d)},
|
||
* {@link #findClosestPointOnTriangle(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #findClosestPointOnTriangle(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)} or
|
||
* {@link #intersectSweptSphereTriangle}
|
||
* to signal that the closest point is the second vertex of the triangle.
|
||
*/
|
||
public static final int POINT_ON_TRIANGLE_VERTEX_1 = 2;
|
||
/**
|
||
* Return value of
|
||
* {@link #findClosestPointOnTriangle(double, double, double, double, double, double, double, double, double, double, double, double, Vector3d)},
|
||
* {@link #findClosestPointOnTriangle(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector3d)},
|
||
* {@link #findClosestPointOnTriangle(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #findClosestPointOnTriangle(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)} or
|
||
* {@link #intersectSweptSphereTriangle}
|
||
* to signal that the closest point is the third vertex of the triangle.
|
||
*/
|
||
public static final int POINT_ON_TRIANGLE_VERTEX_2 = 3;
|
||
|
||
/**
|
||
* Return value of
|
||
* {@link #findClosestPointOnTriangle(double, double, double, double, double, double, double, double, double, double, double, double, Vector3d)},
|
||
* {@link #findClosestPointOnTriangle(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector3d)},
|
||
* {@link #findClosestPointOnTriangle(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #findClosestPointOnTriangle(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)} or
|
||
* {@link #intersectSweptSphereTriangle}
|
||
* to signal that the closest point lies on the edge between the first and second vertex of the triangle.
|
||
*/
|
||
public static final int POINT_ON_TRIANGLE_EDGE_01 = 4;
|
||
/**
|
||
* Return value of
|
||
* {@link #findClosestPointOnTriangle(double, double, double, double, double, double, double, double, double, double, double, double, Vector3d)},
|
||
* {@link #findClosestPointOnTriangle(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector3d)},
|
||
* {@link #findClosestPointOnTriangle(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #findClosestPointOnTriangle(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)} or
|
||
* {@link #intersectSweptSphereTriangle}
|
||
* to signal that the closest point lies on the edge between the second and third vertex of the triangle.
|
||
*/
|
||
public static final int POINT_ON_TRIANGLE_EDGE_12 = 5;
|
||
/**
|
||
* Return value of
|
||
* {@link #findClosestPointOnTriangle(double, double, double, double, double, double, double, double, double, double, double, double, Vector3d)},
|
||
* {@link #findClosestPointOnTriangle(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector3d)},
|
||
* {@link #findClosestPointOnTriangle(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #findClosestPointOnTriangle(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)} or
|
||
* {@link #intersectSweptSphereTriangle}
|
||
* to signal that the closest point lies on the edge between the third and first vertex of the triangle.
|
||
*/
|
||
public static final int POINT_ON_TRIANGLE_EDGE_20 = 6;
|
||
|
||
/**
|
||
* Return value of
|
||
* {@link #findClosestPointOnTriangle(double, double, double, double, double, double, double, double, double, double, double, double, Vector3d)},
|
||
* {@link #findClosestPointOnTriangle(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector3d)},
|
||
* {@link #findClosestPointOnTriangle(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #findClosestPointOnTriangle(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)} or
|
||
* {@link #intersectSweptSphereTriangle}
|
||
* to signal that the closest point lies on the face of the triangle.
|
||
*/
|
||
public static final int POINT_ON_TRIANGLE_FACE = 7;
|
||
|
||
/**
|
||
* Return value of {@link #intersectRayAar(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #intersectRayAar(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)}
|
||
* to indicate that the ray intersects the side of the axis-aligned rectangle with the minimum x coordinate.
|
||
*/
|
||
public static final int AAR_SIDE_MINX = 0;
|
||
/**
|
||
* Return value of {@link #intersectRayAar(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #intersectRayAar(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)}
|
||
* to indicate that the ray intersects the side of the axis-aligned rectangle with the minimum y coordinate.
|
||
*/
|
||
public static final int AAR_SIDE_MINY = 1;
|
||
/**
|
||
* Return value of {@link #intersectRayAar(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #intersectRayAar(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)}
|
||
* to indicate that the ray intersects the side of the axis-aligned rectangle with the maximum x coordinate.
|
||
*/
|
||
public static final int AAR_SIDE_MAXX = 2;
|
||
/**
|
||
* Return value of {@link #intersectRayAar(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #intersectRayAar(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)}
|
||
* to indicate that the ray intersects the side of the axis-aligned rectangle with the maximum y coordinate.
|
||
*/
|
||
public static final int AAR_SIDE_MAXY = 3;
|
||
|
||
/**
|
||
* Return value of {@link #intersectLineSegmentAab(double, double, double, double, double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #intersectLineSegmentAab(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector2d)} to indicate that the line segment does not intersect the axis-aligned box;
|
||
* or return value of {@link #intersectLineSegmentAar(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #intersectLineSegmentAar(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)} to indicate that the line segment does not intersect the axis-aligned rectangle.
|
||
*/
|
||
public static final int OUTSIDE = -1;
|
||
/**
|
||
* Return value of {@link #intersectLineSegmentAab(double, double, double, double, double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #intersectLineSegmentAab(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector2d)} to indicate that one end point of the line segment lies inside of the axis-aligned box;
|
||
* or return value of {@link #intersectLineSegmentAar(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #intersectLineSegmentAar(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)} to indicate that one end point of the line segment lies inside of the axis-aligned rectangle.
|
||
*/
|
||
public static final int ONE_INTERSECTION = 1;
|
||
/**
|
||
* Return value of {@link #intersectLineSegmentAab(double, double, double, double, double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #intersectLineSegmentAab(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector2d)} to indicate that the line segment intersects two sides of the axis-aligned box
|
||
* or lies on an edge or a side of the box;
|
||
* or return value of {@link #intersectLineSegmentAar(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #intersectLineSegmentAar(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)} to indicate that the line segment intersects two edges of the axis-aligned rectangle
|
||
* or lies on an edge of the rectangle.
|
||
*/
|
||
public static final int TWO_INTERSECTION = 2;
|
||
/**
|
||
* Return value of {@link #intersectLineSegmentAab(double, double, double, double, double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #intersectLineSegmentAab(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector2d)} to indicate that the line segment lies completely inside of the axis-aligned box;
|
||
* or return value of {@link #intersectLineSegmentAar(double, double, double, double, double, double, double, double, Vector2d)} and
|
||
* {@link #intersectLineSegmentAar(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)} to indicate that the line segment lies completely inside of the axis-aligned rectangle.
|
||
*/
|
||
public static final int INSIDE = 3;
|
||
|
||
/**
|
||
* Test whether the plane with the general plane equation <i>a*x + b*y + c*z + d = 0</i> intersects the sphere with center
|
||
* <code>(centerX, centerY, centerZ)</code> and <code>radius</code>.
|
||
* <p>
|
||
* Reference: <a href="http://math.stackexchange.com/questions/943383/determine-circle-of-intersection-of-plane-and-sphere">http://math.stackexchange.com</a>
|
||
*
|
||
* @param a
|
||
* the x factor in the plane equation
|
||
* @param b
|
||
* the y factor in the plane equation
|
||
* @param c
|
||
* the z factor in the plane equation
|
||
* @param d
|
||
* the constant in the plane equation
|
||
* @param centerX
|
||
* the x coordinate of the sphere's center
|
||
* @param centerY
|
||
* the y coordinate of the sphere's center
|
||
* @param centerZ
|
||
* the z coordinate of the sphere's center
|
||
* @param radius
|
||
* the radius of the sphere
|
||
* @return <code>true</code> iff the plane intersects the sphere; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testPlaneSphere(
|
||
double a, double b, double c, double d,
|
||
double centerX, double centerY, double centerZ, double radius) {
|
||
double denom = Math.sqrt(a * a + b * b + c * c);
|
||
double dist = (a * centerX + b * centerY + c * centerZ + d) / denom;
|
||
return -radius <= dist && dist <= radius;
|
||
}
|
||
|
||
/**
|
||
* Test whether the plane with the general plane equation <i>a*x + b*y + c*z + d = 0</i> intersects the sphere with center
|
||
* <code>(centerX, centerY, centerZ)</code> and <code>radius</code>, and store the center of the circle of
|
||
* intersection in the <code>(x, y, z)</code> components of the supplied vector and the radius of that circle in the w component.
|
||
* <p>
|
||
* Reference: <a href="http://math.stackexchange.com/questions/943383/determine-circle-of-intersection-of-plane-and-sphere">http://math.stackexchange.com</a>
|
||
*
|
||
* @param a
|
||
* the x factor in the plane equation
|
||
* @param b
|
||
* the y factor in the plane equation
|
||
* @param c
|
||
* the z factor in the plane equation
|
||
* @param d
|
||
* the constant in the plane equation
|
||
* @param centerX
|
||
* the x coordinate of the sphere's center
|
||
* @param centerY
|
||
* the y coordinate of the sphere's center
|
||
* @param centerZ
|
||
* the z coordinate of the sphere's center
|
||
* @param radius
|
||
* the radius of the sphere
|
||
* @param intersectionCenterAndRadius
|
||
* will hold the center of the circle of intersection in the <code>(x, y, z)</code> components and the radius in the w component
|
||
* @return <code>true</code> iff the plane intersects the sphere; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectPlaneSphere(
|
||
double a, double b, double c, double d,
|
||
double centerX, double centerY, double centerZ, double radius,
|
||
Vector4d intersectionCenterAndRadius) {
|
||
double invDenom = Math.invsqrt(a * a + b * b + c * c);
|
||
double dist = (a * centerX + b * centerY + c * centerZ + d) * invDenom;
|
||
if (-radius <= dist && dist <= radius) {
|
||
intersectionCenterAndRadius.x = centerX + dist * a * invDenom;
|
||
intersectionCenterAndRadius.y = centerY + dist * b * invDenom;
|
||
intersectionCenterAndRadius.z = centerZ + dist * c * invDenom;
|
||
intersectionCenterAndRadius.w = Math.sqrt(radius * radius - dist * dist);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Test whether the plane with the general plane equation <i>a*x + b*y + c*z + d = 0</i> intersects the moving sphere with center
|
||
* <code>(cX, cY, cZ)</code>, <code>radius</code> and velocity <code>(vX, vY, vZ)</code>, and store the point of intersection
|
||
* in the <code>(x, y, z)</code> components of the supplied vector and the time of intersection in the w component.
|
||
* <p>
|
||
* The normal vector <code>(a, b, c)</code> of the plane equation needs to be normalized.
|
||
* <p>
|
||
* Reference: Book "Real-Time Collision Detection" chapter 5.5.3 "Intersecting Moving Sphere Against Plane"
|
||
*
|
||
* @param a
|
||
* the x factor in the plane equation
|
||
* @param b
|
||
* the y factor in the plane equation
|
||
* @param c
|
||
* the z factor in the plane equation
|
||
* @param d
|
||
* the constant in the plane equation
|
||
* @param cX
|
||
* the x coordinate of the center position of the sphere at t=0
|
||
* @param cY
|
||
* the y coordinate of the center position of the sphere at t=0
|
||
* @param cZ
|
||
* the z coordinate of the center position of the sphere at t=0
|
||
* @param radius
|
||
* the sphere's radius
|
||
* @param vX
|
||
* the x component of the velocity of the sphere
|
||
* @param vY
|
||
* the y component of the velocity of the sphere
|
||
* @param vZ
|
||
* the z component of the velocity of the sphere
|
||
* @param pointAndTime
|
||
* will hold the point and time of intersection (if any)
|
||
* @return <code>true</code> iff the sphere intersects the plane; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectPlaneSweptSphere(
|
||
double a, double b, double c, double d,
|
||
double cX, double cY, double cZ, double radius,
|
||
double vX, double vY, double vZ,
|
||
Vector4d pointAndTime) {
|
||
// Compute distance of sphere center to plane
|
||
double dist = a * cX + b * cY + c * cZ - d;
|
||
if (Math.abs(dist) <= radius) {
|
||
// The sphere is already overlapping the plane. Set time of
|
||
// intersection to zero and q to sphere center
|
||
pointAndTime.set(cX, cY, cZ, 0.0);
|
||
return true;
|
||
}
|
||
double denom = a * vX + b * vY + c * vZ;
|
||
if (denom * dist >= 0.0) {
|
||
// No intersection as sphere moving parallel to or away from plane
|
||
return false;
|
||
}
|
||
// Sphere is moving towards the plane
|
||
// Use +r in computations if sphere in front of plane, else -r
|
||
double r = dist > 0.0 ? radius : -radius;
|
||
double t = (r - dist) / denom;
|
||
pointAndTime.set(
|
||
cX + t * vX - r * a,
|
||
cY + t * vY - r * b,
|
||
cZ + t * vZ - r * c,
|
||
t);
|
||
return true;
|
||
}
|
||
|
||
/**
|
||
* Test whether the plane with the general plane equation <i>a*x + b*y + c*z + d = 0</i> intersects the sphere moving from center
|
||
* position <code>(t0X, t0Y, t0Z)</code> to <code>(t1X, t1Y, t1Z)</code> and having the given <code>radius</code>.
|
||
* <p>
|
||
* The normal vector <code>(a, b, c)</code> of the plane equation needs to be normalized.
|
||
* <p>
|
||
* Reference: Book "Real-Time Collision Detection" chapter 5.5.3 "Intersecting Moving Sphere Against Plane"
|
||
*
|
||
* @param a
|
||
* the x factor in the plane equation
|
||
* @param b
|
||
* the y factor in the plane equation
|
||
* @param c
|
||
* the z factor in the plane equation
|
||
* @param d
|
||
* the constant in the plane equation
|
||
* @param t0X
|
||
* the x coordinate of the start position of the sphere
|
||
* @param t0Y
|
||
* the y coordinate of the start position of the sphere
|
||
* @param t0Z
|
||
* the z coordinate of the start position of the sphere
|
||
* @param r
|
||
* the sphere's radius
|
||
* @param t1X
|
||
* the x coordinate of the end position of the sphere
|
||
* @param t1Y
|
||
* the y coordinate of the end position of the sphere
|
||
* @param t1Z
|
||
* the z coordinate of the end position of the sphere
|
||
* @return <code>true</code> if the sphere intersects the plane; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testPlaneSweptSphere(
|
||
double a, double b, double c, double d,
|
||
double t0X, double t0Y, double t0Z, double r,
|
||
double t1X, double t1Y, double t1Z) {
|
||
// Get the distance for both a and b from plane p
|
||
double adist = t0X * a + t0Y * b + t0Z * c - d;
|
||
double bdist = t1X * a + t1Y * b + t1Z * c - d;
|
||
// Intersects if on different sides of plane (distances have different signs)
|
||
if (adist * bdist < 0.0) return true;
|
||
// Intersects if start or end position within radius from plane
|
||
if (Math.abs(adist) <= r || Math.abs(bdist) <= r) return true;
|
||
// No intersection
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Test whether the axis-aligned box with minimum corner <code>(minX, minY, minZ)</code> and maximum corner <code>(maxX, maxY, maxZ)</code>
|
||
* intersects the plane with the general equation <i>a*x + b*y + c*z + d = 0</i>.
|
||
* <p>
|
||
* Reference: <a href="http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-testing-boxes-ii/">http://www.lighthouse3d.com</a> ("Geometric Approach - Testing Boxes II")
|
||
*
|
||
* @param minX
|
||
* the x coordinate of the minimum corner of the axis-aligned box
|
||
* @param minY
|
||
* the y coordinate of the minimum corner of the axis-aligned box
|
||
* @param minZ
|
||
* the z coordinate of the minimum corner of the axis-aligned box
|
||
* @param maxX
|
||
* the x coordinate of the maximum corner of the axis-aligned box
|
||
* @param maxY
|
||
* the y coordinate of the maximum corner of the axis-aligned box
|
||
* @param maxZ
|
||
* the z coordinate of the maximum corner of the axis-aligned box
|
||
* @param a
|
||
* the x factor in the plane equation
|
||
* @param b
|
||
* the y factor in the plane equation
|
||
* @param c
|
||
* the z factor in the plane equation
|
||
* @param d
|
||
* the constant in the plane equation
|
||
* @return <code>true</code> iff the axis-aligned box intersects the plane; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testAabPlane(
|
||
double minX, double minY, double minZ,
|
||
double maxX, double maxY, double maxZ,
|
||
double a, double b, double c, double d) {
|
||
double pX, pY, pZ, nX, nY, nZ;
|
||
if (a > 0.0) {
|
||
pX = maxX;
|
||
nX = minX;
|
||
} else {
|
||
pX = minX;
|
||
nX = maxX;
|
||
}
|
||
if (b > 0.0) {
|
||
pY = maxY;
|
||
nY = minY;
|
||
} else {
|
||
pY = minY;
|
||
nY = maxY;
|
||
}
|
||
if (c > 0.0) {
|
||
pZ = maxZ;
|
||
nZ = minZ;
|
||
} else {
|
||
pZ = minZ;
|
||
nZ = maxZ;
|
||
}
|
||
double distN = d + a * nX + b * nY + c * nZ;
|
||
double distP = d + a * pX + b * pY + c * pZ;
|
||
return distN <= 0.0 && distP >= 0.0;
|
||
}
|
||
|
||
/**
|
||
* Test whether the axis-aligned box with minimum corner <code>min</code> and maximum corner <code>max</code>
|
||
* intersects the plane with the general equation <i>a*x + b*y + c*z + d = 0</i>.
|
||
* <p>
|
||
* Reference: <a href="http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-testing-boxes-ii/">http://www.lighthouse3d.com</a> ("Geometric Approach - Testing Boxes II")
|
||
*
|
||
* @param min
|
||
* the minimum corner of the axis-aligned box
|
||
* @param max
|
||
* the maximum corner of the axis-aligned box
|
||
* @param a
|
||
* the x factor in the plane equation
|
||
* @param b
|
||
* the y factor in the plane equation
|
||
* @param c
|
||
* the z factor in the plane equation
|
||
* @param d
|
||
* the constant in the plane equation
|
||
* @return <code>true</code> iff the axis-aligned box intersects the plane; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testAabPlane(Vector3dc min, Vector3dc max, double a, double b, double c, double d) {
|
||
return testAabPlane(min.x(), min.y(), min.z(), max.x(), max.y(), max.z(), a, b, c, d);
|
||
}
|
||
|
||
/**
|
||
* Test whether the axis-aligned box with minimum corner <code>(minXA, minYA, minZA)</code> and maximum corner <code>(maxXA, maxYA, maxZA)</code>
|
||
* intersects the axis-aligned box with minimum corner <code>(minXB, minYB, minZB)</code> and maximum corner <code>(maxXB, maxYB, maxZB)</code>.
|
||
*
|
||
* @param minXA
|
||
* the x coordinate of the minimum corner of the first axis-aligned box
|
||
* @param minYA
|
||
* the y coordinate of the minimum corner of the first axis-aligned box
|
||
* @param minZA
|
||
* the z coordinate of the minimum corner of the first axis-aligned box
|
||
* @param maxXA
|
||
* the x coordinate of the maximum corner of the first axis-aligned box
|
||
* @param maxYA
|
||
* the y coordinate of the maximum corner of the first axis-aligned box
|
||
* @param maxZA
|
||
* the z coordinate of the maximum corner of the first axis-aligned box
|
||
* @param minXB
|
||
* the x coordinate of the minimum corner of the second axis-aligned box
|
||
* @param minYB
|
||
* the y coordinate of the minimum corner of the second axis-aligned box
|
||
* @param minZB
|
||
* the z coordinate of the minimum corner of the second axis-aligned box
|
||
* @param maxXB
|
||
* the x coordinate of the maximum corner of the second axis-aligned box
|
||
* @param maxYB
|
||
* the y coordinate of the maximum corner of the second axis-aligned box
|
||
* @param maxZB
|
||
* the z coordinate of the maximum corner of the second axis-aligned box
|
||
* @return <code>true</code> iff both axis-aligned boxes intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testAabAab(
|
||
double minXA, double minYA, double minZA,
|
||
double maxXA, double maxYA, double maxZA,
|
||
double minXB, double minYB, double minZB,
|
||
double maxXB, double maxYB, double maxZB) {
|
||
return maxXA >= minXB && maxYA >= minYB && maxZA >= minZB &&
|
||
minXA <= maxXB && minYA <= maxYB && minZA <= maxZB;
|
||
}
|
||
|
||
/**
|
||
* Test whether the axis-aligned box with minimum corner <code>minA</code> and maximum corner <code>maxA</code>
|
||
* intersects the axis-aligned box with minimum corner <code>minB</code> and maximum corner <code>maxB</code>.
|
||
*
|
||
* @param minA
|
||
* the minimum corner of the first axis-aligned box
|
||
* @param maxA
|
||
* the maximum corner of the first axis-aligned box
|
||
* @param minB
|
||
* the minimum corner of the second axis-aligned box
|
||
* @param maxB
|
||
* the maximum corner of the second axis-aligned box
|
||
* @return <code>true</code> iff both axis-aligned boxes intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testAabAab(Vector3dc minA, Vector3dc maxA, Vector3dc minB, Vector3dc maxB) {
|
||
return testAabAab(minA.x(), minA.y(), minA.z(), maxA.x(), maxA.y(), maxA.z(), minB.x(), minB.y(), minB.z(), maxB.x(), maxB.y(), maxB.z());
|
||
}
|
||
|
||
/**
|
||
* Test whether two oriented boxes given via their center position, orientation and half-size, intersect.
|
||
* <p>
|
||
* The orientation of a box is given as three unit vectors spanning the local orthonormal basis of the box.
|
||
* <p>
|
||
* The size is given as the half-size along each of the unit vectors defining the orthonormal basis.
|
||
* <p>
|
||
* Reference: Book "Real-Time Collision Detection" chapter 4.4.1 "OBB-OBB Intersection"
|
||
*
|
||
* @param b0c
|
||
* the center of the first box
|
||
* @param b0uX
|
||
* the local X unit vector of the first box
|
||
* @param b0uY
|
||
* the local Y unit vector of the first box
|
||
* @param b0uZ
|
||
* the local Z unit vector of the first box
|
||
* @param b0hs
|
||
* the half-size of the first box
|
||
* @param b1c
|
||
* the center of the second box
|
||
* @param b1uX
|
||
* the local X unit vector of the second box
|
||
* @param b1uY
|
||
* the local Y unit vector of the second box
|
||
* @param b1uZ
|
||
* the local Z unit vector of the second box
|
||
* @param b1hs
|
||
* the half-size of the second box
|
||
* @return <code>true</code> if both boxes intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testObOb(
|
||
Vector3d b0c, Vector3d b0uX, Vector3d b0uY, Vector3d b0uZ, Vector3d b0hs,
|
||
Vector3d b1c, Vector3d b1uX, Vector3d b1uY, Vector3d b1uZ, Vector3d b1hs) {
|
||
return testObOb(
|
||
b0c.x, b0c.y, b0c.z, b0uX.x, b0uX.y, b0uX.z, b0uY.x, b0uY.y, b0uY.z, b0uZ.x, b0uZ.y, b0uZ.z, b0hs.x, b0hs.y, b0hs.z,
|
||
b1c.x, b1c.y, b1c.z, b1uX.x, b1uX.y, b1uX.z, b1uY.x, b1uY.y, b1uY.z, b1uZ.x, b1uZ.y, b1uZ.z, b1hs.x, b1hs.y, b1hs.z);
|
||
}
|
||
|
||
/**
|
||
* Test whether two oriented boxes given via their center position, orientation and half-size, intersect.
|
||
* <p>
|
||
* The orientation of a box is given as three unit vectors spanning the local orthonormal basis of the box.
|
||
* <p>
|
||
* The size is given as the half-size along each of the unit vectors defining the orthonormal basis.
|
||
* <p>
|
||
* Reference: Book "Real-Time Collision Detection" chapter 4.4.1 "OBB-OBB Intersection"
|
||
*
|
||
* @param b0cX
|
||
* the x coordinate of the center of the first box
|
||
* @param b0cY
|
||
* the y coordinate of the center of the first box
|
||
* @param b0cZ
|
||
* the z coordinate of the center of the first box
|
||
* @param b0uXx
|
||
* the x coordinate of the local X unit vector of the first box
|
||
* @param b0uXy
|
||
* the y coordinate of the local X unit vector of the first box
|
||
* @param b0uXz
|
||
* the z coordinate of the local X unit vector of the first box
|
||
* @param b0uYx
|
||
* the x coordinate of the local Y unit vector of the first box
|
||
* @param b0uYy
|
||
* the y coordinate of the local Y unit vector of the first box
|
||
* @param b0uYz
|
||
* the z coordinate of the local Y unit vector of the first box
|
||
* @param b0uZx
|
||
* the x coordinate of the local Z unit vector of the first box
|
||
* @param b0uZy
|
||
* the y coordinate of the local Z unit vector of the first box
|
||
* @param b0uZz
|
||
* the z coordinate of the local Z unit vector of the first box
|
||
* @param b0hsX
|
||
* the half-size of the first box along its local X axis
|
||
* @param b0hsY
|
||
* the half-size of the first box along its local Y axis
|
||
* @param b0hsZ
|
||
* the half-size of the first box along its local Z axis
|
||
* @param b1cX
|
||
* the x coordinate of the center of the second box
|
||
* @param b1cY
|
||
* the y coordinate of the center of the second box
|
||
* @param b1cZ
|
||
* the z coordinate of the center of the second box
|
||
* @param b1uXx
|
||
* the x coordinate of the local X unit vector of the second box
|
||
* @param b1uXy
|
||
* the y coordinate of the local X unit vector of the second box
|
||
* @param b1uXz
|
||
* the z coordinate of the local X unit vector of the second box
|
||
* @param b1uYx
|
||
* the x coordinate of the local Y unit vector of the second box
|
||
* @param b1uYy
|
||
* the y coordinate of the local Y unit vector of the second box
|
||
* @param b1uYz
|
||
* the z coordinate of the local Y unit vector of the second box
|
||
* @param b1uZx
|
||
* the x coordinate of the local Z unit vector of the second box
|
||
* @param b1uZy
|
||
* the y coordinate of the local Z unit vector of the second box
|
||
* @param b1uZz
|
||
* the z coordinate of the local Z unit vector of the second box
|
||
* @param b1hsX
|
||
* the half-size of the second box along its local X axis
|
||
* @param b1hsY
|
||
* the half-size of the second box along its local Y axis
|
||
* @param b1hsZ
|
||
* the half-size of the second box along its local Z axis
|
||
* @return <code>true</code> if both boxes intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testObOb(
|
||
double b0cX, double b0cY, double b0cZ, double b0uXx, double b0uXy, double b0uXz, double b0uYx, double b0uYy, double b0uYz, double b0uZx, double b0uZy, double b0uZz, double b0hsX, double b0hsY, double b0hsZ,
|
||
double b1cX, double b1cY, double b1cZ, double b1uXx, double b1uXy, double b1uXz, double b1uYx, double b1uYy, double b1uYz, double b1uZx, double b1uZy, double b1uZz, double b1hsX, double b1hsY, double b1hsZ) {
|
||
double ra, rb;
|
||
// Compute rotation matrix expressing b in a's coordinate frame
|
||
double rm00 = b0uXx * b1uXx + b0uYx * b1uYx + b0uZx * b1uZx;
|
||
double rm10 = b0uXx * b1uXy + b0uYx * b1uYy + b0uZx * b1uZy;
|
||
double rm20 = b0uXx * b1uXz + b0uYx * b1uYz + b0uZx * b1uZz;
|
||
double rm01 = b0uXy * b1uXx + b0uYy * b1uYx + b0uZy * b1uZx;
|
||
double rm11 = b0uXy * b1uXy + b0uYy * b1uYy + b0uZy * b1uZy;
|
||
double rm21 = b0uXy * b1uXz + b0uYy * b1uYz + b0uZy * b1uZz;
|
||
double rm02 = b0uXz * b1uXx + b0uYz * b1uYx + b0uZz * b1uZx;
|
||
double rm12 = b0uXz * b1uXy + b0uYz * b1uYy + b0uZz * b1uZy;
|
||
double rm22 = b0uXz * b1uXz + b0uYz * b1uYz + b0uZz * b1uZz;
|
||
// Compute common subexpressions. Add in an epsilon term to
|
||
// counteract arithmetic errors when two edges are parallel and
|
||
// their cross product is (near) null (see text for details)
|
||
double EPSILON = 1E-8;
|
||
double arm00 = Math.abs(rm00) + EPSILON;
|
||
double arm01 = Math.abs(rm01) + EPSILON;
|
||
double arm02 = Math.abs(rm02) + EPSILON;
|
||
double arm10 = Math.abs(rm10) + EPSILON;
|
||
double arm11 = Math.abs(rm11) + EPSILON;
|
||
double arm12 = Math.abs(rm12) + EPSILON;
|
||
double arm20 = Math.abs(rm20) + EPSILON;
|
||
double arm21 = Math.abs(rm21) + EPSILON;
|
||
double arm22 = Math.abs(rm22) + EPSILON;
|
||
// Compute translation vector t
|
||
double tx = b1cX - b0cX, ty = b1cY - b0cY, tz = b1cZ - b0cZ;
|
||
// Bring translation into a's coordinate frame
|
||
double tax = tx * b0uXx + ty * b0uXy + tz * b0uXz;
|
||
double tay = tx * b0uYx + ty * b0uYy + tz * b0uYz;
|
||
double taz = tx * b0uZx + ty * b0uZy + tz * b0uZz;
|
||
// Test axes L = A0, L = A1, L = A2
|
||
ra = b0hsX;
|
||
rb = b1hsX * arm00 + b1hsY * arm01 + b1hsZ * arm02;
|
||
if (Math.abs(tax) > ra + rb) return false;
|
||
ra = b0hsY;
|
||
rb = b1hsX * arm10 + b1hsY * arm11 + b1hsZ * arm12;
|
||
if (Math.abs(tay) > ra + rb) return false;
|
||
ra = b0hsZ;
|
||
rb = b1hsX * arm20 + b1hsY * arm21 + b1hsZ * arm22;
|
||
if (Math.abs(taz) > ra + rb) return false;
|
||
// Test axes L = B0, L = B1, L = B2
|
||
ra = b0hsX * arm00 + b0hsY * arm10 + b0hsZ * arm20;
|
||
rb = b1hsX;
|
||
if (Math.abs(tax * rm00 + tay * rm10 + taz * rm20) > ra + rb) return false;
|
||
ra = b0hsX * arm01 + b0hsY * arm11 + b0hsZ * arm21;
|
||
rb = b1hsY;
|
||
if (Math.abs(tax * rm01 + tay * rm11 + taz * rm21) > ra + rb) return false;
|
||
ra = b0hsX * arm02 + b0hsY * arm12 + b0hsZ * arm22;
|
||
rb = b1hsZ;
|
||
if (Math.abs(tax * rm02 + tay * rm12 + taz * rm22) > ra + rb) return false;
|
||
// Test axis L = A0 x B0
|
||
ra = b0hsY * arm20 + b0hsZ * arm10;
|
||
rb = b1hsY * arm02 + b1hsZ * arm01;
|
||
if (Math.abs(taz * rm10 - tay * rm20) > ra + rb) return false;
|
||
// Test axis L = A0 x B1
|
||
ra = b0hsY * arm21 + b0hsZ * arm11;
|
||
rb = b1hsX * arm02 + b1hsZ * arm00;
|
||
if (Math.abs(taz * rm11 - tay * rm21) > ra + rb) return false;
|
||
// Test axis L = A0 x B2
|
||
ra = b0hsY * arm22 + b0hsZ * arm12;
|
||
rb = b1hsX * arm01 + b1hsY * arm00;
|
||
if (Math.abs(taz * rm12 - tay * rm22) > ra + rb) return false;
|
||
// Test axis L = A1 x B0
|
||
ra = b0hsX * arm20 + b0hsZ * arm00;
|
||
rb = b1hsY * arm12 + b1hsZ * arm11;
|
||
if (Math.abs(tax * rm20 - taz * rm00) > ra + rb) return false;
|
||
// Test axis L = A1 x B1
|
||
ra = b0hsX * arm21 + b0hsZ * arm01;
|
||
rb = b1hsX * arm12 + b1hsZ * arm10;
|
||
if (Math.abs(tax * rm21 - taz * rm01) > ra + rb) return false;
|
||
// Test axis L = A1 x B2
|
||
ra = b0hsX * arm22 + b0hsZ * arm02;
|
||
rb = b1hsX * arm11 + b1hsY * arm10;
|
||
if (Math.abs(tax * rm22 - taz * rm02) > ra + rb) return false;
|
||
// Test axis L = A2 x B0
|
||
ra = b0hsX * arm10 + b0hsY * arm00;
|
||
rb = b1hsY * arm22 + b1hsZ * arm21;
|
||
if (Math.abs(tay * rm00 - tax * rm10) > ra + rb) return false;
|
||
// Test axis L = A2 x B1
|
||
ra = b0hsX * arm11 + b0hsY * arm01;
|
||
rb = b1hsX * arm22 + b1hsZ * arm20;
|
||
if (Math.abs(tay * rm01 - tax * rm11) > ra + rb) return false;
|
||
// Test axis L = A2 x B2
|
||
ra = b0hsX * arm12 + b0hsY * arm02;
|
||
rb = b1hsX * arm21 + b1hsY * arm20;
|
||
if (Math.abs(tay * rm02 - tax * rm12) > ra + rb) return false;
|
||
// Since no separating axis is found, the OBBs must be intersecting
|
||
return true;
|
||
}
|
||
|
||
/**
|
||
* Test whether the one sphere with center <code>(aX, aY, aZ)</code> and square radius <code>radiusSquaredA</code> intersects the other
|
||
* sphere with center <code>(bX, bY, bZ)</code> and square radius <code>radiusSquaredB</code>, and store the center of the circle of
|
||
* intersection in the <code>(x, y, z)</code> components of the supplied vector and the radius of that circle in the w component.
|
||
* <p>
|
||
* The normal vector of the circle of intersection can simply be obtained by subtracting the center of either sphere from the other.
|
||
* <p>
|
||
* Reference: <a href="http://gamedev.stackexchange.com/questions/75756/sphere-sphere-intersection-and-circle-sphere-intersection">http://gamedev.stackexchange.com</a>
|
||
*
|
||
* @param aX
|
||
* the x coordinate of the first sphere's center
|
||
* @param aY
|
||
* the y coordinate of the first sphere's center
|
||
* @param aZ
|
||
* the z coordinate of the first sphere's center
|
||
* @param radiusSquaredA
|
||
* the square of the first sphere's radius
|
||
* @param bX
|
||
* the x coordinate of the second sphere's center
|
||
* @param bY
|
||
* the y coordinate of the second sphere's center
|
||
* @param bZ
|
||
* the z coordinate of the second sphere's center
|
||
* @param radiusSquaredB
|
||
* the square of the second sphere's radius
|
||
* @param centerAndRadiusOfIntersectionCircle
|
||
* will hold the center of the circle of intersection in the <code>(x, y, z)</code> components and the radius in the w component
|
||
* @return <code>true</code> iff both spheres intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectSphereSphere(
|
||
double aX, double aY, double aZ, double radiusSquaredA,
|
||
double bX, double bY, double bZ, double radiusSquaredB,
|
||
Vector4d centerAndRadiusOfIntersectionCircle) {
|
||
double dX = bX - aX, dY = bY - aY, dZ = bZ - aZ;
|
||
double distSquared = dX * dX + dY * dY + dZ * dZ;
|
||
double h = 0.5 + (radiusSquaredA - radiusSquaredB) / distSquared;
|
||
double r_i = radiusSquaredA - h * h * distSquared;
|
||
if (r_i >= 0.0) {
|
||
centerAndRadiusOfIntersectionCircle.x = aX + h * dX;
|
||
centerAndRadiusOfIntersectionCircle.y = aY + h * dY;
|
||
centerAndRadiusOfIntersectionCircle.z = aZ + h * dZ;
|
||
centerAndRadiusOfIntersectionCircle.w = Math.sqrt(r_i);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Test whether the one sphere with center <code>centerA</code> and square radius <code>radiusSquaredA</code> intersects the other
|
||
* sphere with center <code>centerB</code> and square radius <code>radiusSquaredB</code>, and store the center of the circle of
|
||
* intersection in the <code>(x, y, z)</code> components of the supplied vector and the radius of that circle in the w component.
|
||
* <p>
|
||
* The normal vector of the circle of intersection can simply be obtained by subtracting the center of either sphere from the other.
|
||
* <p>
|
||
* Reference: <a href="http://gamedev.stackexchange.com/questions/75756/sphere-sphere-intersection-and-circle-sphere-intersection">http://gamedev.stackexchange.com</a>
|
||
*
|
||
* @param centerA
|
||
* the first sphere's center
|
||
* @param radiusSquaredA
|
||
* the square of the first sphere's radius
|
||
* @param centerB
|
||
* the second sphere's center
|
||
* @param radiusSquaredB
|
||
* the square of the second sphere's radius
|
||
* @param centerAndRadiusOfIntersectionCircle
|
||
* will hold the center of the circle of intersection in the <code>(x, y, z)</code> components and the radius in the w component
|
||
* @return <code>true</code> iff both spheres intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectSphereSphere(Vector3dc centerA, double radiusSquaredA, Vector3dc centerB, double radiusSquaredB, Vector4d centerAndRadiusOfIntersectionCircle) {
|
||
return intersectSphereSphere(centerA.x(), centerA.y(), centerA.z(), radiusSquaredA, centerB.x(), centerB.y(), centerB.z(), radiusSquaredB, centerAndRadiusOfIntersectionCircle);
|
||
}
|
||
|
||
/**
|
||
* Test whether the given sphere with center <code>(sX, sY, sZ)</code> intersects the triangle given by its three vertices, and if they intersect
|
||
* store the point of intersection into <code>result</code>.
|
||
* <p>
|
||
* This method also returns whether the point of intersection is on one of the triangle's vertices, edges or on the face.
|
||
* <p>
|
||
* Reference: Book "Real-Time Collision Detection" chapter 5.2.7 "Testing Sphere Against Triangle"
|
||
*
|
||
* @param sX
|
||
* the x coordinate of the sphere's center
|
||
* @param sY
|
||
* the y coordinate of the sphere's center
|
||
* @param sZ
|
||
* the z coordinate of the sphere's center
|
||
* @param sR
|
||
* the sphere's radius
|
||
* @param v0X
|
||
* the x coordinate of the first vertex of the triangle
|
||
* @param v0Y
|
||
* the y coordinate of the first vertex of the triangle
|
||
* @param v0Z
|
||
* the z coordinate of the first vertex of the triangle
|
||
* @param v1X
|
||
* the x coordinate of the second vertex of the triangle
|
||
* @param v1Y
|
||
* the y coordinate of the second vertex of the triangle
|
||
* @param v1Z
|
||
* the z coordinate of the second vertex of the triangle
|
||
* @param v2X
|
||
* the x coordinate of the third vertex of the triangle
|
||
* @param v2Y
|
||
* the y coordinate of the third vertex of the triangle
|
||
* @param v2Z
|
||
* the z coordinate of the third vertex of the triangle
|
||
* @param result
|
||
* will hold the point of intersection
|
||
* @return one of {@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2},
|
||
* {@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20} or
|
||
* {@link #POINT_ON_TRIANGLE_FACE} or <code>0</code>
|
||
*/
|
||
public static int intersectSphereTriangle(
|
||
double sX, double sY, double sZ, double sR,
|
||
double v0X, double v0Y, double v0Z,
|
||
double v1X, double v1Y, double v1Z,
|
||
double v2X, double v2Y, double v2Z,
|
||
Vector3d result) {
|
||
int closest = findClosestPointOnTriangle(v0X, v0Y, v0Z, v1X, v1Y, v1Z, v2X, v2Y, v2Z, sX, sY, sZ, result);
|
||
double vX = result.x - sX, vY = result.y - sY, vZ = result.z - sZ;
|
||
double dot = vX * vX + vY * vY + vZ * vZ;
|
||
if (dot <= sR * sR) {
|
||
return closest;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* Test whether the one sphere with center <code>(aX, aY, aZ)</code> and square radius <code>radiusSquaredA</code> intersects the other
|
||
* sphere with center <code>(bX, bY, bZ)</code> and square radius <code>radiusSquaredB</code>.
|
||
* <p>
|
||
* Reference: <a href="http://gamedev.stackexchange.com/questions/75756/sphere-sphere-intersection-and-circle-sphere-intersection">http://gamedev.stackexchange.com</a>
|
||
*
|
||
* @param aX
|
||
* the x coordinate of the first sphere's center
|
||
* @param aY
|
||
* the y coordinate of the first sphere's center
|
||
* @param aZ
|
||
* the z coordinate of the first sphere's center
|
||
* @param radiusSquaredA
|
||
* the square of the first sphere's radius
|
||
* @param bX
|
||
* the x coordinate of the second sphere's center
|
||
* @param bY
|
||
* the y coordinate of the second sphere's center
|
||
* @param bZ
|
||
* the z coordinate of the second sphere's center
|
||
* @param radiusSquaredB
|
||
* the square of the second sphere's radius
|
||
* @return <code>true</code> iff both spheres intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testSphereSphere(
|
||
double aX, double aY, double aZ, double radiusSquaredA,
|
||
double bX, double bY, double bZ, double radiusSquaredB) {
|
||
double dX = bX - aX, dY = bY - aY, dZ = bZ - aZ;
|
||
double distSquared = dX * dX + dY * dY + dZ * dZ;
|
||
double h = 0.5 + (radiusSquaredA - radiusSquaredB) / distSquared;
|
||
double r_i = radiusSquaredA - h * h * distSquared;
|
||
return r_i >= 0.0;
|
||
}
|
||
|
||
/**
|
||
* Test whether the one sphere with center <code>centerA</code> and square radius <code>radiusSquaredA</code> intersects the other
|
||
* sphere with center <code>centerB</code> and square radius <code>radiusSquaredB</code>.
|
||
* <p>
|
||
* Reference: <a href="http://gamedev.stackexchange.com/questions/75756/sphere-sphere-intersection-and-circle-sphere-intersection">http://gamedev.stackexchange.com</a>
|
||
*
|
||
* @param centerA
|
||
* the first sphere's center
|
||
* @param radiusSquaredA
|
||
* the square of the first sphere's radius
|
||
* @param centerB
|
||
* the second sphere's center
|
||
* @param radiusSquaredB
|
||
* the square of the second sphere's radius
|
||
* @return <code>true</code> iff both spheres intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testSphereSphere(Vector3dc centerA, double radiusSquaredA, Vector3dc centerB, double radiusSquaredB) {
|
||
return testSphereSphere(centerA.x(), centerA.y(), centerA.z(), radiusSquaredA, centerB.x(), centerB.y(), centerB.z(), radiusSquaredB);
|
||
}
|
||
|
||
/**
|
||
* Determine the signed distance of the given point <code>(pointX, pointY, pointZ)</code> to the plane specified via its general plane equation
|
||
* <i>a*x + b*y + c*z + d = 0</i>.
|
||
*
|
||
* @param pointX
|
||
* the x coordinate of the point
|
||
* @param pointY
|
||
* the y coordinate of the point
|
||
* @param pointZ
|
||
* the z coordinate of the point
|
||
* @param a
|
||
* the x factor in the plane equation
|
||
* @param b
|
||
* the y factor in the plane equation
|
||
* @param c
|
||
* the z factor in the plane equation
|
||
* @param d
|
||
* the constant in the plane equation
|
||
* @return the distance between the point and the plane
|
||
*/
|
||
public static double distancePointPlane(double pointX, double pointY, double pointZ, double a, double b, double c, double d) {
|
||
double denom = Math.sqrt(a * a + b * b + c * c);
|
||
return (a * pointX + b * pointY + c * pointZ + d) / denom;
|
||
}
|
||
|
||
/**
|
||
* Determine the signed distance of the given point <code>(pointX, pointY, pointZ)</code> to the plane of the triangle specified by its three points
|
||
* <code>(v0X, v0Y, v0Z)</code>, <code>(v1X, v1Y, v1Z)</code> and <code>(v2X, v2Y, v2Z)</code>.
|
||
* <p>
|
||
* If the point lies on the front-facing side of the triangle's plane, that is, if the triangle has counter-clockwise winding order
|
||
* as seen from the point, then this method returns a positive number.
|
||
*
|
||
* @param pointX
|
||
* the x coordinate of the point
|
||
* @param pointY
|
||
* the y coordinate of the point
|
||
* @param pointZ
|
||
* the z coordinate of the point
|
||
* @param v0X
|
||
* the x coordinate of the first vertex of the triangle
|
||
* @param v0Y
|
||
* the y coordinate of the first vertex of the triangle
|
||
* @param v0Z
|
||
* the z coordinate of the first vertex of the triangle
|
||
* @param v1X
|
||
* the x coordinate of the second vertex of the triangle
|
||
* @param v1Y
|
||
* the y coordinate of the second vertex of the triangle
|
||
* @param v1Z
|
||
* the z coordinate of the second vertex of the triangle
|
||
* @param v2X
|
||
* the x coordinate of the third vertex of the triangle
|
||
* @param v2Y
|
||
* the y coordinate of the third vertex of the triangle
|
||
* @param v2Z
|
||
* the z coordinate of the third vertex of the triangle
|
||
* @return the signed distance between the point and the plane of the triangle
|
||
*/
|
||
public static double distancePointPlane(double pointX, double pointY, double pointZ,
|
||
double v0X, double v0Y, double v0Z, double v1X, double v1Y, double v1Z, double v2X, double v2Y, double v2Z) {
|
||
double v1Y0Y = v1Y - v0Y;
|
||
double v2Z0Z = v2Z - v0Z;
|
||
double v2Y0Y = v2Y - v0Y;
|
||
double v1Z0Z = v1Z - v0Z;
|
||
double v2X0X = v2X - v0X;
|
||
double v1X0X = v1X - v0X;
|
||
double a = v1Y0Y * v2Z0Z - v2Y0Y * v1Z0Z;
|
||
double b = v1Z0Z * v2X0X - v2Z0Z * v1X0X;
|
||
double c = v1X0X * v2Y0Y - v2X0X * v1Y0Y;
|
||
double d = -(a * v0X + b * v0Y + c * v0Z);
|
||
return distancePointPlane(pointX, pointY, pointZ, a, b, c, d);
|
||
}
|
||
|
||
/**
|
||
* Test whether the ray with given origin <code>(originX, originY, originZ)</code> and direction <code>(dirX, dirY, dirZ)</code> intersects the plane
|
||
* containing the given point <code>(pointX, pointY, pointZ)</code> and having the normal <code>(normalX, normalY, normalZ)</code>, and return the
|
||
* value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the intersection point.
|
||
* <p>
|
||
* This method returns <code>-1.0</code> if the ray does not intersect the plane, because it is either parallel to the plane or its direction points
|
||
* away from the plane or the ray's origin is on the <i>negative</i> side of the plane (i.e. the plane's normal points away from the ray's origin).
|
||
* <p>
|
||
* Reference: <a href="https://www.siggraph.org/education/materials/HyperGraph/raytrace/rayplane_intersection.htm">https://www.siggraph.org/</a>
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param originZ
|
||
* the z coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param dirZ
|
||
* the z coordinate of the ray's direction
|
||
* @param pointX
|
||
* the x coordinate of a point on the plane
|
||
* @param pointY
|
||
* the y coordinate of a point on the plane
|
||
* @param pointZ
|
||
* the z coordinate of a point on the plane
|
||
* @param normalX
|
||
* the x coordinate of the plane's normal
|
||
* @param normalY
|
||
* the y coordinate of the plane's normal
|
||
* @param normalZ
|
||
* the z coordinate of the plane's normal
|
||
* @param epsilon
|
||
* some small epsilon for when the ray is parallel to the plane
|
||
* @return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the intersection point, if the ray
|
||
* intersects the plane; <code>-1.0</code> otherwise
|
||
*/
|
||
public static double intersectRayPlane(double originX, double originY, double originZ, double dirX, double dirY, double dirZ,
|
||
double pointX, double pointY, double pointZ, double normalX, double normalY, double normalZ, double epsilon) {
|
||
double denom = normalX * dirX + normalY * dirY + normalZ * dirZ;
|
||
if (denom < epsilon) {
|
||
double t = ((pointX - originX) * normalX + (pointY - originY) * normalY + (pointZ - originZ) * normalZ) / denom;
|
||
if (t >= 0.0)
|
||
return t;
|
||
}
|
||
return -1.0;
|
||
}
|
||
|
||
/**
|
||
* Test whether the ray with given <code>origin</code> and direction <code>dir</code> intersects the plane
|
||
* containing the given <code>point</code> and having the given <code>normal</code>, and return the
|
||
* value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the intersection point.
|
||
* <p>
|
||
* This method returns <code>-1.0</code> if the ray does not intersect the plane, because it is either parallel to the plane or its direction points
|
||
* away from the plane or the ray's origin is on the <i>negative</i> side of the plane (i.e. the plane's normal points away from the ray's origin).
|
||
* <p>
|
||
* Reference: <a href="https://www.siggraph.org/education/materials/HyperGraph/raytrace/rayplane_intersection.htm">https://www.siggraph.org/</a>
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's direction
|
||
* @param point
|
||
* a point on the plane
|
||
* @param normal
|
||
* the plane's normal
|
||
* @param epsilon
|
||
* some small epsilon for when the ray is parallel to the plane
|
||
* @return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the intersection point, if the ray
|
||
* intersects the plane; <code>-1.0</code> otherwise
|
||
*/
|
||
public static double intersectRayPlane(Vector3dc origin, Vector3dc dir, Vector3dc point, Vector3dc normal, double epsilon) {
|
||
return intersectRayPlane(origin.x(), origin.y(), origin.z(), dir.x(), dir.y(), dir.z(), point.x(), point.y(), point.z(), normal.x(), normal.y(), normal.z(), epsilon);
|
||
}
|
||
|
||
/**
|
||
* Test whether the ray with given origin <code>(originX, originY, originZ)</code> and direction <code>(dirX, dirY, dirZ)</code> intersects the plane
|
||
* given as the general plane equation <i>a*x + b*y + c*z + d = 0</i>, and return the
|
||
* value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the intersection point.
|
||
* <p>
|
||
* This method returns <code>-1.0</code> if the ray does not intersect the plane, because it is either parallel to the plane or its direction points
|
||
* away from the plane or the ray's origin is on the <i>negative</i> side of the plane (i.e. the plane's normal points away from the ray's origin).
|
||
* <p>
|
||
* Reference: <a href="https://www.siggraph.org/education/materials/HyperGraph/raytrace/rayplane_intersection.htm">https://www.siggraph.org/</a>
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param originZ
|
||
* the z coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param dirZ
|
||
* the z coordinate of the ray's direction
|
||
* @param a
|
||
* the x factor in the plane equation
|
||
* @param b
|
||
* the y factor in the plane equation
|
||
* @param c
|
||
* the z factor in the plane equation
|
||
* @param d
|
||
* the constant in the plane equation
|
||
* @param epsilon
|
||
* some small epsilon for when the ray is parallel to the plane
|
||
* @return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the intersection point, if the ray
|
||
* intersects the plane; <code>-1.0</code> otherwise
|
||
*/
|
||
public static double intersectRayPlane(double originX, double originY, double originZ, double dirX, double dirY, double dirZ,
|
||
double a, double b, double c, double d, double epsilon) {
|
||
double denom = a * dirX + b * dirY + c * dirZ;
|
||
if (denom < 0.0) {
|
||
double t = -(a * originX + b * originY + c * originZ + d) / denom;
|
||
if (t >= 0.0)
|
||
return t;
|
||
}
|
||
return -1.0;
|
||
}
|
||
|
||
/**
|
||
* Test whether the axis-aligned box with minimum corner <code>(minX, minY, minZ)</code> and maximum corner <code>(maxX, maxY, maxZ)</code>
|
||
* intersects the sphere with the given center <code>(centerX, centerY, centerZ)</code> and square radius <code>radiusSquared</code>.
|
||
* <p>
|
||
* Reference: <a href="http://stackoverflow.com/questions/4578967/cube-sphere-intersection-test#answer-4579069">http://stackoverflow.com</a>
|
||
*
|
||
* @param minX
|
||
* the x coordinate of the minimum corner of the axis-aligned box
|
||
* @param minY
|
||
* the y coordinate of the minimum corner of the axis-aligned box
|
||
* @param minZ
|
||
* the z coordinate of the minimum corner of the axis-aligned box
|
||
* @param maxX
|
||
* the x coordinate of the maximum corner of the axis-aligned box
|
||
* @param maxY
|
||
* the y coordinate of the maximum corner of the axis-aligned box
|
||
* @param maxZ
|
||
* the z coordinate of the maximum corner of the axis-aligned box
|
||
* @param centerX
|
||
* the x coordinate of the sphere's center
|
||
* @param centerY
|
||
* the y coordinate of the sphere's center
|
||
* @param centerZ
|
||
* the z coordinate of the sphere's center
|
||
* @param radiusSquared
|
||
* the square of the sphere's radius
|
||
* @return <code>true</code> iff the axis-aligned box intersects the sphere; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testAabSphere(
|
||
double minX, double minY, double minZ,
|
||
double maxX, double maxY, double maxZ,
|
||
double centerX, double centerY, double centerZ, double radiusSquared) {
|
||
double radius2 = radiusSquared;
|
||
if (centerX < minX) {
|
||
double d = (centerX - minX);
|
||
radius2 -= d * d;
|
||
} else if (centerX > maxX) {
|
||
double d = (centerX - maxX);
|
||
radius2 -= d * d;
|
||
}
|
||
if (centerY < minY) {
|
||
double d = (centerY - minY);
|
||
radius2 -= d * d;
|
||
} else if (centerY > maxY) {
|
||
double d = (centerY - maxY);
|
||
radius2 -= d * d;
|
||
}
|
||
if (centerZ < minZ) {
|
||
double d = (centerZ - minZ);
|
||
radius2 -= d * d;
|
||
} else if (centerZ > maxZ) {
|
||
double d = (centerZ - maxZ);
|
||
radius2 -= d * d;
|
||
}
|
||
return radius2 >= 0.0;
|
||
}
|
||
|
||
/**
|
||
* Test whether the axis-aligned box with minimum corner <code>min</code> and maximum corner <code>max</code>
|
||
* intersects the sphere with the given <code>center</code> and square radius <code>radiusSquared</code>.
|
||
* <p>
|
||
* Reference: <a href="http://stackoverflow.com/questions/4578967/cube-sphere-intersection-test#answer-4579069">http://stackoverflow.com</a>
|
||
*
|
||
* @param min
|
||
* the minimum corner of the axis-aligned box
|
||
* @param max
|
||
* the maximum corner of the axis-aligned box
|
||
* @param center
|
||
* the sphere's center
|
||
* @param radiusSquared
|
||
* the squared of the sphere's radius
|
||
* @return <code>true</code> iff the axis-aligned box intersects the sphere; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testAabSphere(Vector3dc min, Vector3dc max, Vector3dc center, double radiusSquared) {
|
||
return testAabSphere(min.x(), min.y(), min.z(), max.x(), max.y(), max.z(), center.x(), center.y(), center.z(), radiusSquared);
|
||
}
|
||
|
||
/**
|
||
* Find the point on the given plane which is closest to the specified point <code>(pX, pY, pZ)</code> and store the result in <code>result</code>.
|
||
*
|
||
* @param aX
|
||
* the x coordinate of one point on the plane
|
||
* @param aY
|
||
* the y coordinate of one point on the plane
|
||
* @param aZ
|
||
* the z coordinate of one point on the plane
|
||
* @param nX
|
||
* the x coordinate of the unit normal of the plane
|
||
* @param nY
|
||
* the y coordinate of the unit normal of the plane
|
||
* @param nZ
|
||
* the z coordinate of the unit normal of the plane
|
||
* @param pX
|
||
* the x coordinate of the point
|
||
* @param pY
|
||
* the y coordinate of the point
|
||
* @param pZ
|
||
* the z coordinate of the point
|
||
* @param result
|
||
* will hold the result
|
||
* @return result
|
||
*/
|
||
public static Vector3d findClosestPointOnPlane(double aX, double aY, double aZ, double nX, double nY, double nZ, double pX, double pY, double pZ, Vector3d result) {
|
||
double d = -(nX * aX + nY * aY + nZ * aZ);
|
||
double t = nX * pX + nY * pY + nZ * pZ - d;
|
||
result.x = pX - t * nX;
|
||
result.y = pY - t * nY;
|
||
result.z = pZ - t * nZ;
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Find the point on the given line segment which is closest to the specified point <code>(pX, pY, pZ)</code>, and store the result in <code>result</code>.
|
||
*
|
||
* @param aX
|
||
* the x coordinate of the first end point of the line segment
|
||
* @param aY
|
||
* the y coordinate of the first end point of the line segment
|
||
* @param aZ
|
||
* the z coordinate of the first end point of the line segment
|
||
* @param bX
|
||
* the x coordinate of the second end point of the line segment
|
||
* @param bY
|
||
* the y coordinate of the second end point of the line segment
|
||
* @param bZ
|
||
* the z coordinate of the second end point of the line segment
|
||
* @param pX
|
||
* the x coordinate of the point
|
||
* @param pY
|
||
* the y coordinate of the point
|
||
* @param pZ
|
||
* the z coordinate of the point
|
||
* @param result
|
||
* will hold the result
|
||
* @return result
|
||
*/
|
||
public static Vector3d findClosestPointOnLineSegment(double aX, double aY, double aZ, double bX, double bY, double bZ, double pX, double pY, double pZ, Vector3d result) {
|
||
double abX = bX - aX, abY = bY - aY, abZ = bZ - aZ;
|
||
double t = ((pX - aX) * abX + (pY - aY) * abY + (pZ - aZ) * abZ) / (abX * abX + abY * abY + abZ * abZ);
|
||
if (t < 0.0) t = 0.0;
|
||
if (t > 1.0) t = 1.0;
|
||
result.x = aX + t * abX;
|
||
result.y = aY + t * abY;
|
||
result.z = aZ + t * abZ;
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Find the closest points on the two line segments, store the point on the first line segment in <code>resultA</code> and
|
||
* the point on the second line segment in <code>resultB</code>, and return the square distance between both points.
|
||
* <p>
|
||
* Reference: Book "Real-Time Collision Detection" chapter 5.1.9 "Closest Points of Two Line Segments"
|
||
*
|
||
* @param a0X
|
||
* the x coordinate of the first line segment's first end point
|
||
* @param a0Y
|
||
* the y coordinate of the first line segment's first end point
|
||
* @param a0Z
|
||
* the z coordinate of the first line segment's first end point
|
||
* @param a1X
|
||
* the x coordinate of the first line segment's second end point
|
||
* @param a1Y
|
||
* the y coordinate of the first line segment's second end point
|
||
* @param a1Z
|
||
* the z coordinate of the first line segment's second end point
|
||
* @param b0X
|
||
* the x coordinate of the second line segment's first end point
|
||
* @param b0Y
|
||
* the y coordinate of the second line segment's first end point
|
||
* @param b0Z
|
||
* the z coordinate of the second line segment's first end point
|
||
* @param b1X
|
||
* the x coordinate of the second line segment's second end point
|
||
* @param b1Y
|
||
* the y coordinate of the second line segment's second end point
|
||
* @param b1Z
|
||
* the z coordinate of the second line segment's second end point
|
||
* @param resultA
|
||
* will hold the point on the first line segment
|
||
* @param resultB
|
||
* will hold the point on the second line segment
|
||
* @return the square distance between the two closest points
|
||
*/
|
||
public static double findClosestPointsLineSegments(
|
||
double a0X, double a0Y, double a0Z, double a1X, double a1Y, double a1Z,
|
||
double b0X, double b0Y, double b0Z, double b1X, double b1Y, double b1Z,
|
||
Vector3d resultA, Vector3d resultB) {
|
||
double d1x = a1X - a0X, d1y = a1Y - a0Y, d1z = a1Z - a0Z;
|
||
double d2x = b1X - b0X, d2y = b1Y - b0Y, d2z = b1Z - b0Z;
|
||
double rX = a0X - b0X, rY = a0Y - b0Y, rZ = a0Z - b0Z;
|
||
double a = d1x * d1x + d1y * d1y + d1z * d1z;
|
||
double e = d2x * d2x + d2y * d2y + d2z * d2z;
|
||
double f = d2x * rX + d2y * rY + d2z * rZ;
|
||
double EPSILON = 1E-8;
|
||
double s, t;
|
||
if (a <= EPSILON && e <= EPSILON) {
|
||
// Both segments degenerate into points
|
||
resultA.set(a0X, a0Y, a0Z);
|
||
resultB.set(b0X, b0Y, b0Z);
|
||
return resultA.dot(resultB);
|
||
}
|
||
if (a <= EPSILON) {
|
||
// First segment degenerates into a point
|
||
s = 0.0;
|
||
t = f / e;
|
||
t = Math.min(Math.max(t, 0.0), 1.0);
|
||
} else {
|
||
double c = d1x * rX + d1y * rY + d1z * rZ;
|
||
if (e <= EPSILON) {
|
||
// Second segment degenerates into a point
|
||
t = 0.0;
|
||
s = Math.min(Math.max(-c / a, 0.0), 1.0);
|
||
} else {
|
||
// The general nondegenerate case starts here
|
||
double b = d1x * d2x + d1y * d2y + d1z * d2z;
|
||
double denom = a * e - b * b;
|
||
// If segments not parallel, compute closest point on L1 to L2 and
|
||
// clamp to segment S1. Else pick arbitrary s (here 0)
|
||
if (denom != 0.0)
|
||
s = Math.min(Math.max((b*f - c*e) / denom, 0.0), 1.0);
|
||
else
|
||
s = 0.0;
|
||
// Compute point on L2 closest to S1(s) using
|
||
// t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e
|
||
t = (b * s + f) / e;
|
||
// If t in [0,1] done. Else clamp t, recompute s for the new value
|
||
// of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a
|
||
// and clamp s to [0, 1]
|
||
if (t < 0.0) {
|
||
t = 0.0;
|
||
s = Math.min(Math.max(-c / a, 0.0), 1.0);
|
||
} else if (t > 1.0) {
|
||
t = 1.0;
|
||
s = Math.min(Math.max((b - c) / a, 0.0), 1.0);
|
||
}
|
||
}
|
||
}
|
||
resultA.set(a0X + d1x * s, a0Y + d1y * s, a0Z + d1z * s);
|
||
resultB.set(b0X + d2x * t, b0Y + d2y * t, b0Z + d2z * t);
|
||
double dX = resultA.x - resultB.x, dY = resultA.y - resultB.y, dZ = resultA.z - resultB.z;
|
||
return dX*dX + dY*dY + dZ*dZ;
|
||
}
|
||
|
||
/**
|
||
* Find the closest points on a line segment and a triangle.
|
||
* <p>
|
||
* Reference: Book "Real-Time Collision Detection" chapter 5.1.10 "Closest Points of a Line Segment and a Triangle"
|
||
*
|
||
* @param aX
|
||
* the x coordinate of the line segment's first end point
|
||
* @param aY
|
||
* the y coordinate of the line segment's first end point
|
||
* @param aZ
|
||
* the z coordinate of the line segment's first end point
|
||
* @param bX
|
||
* the x coordinate of the line segment's second end point
|
||
* @param bY
|
||
* the y coordinate of the line segment's second end point
|
||
* @param bZ
|
||
* the z coordinate of the line segment's second end point
|
||
* @param v0X
|
||
* the x coordinate of the triangle's first vertex
|
||
* @param v0Y
|
||
* the y coordinate of the triangle's first vertex
|
||
* @param v0Z
|
||
* the z coordinate of the triangle's first vertex
|
||
* @param v1X
|
||
* the x coordinate of the triangle's second vertex
|
||
* @param v1Y
|
||
* the y coordinate of the triangle's second vertex
|
||
* @param v1Z
|
||
* the z coordinate of the triangle's second vertex
|
||
* @param v2X
|
||
* the x coordinate of the triangle's third vertex
|
||
* @param v2Y
|
||
* the y coordinate of the triangle's third vertex
|
||
* @param v2Z
|
||
* the z coordinate of the triangle's third vertex
|
||
* @param lineSegmentResult
|
||
* will hold the closest point on the line segment
|
||
* @param triangleResult
|
||
* will hold the closest point on the triangle
|
||
* @return the square distance of the closest points
|
||
*/
|
||
public static double findClosestPointsLineSegmentTriangle(
|
||
double aX, double aY, double aZ, double bX, double bY, double bZ,
|
||
double v0X, double v0Y, double v0Z, double v1X, double v1Y, double v1Z, double v2X, double v2Y, double v2Z,
|
||
Vector3d lineSegmentResult, Vector3d triangleResult) {
|
||
double min, d;
|
||
double minlsX, minlsY, minlsZ, mintX, mintY, mintZ;
|
||
// AB -> V0V1
|
||
d = findClosestPointsLineSegments(aX, aY, aZ, bX, bY, bZ, v0X, v0Y, v0Z, v1X, v1Y, v1Z, lineSegmentResult, triangleResult);
|
||
min = d;
|
||
minlsX = lineSegmentResult.x; minlsY = lineSegmentResult.y; minlsZ = lineSegmentResult.z;
|
||
mintX = triangleResult.x; mintY = triangleResult.y; mintZ = triangleResult.z;
|
||
// AB -> V1V2
|
||
d = findClosestPointsLineSegments(aX, aY, aZ, bX, bY, bZ, v1X, v1Y, v1Z, v2X, v2Y, v2Z, lineSegmentResult, triangleResult);
|
||
if (d < min) {
|
||
min = d;
|
||
minlsX = lineSegmentResult.x; minlsY = lineSegmentResult.y; minlsZ = lineSegmentResult.z;
|
||
mintX = triangleResult.x; mintY = triangleResult.y; mintZ = triangleResult.z;
|
||
}
|
||
// AB -> V2V0
|
||
d = findClosestPointsLineSegments(aX, aY, aZ, bX, bY, bZ, v2X, v2Y, v2Z, v0X, v0Y, v0Z, lineSegmentResult, triangleResult);
|
||
if (d < min) {
|
||
min = d;
|
||
minlsX = lineSegmentResult.x; minlsY = lineSegmentResult.y; minlsZ = lineSegmentResult.z;
|
||
mintX = triangleResult.x; mintY = triangleResult.y; mintZ = triangleResult.z;
|
||
}
|
||
// segment endpoint A and plane of triangle (when A projects inside V0V1V2)
|
||
boolean computed = false;
|
||
double a = Double.NaN, b = Double.NaN, c = Double.NaN, nd = Double.NaN;
|
||
if (testPointInTriangle(aX, aY, aZ, v0X, v0Y, v0Z, v1X, v1Y, v1Z, v2X, v2Y, v2Z)) {
|
||
double v1Y0Y = v1Y - v0Y;
|
||
double v2Z0Z = v2Z - v0Z;
|
||
double v2Y0Y = v2Y - v0Y;
|
||
double v1Z0Z = v1Z - v0Z;
|
||
double v2X0X = v2X - v0X;
|
||
double v1X0X = v1X - v0X;
|
||
a = v1Y0Y * v2Z0Z - v2Y0Y * v1Z0Z;
|
||
b = v1Z0Z * v2X0X - v2Z0Z * v1X0X;
|
||
c = v1X0X * v2Y0Y - v2X0X * v1Y0Y;
|
||
computed = true;
|
||
double invLen = Math.invsqrt(a*a + b*b + c*c);
|
||
a *= invLen; b *= invLen; c *= invLen;
|
||
nd = -(a * v0X + b * v0Y + c * v0Z);
|
||
d = (a * aX + b * aY + c * aZ + nd);
|
||
double l = d;
|
||
d *= d;
|
||
if (d < min) {
|
||
min = d;
|
||
minlsX = aX; minlsY = aY; minlsZ = aZ;
|
||
mintX = aX - a*l; mintY = aY - b*l; mintZ = aZ - c*l;
|
||
}
|
||
}
|
||
// segment endpoint B and plane of triangle (when B projects inside V0V1V2)
|
||
if (testPointInTriangle(bX, bY, bZ, v0X, v0Y, v0Z, v1X, v1Y, v1Z, v2X, v2Y, v2Z)) {
|
||
if (!computed) {
|
||
double v1Y0Y = v1Y - v0Y;
|
||
double v2Z0Z = v2Z - v0Z;
|
||
double v2Y0Y = v2Y - v0Y;
|
||
double v1Z0Z = v1Z - v0Z;
|
||
double v2X0X = v2X - v0X;
|
||
double v1X0X = v1X - v0X;
|
||
a = v1Y0Y * v2Z0Z - v2Y0Y * v1Z0Z;
|
||
b = v1Z0Z * v2X0X - v2Z0Z * v1X0X;
|
||
c = v1X0X * v2Y0Y - v2X0X * v1Y0Y;
|
||
double invLen = Math.invsqrt(a*a + b*b + c*c);
|
||
a *= invLen; b *= invLen; c *= invLen;
|
||
nd = -(a * v0X + b * v0Y + c * v0Z);
|
||
}
|
||
d = (a * bX + b * bY + c * bZ + nd);
|
||
double l = d;
|
||
d *= d;
|
||
if (d < min) {
|
||
min = d;
|
||
minlsX = bX; minlsY = bY; minlsZ = bZ;
|
||
mintX = bX - a*l; mintY = bY - b*l; mintZ = bZ - c*l;
|
||
}
|
||
}
|
||
lineSegmentResult.set(minlsX, minlsY, minlsZ);
|
||
triangleResult.set(mintX, mintY, mintZ);
|
||
return min;
|
||
}
|
||
|
||
/**
|
||
* Determine the closest point on the triangle with the given vertices <code>(v0X, v0Y, v0Z)</code>, <code>(v1X, v1Y, v1Z)</code>, <code>(v2X, v2Y, v2Z)</code>
|
||
* between that triangle and the given point <code>(pX, pY, pZ)</code> and store that point into the given <code>result</code>.
|
||
* <p>
|
||
* Additionally, this method returns whether the closest point is a vertex ({@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2})
|
||
* of the triangle, lies on an edge ({@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20})
|
||
* or on the {@link #POINT_ON_TRIANGLE_FACE face} of the triangle.
|
||
* <p>
|
||
* Reference: Book "Real-Time Collision Detection" chapter 5.1.5 "Closest Point on Triangle to Point"
|
||
*
|
||
* @param v0X
|
||
* the x coordinate of the first vertex of the triangle
|
||
* @param v0Y
|
||
* the y coordinate of the first vertex of the triangle
|
||
* @param v0Z
|
||
* the z coordinate of the first vertex of the triangle
|
||
* @param v1X
|
||
* the x coordinate of the second vertex of the triangle
|
||
* @param v1Y
|
||
* the y coordinate of the second vertex of the triangle
|
||
* @param v1Z
|
||
* the z coordinate of the second vertex of the triangle
|
||
* @param v2X
|
||
* the x coordinate of the third vertex of the triangle
|
||
* @param v2Y
|
||
* the y coordinate of the third vertex of the triangle
|
||
* @param v2Z
|
||
* the z coordinate of the third vertex of the triangle
|
||
* @param pX
|
||
* the x coordinate of the point
|
||
* @param pY
|
||
* the y coordinate of the point
|
||
* @param pZ
|
||
* the y coordinate of the point
|
||
* @param result
|
||
* will hold the closest point
|
||
* @return one of {@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2},
|
||
* {@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20} or
|
||
* {@link #POINT_ON_TRIANGLE_FACE}
|
||
*/
|
||
public static int findClosestPointOnTriangle(
|
||
double v0X, double v0Y, double v0Z,
|
||
double v1X, double v1Y, double v1Z,
|
||
double v2X, double v2Y, double v2Z,
|
||
double pX, double pY, double pZ,
|
||
Vector3d result) {
|
||
double abX = v1X - v0X, abY = v1Y - v0Y, abZ = v1Z - v0Z;
|
||
double acX = v2X - v0X, acY = v2Y - v0Y, acZ = v2Z - v0Z;
|
||
double apX = pX - v0X, apY = pY - v0Y, apZ = pZ - v0Z;
|
||
double d1 = abX * apX + abY * apY + abZ * apZ;
|
||
double d2 = acX * apX + acY * apY + acZ * apZ;
|
||
if (d1 <= 0.0 && d2 <= 0.0) {
|
||
result.x = v0X;
|
||
result.y = v0Y;
|
||
result.z = v0Z;
|
||
return POINT_ON_TRIANGLE_VERTEX_0;
|
||
}
|
||
double bpX = pX - v1X, bpY = pY - v1Y, bpZ = pZ - v1Z;
|
||
double d3 = abX * bpX + abY * bpY + abZ * bpZ;
|
||
double d4 = acX * bpX + acY * bpY + acZ * bpZ;
|
||
if (d3 >= 0.0 && d4 <= d3) {
|
||
result.x = v1X;
|
||
result.y = v1Y;
|
||
result.z = v1Z;
|
||
return POINT_ON_TRIANGLE_VERTEX_1;
|
||
}
|
||
double vc = d1 * d4 - d3 * d2;
|
||
if (vc <= 0.0 && d1 >= 0.0 && d3 <= 0.0) {
|
||
double v = d1 / (d1 - d3);
|
||
result.x = v0X + v * abX;
|
||
result.y = v0Y + v * abY;
|
||
result.z = v0Z + v * abZ;
|
||
return POINT_ON_TRIANGLE_EDGE_01;
|
||
}
|
||
double cpX = pX - v2X, cpY = pY - v2Y, cpZ = pZ - v2Z;
|
||
double d5 = abX * cpX + abY * cpY + abZ * cpZ;
|
||
double d6 = acX * cpX + acY * cpY + acZ * cpZ;
|
||
if (d6 >= 0.0 && d5 <= d6) {
|
||
result.x = v2X;
|
||
result.y = v2Y;
|
||
result.z = v2Z;
|
||
return POINT_ON_TRIANGLE_VERTEX_2;
|
||
}
|
||
double vb = d5 * d2 - d1 * d6;
|
||
if (vb <= 0.0 && d2 >= 0.0 && d6 <= 0.0) {
|
||
double w = d2 / (d2 - d6);
|
||
result.x = v0X + w * acX;
|
||
result.y = v0Y + w * acY;
|
||
result.z = v0Z + w * acZ;
|
||
return POINT_ON_TRIANGLE_EDGE_20;
|
||
}
|
||
double va = d3 * d6 - d5 * d4;
|
||
if (va <= 0.0 && d4 - d3 >= 0.0 && d5 - d6 >= 0.0) {
|
||
double w = (d4 - d3) / (d4 - d3 + d5 - d6);
|
||
result.x = v1X + w * (v2X - v1X);
|
||
result.y = v1Y + w * (v2Y - v1Y);
|
||
result.z = v1Z + w * (v2Z - v1Z);
|
||
return POINT_ON_TRIANGLE_EDGE_12;
|
||
}
|
||
double denom = 1.0 / (va + vb + vc);
|
||
double v = vb * denom;
|
||
double w = vc * denom;
|
||
result.x = v0X + abX * v + acX * w;
|
||
result.y = v0Y + abY * v + acY * w;
|
||
result.z = v0Z + abZ * v + acZ * w;
|
||
return POINT_ON_TRIANGLE_FACE;
|
||
}
|
||
|
||
/**
|
||
* Determine the closest point on the triangle with the vertices <code>v0</code>, <code>v1</code>, <code>v2</code>
|
||
* between that triangle and the given point <code>p</code> and store that point into the given <code>result</code>.
|
||
* <p>
|
||
* Additionally, this method returns whether the closest point is a vertex ({@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2})
|
||
* of the triangle, lies on an edge ({@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20})
|
||
* or on the {@link #POINT_ON_TRIANGLE_FACE face} of the triangle.
|
||
* <p>
|
||
* Reference: Book "Real-Time Collision Detection" chapter 5.1.5 "Closest Point on Triangle to Point"
|
||
*
|
||
* @param v0
|
||
* the first vertex of the triangle
|
||
* @param v1
|
||
* the second vertex of the triangle
|
||
* @param v2
|
||
* the third vertex of the triangle
|
||
* @param p
|
||
* the point
|
||
* @param result
|
||
* will hold the closest point
|
||
* @return one of {@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2},
|
||
* {@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20} or
|
||
* {@link #POINT_ON_TRIANGLE_FACE}
|
||
*/
|
||
public static int findClosestPointOnTriangle(Vector3dc v0, Vector3dc v1, Vector3dc v2, Vector3dc p, Vector3d result) {
|
||
return findClosestPointOnTriangle(v0.x(), v0.y(), v0.z(), v1.x(), v1.y(), v1.z(), v2.x(), v2.y(), v2.z(), p.x(), p.y(), p.z(), result);
|
||
}
|
||
|
||
/**
|
||
* Find the point on a given rectangle, specified via three of its corners, which is closest to the specified point
|
||
* <code>(pX, pY, pZ)</code> and store the result into <code>res</code>.
|
||
* <p>
|
||
* Reference: Book "Real-Time Collision Detection" chapter 5.1.4.2 "Closest Point on 3D Rectangle to Point"
|
||
*
|
||
* @param aX
|
||
* the x coordinate of the first corner point of the rectangle
|
||
* @param aY
|
||
* the y coordinate of the first corner point of the rectangle
|
||
* @param aZ
|
||
* the z coordinate of the first corner point of the rectangle
|
||
* @param bX
|
||
* the x coordinate of the second corner point of the rectangle
|
||
* @param bY
|
||
* the y coordinate of the second corner point of the rectangle
|
||
* @param bZ
|
||
* the z coordinate of the second corner point of the rectangle
|
||
* @param cX
|
||
* the x coordinate of the third corner point of the rectangle
|
||
* @param cY
|
||
* the y coordinate of the third corner point of the rectangle
|
||
* @param cZ
|
||
* the z coordinate of the third corner point of the rectangle
|
||
* @param pX
|
||
* the x coordinate of the point
|
||
* @param pY
|
||
* the y coordinate of the point
|
||
* @param pZ
|
||
* the z coordinate of the point
|
||
* @param res
|
||
* will hold the result
|
||
* @return res
|
||
*/
|
||
public static Vector3d findClosestPointOnRectangle(
|
||
double aX, double aY, double aZ,
|
||
double bX, double bY, double bZ,
|
||
double cX, double cY, double cZ,
|
||
double pX, double pY, double pZ, Vector3d res) {
|
||
double abX = bX - aX, abY = bY - aY, abZ = bZ - aZ;
|
||
double acX = cX - aX, acY = cY - aY, acZ = cZ - aZ;
|
||
double dX = pX - aX, dY = pY - aY, dZ = pZ - aZ;
|
||
double qX = aX, qY = aY, qZ = aZ;
|
||
double dist = dX * abX + dY * abY + dZ * abZ;
|
||
double maxdist = abX * abX + abY * abY + abZ * abZ;
|
||
if (dist >= maxdist) {
|
||
qX += abX;
|
||
qY += abY;
|
||
qZ += abZ;
|
||
} else if (dist > 0.0) {
|
||
qX += (dist / maxdist) * abX;
|
||
qY += (dist / maxdist) * abY;
|
||
qZ += (dist / maxdist) * abZ;
|
||
}
|
||
dist = dX * acX + dY * acY + dZ * acZ;
|
||
maxdist = acX * acX + acY * acY + acZ * acZ;
|
||
if (dist >= maxdist) {
|
||
qX += acX;
|
||
qY += acY;
|
||
qZ += acZ;
|
||
} else if (dist > 0.0) {
|
||
qX += (dist / maxdist) * acX;
|
||
qY += (dist / maxdist) * acY;
|
||
qZ += (dist / maxdist) * acZ;
|
||
}
|
||
res.x = qX;
|
||
res.y = qY;
|
||
res.z = qZ;
|
||
return res;
|
||
}
|
||
|
||
/**
|
||
* Determine the point of intersection between a sphere with the given center <code>(centerX, centerY, centerZ)</code> and <code>radius</code> moving
|
||
* with the given velocity <code>(velX, velY, velZ)</code> and the triangle specified via its three vertices <code>(v0X, v0Y, v0Z)</code>, <code>(v1X, v1Y, v1Z)</code>, <code>(v2X, v2Y, v2Z)</code>.
|
||
* <p>
|
||
* The vertices of the triangle must be specified in counter-clockwise winding order.
|
||
* <p>
|
||
* An intersection is only considered if the time of intersection is smaller than the given <code>maxT</code> value.
|
||
* <p>
|
||
* Reference: <a href="http://www.peroxide.dk/papers/collision/collision.pdf">Improved Collision detection and Response</a>
|
||
*
|
||
* @param centerX
|
||
* the x coordinate of the sphere's center
|
||
* @param centerY
|
||
* the y coordinate of the sphere's center
|
||
* @param centerZ
|
||
* the z coordinate of the sphere's center
|
||
* @param radius
|
||
* the radius of the sphere
|
||
* @param velX
|
||
* the x component of the velocity of the sphere
|
||
* @param velY
|
||
* the y component of the velocity of the sphere
|
||
* @param velZ
|
||
* the z component of the velocity of the sphere
|
||
* @param v0X
|
||
* the x coordinate of the first triangle vertex
|
||
* @param v0Y
|
||
* the y coordinate of the first triangle vertex
|
||
* @param v0Z
|
||
* the z coordinate of the first triangle vertex
|
||
* @param v1X
|
||
* the x coordinate of the second triangle vertex
|
||
* @param v1Y
|
||
* the y coordinate of the second triangle vertex
|
||
* @param v1Z
|
||
* the z coordinate of the second triangle vertex
|
||
* @param v2X
|
||
* the x coordinate of the third triangle vertex
|
||
* @param v2Y
|
||
* the y coordinate of the third triangle vertex
|
||
* @param v2Z
|
||
* the z coordinate of the third triangle vertex
|
||
* @param epsilon
|
||
* a small epsilon when testing spheres that move almost parallel to the triangle
|
||
* @param maxT
|
||
* the maximum intersection time
|
||
* @param pointAndTime
|
||
* iff the moving sphere and the triangle intersect, this will hold the point of intersection in the <code>(x, y, z)</code> components
|
||
* and the time of intersection in the <code>w</code> component
|
||
* @return {@link #POINT_ON_TRIANGLE_FACE} if the intersection point lies on the triangle's face,
|
||
* or {@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1} or {@link #POINT_ON_TRIANGLE_VERTEX_2} if the intersection point is a vertex,
|
||
* or {@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12} or {@link #POINT_ON_TRIANGLE_EDGE_20} if the intersection point lies on an edge;
|
||
* or <code>0</code> if no intersection
|
||
*/
|
||
public static int intersectSweptSphereTriangle(
|
||
double centerX, double centerY, double centerZ, double radius, double velX, double velY, double velZ,
|
||
double v0X, double v0Y, double v0Z, double v1X, double v1Y, double v1Z, double v2X, double v2Y, double v2Z,
|
||
double epsilon, double maxT, Vector4d pointAndTime) {
|
||
double v10X = v1X - v0X;
|
||
double v10Y = v1Y - v0Y;
|
||
double v10Z = v1Z - v0Z;
|
||
double v20X = v2X - v0X;
|
||
double v20Y = v2Y - v0Y;
|
||
double v20Z = v2Z - v0Z;
|
||
// build triangle plane
|
||
double a = v10Y * v20Z - v20Y * v10Z;
|
||
double b = v10Z * v20X - v20Z * v10X;
|
||
double c = v10X * v20Y - v20X * v10Y;
|
||
double d = -(a * v0X + b * v0Y + c * v0Z);
|
||
double invLen = Math.invsqrt(a * a + b * b + c * c);
|
||
double signedDist = (a * centerX + b * centerY + c * centerZ + d) * invLen;
|
||
double dot = (a * velX + b * velY + c * velZ) * invLen;
|
||
if (dot < epsilon && dot > -epsilon)
|
||
return 0;
|
||
double pt0 = (radius - signedDist) / dot;
|
||
if (pt0 > maxT)
|
||
return 0;
|
||
double pt1 = (-radius - signedDist) / dot;
|
||
double p0X = centerX - radius * a * invLen + velX * pt0;
|
||
double p0Y = centerY - radius * b * invLen + velY * pt0;
|
||
double p0Z = centerZ - radius * c * invLen + velZ * pt0;
|
||
boolean insideTriangle = testPointInTriangle(p0X, p0Y, p0Z, v0X, v0Y, v0Z, v1X, v1Y, v1Z, v2X, v2Y, v2Z);
|
||
if (insideTriangle) {
|
||
pointAndTime.x = p0X;
|
||
pointAndTime.y = p0Y;
|
||
pointAndTime.z = p0Z;
|
||
pointAndTime.w = pt0;
|
||
return POINT_ON_TRIANGLE_FACE;
|
||
}
|
||
int isect = 0;
|
||
double t0 = maxT;
|
||
double A = velX * velX + velY * velY + velZ * velZ;
|
||
double radius2 = radius * radius;
|
||
// test against v0
|
||
double centerV0X = centerX - v0X;
|
||
double centerV0Y = centerY - v0Y;
|
||
double centerV0Z = centerZ - v0Z;
|
||
double B0 = 2.0 * (velX * centerV0X + velY * centerV0Y + velZ * centerV0Z);
|
||
double C0 = centerV0X * centerV0X + centerV0Y * centerV0Y + centerV0Z * centerV0Z - radius2;
|
||
double root0 = computeLowestRoot(A, B0, C0, t0);
|
||
if (root0 < t0) {
|
||
pointAndTime.x = v0X;
|
||
pointAndTime.y = v0Y;
|
||
pointAndTime.z = v0Z;
|
||
pointAndTime.w = root0;
|
||
t0 = root0;
|
||
isect = POINT_ON_TRIANGLE_VERTEX_0;
|
||
}
|
||
// test against v1
|
||
double centerV1X = centerX - v1X;
|
||
double centerV1Y = centerY - v1Y;
|
||
double centerV1Z = centerZ - v1Z;
|
||
double centerV1Len = centerV1X * centerV1X + centerV1Y * centerV1Y + centerV1Z * centerV1Z;
|
||
double B1 = 2.0 * (velX * centerV1X + velY * centerV1Y + velZ * centerV1Z);
|
||
double C1 = centerV1Len - radius2;
|
||
double root1 = computeLowestRoot(A, B1, C1, t0);
|
||
if (root1 < t0) {
|
||
pointAndTime.x = v1X;
|
||
pointAndTime.y = v1Y;
|
||
pointAndTime.z = v1Z;
|
||
pointAndTime.w = root1;
|
||
t0 = root1;
|
||
isect = POINT_ON_TRIANGLE_VERTEX_1;
|
||
}
|
||
// test against v2
|
||
double centerV2X = centerX - v2X;
|
||
double centerV2Y = centerY - v2Y;
|
||
double centerV2Z = centerZ - v2Z;
|
||
double B2 = 2.0 * (velX * centerV2X + velY * centerV2Y + velZ * centerV2Z);
|
||
double C2 = centerV2X * centerV2X + centerV2Y * centerV2Y + centerV2Z * centerV2Z - radius2;
|
||
double root2 = computeLowestRoot(A, B2, C2, t0);
|
||
if (root2 < t0) {
|
||
pointAndTime.x = v2X;
|
||
pointAndTime.y = v2Y;
|
||
pointAndTime.z = v2Z;
|
||
pointAndTime.w = root2;
|
||
t0 = root2;
|
||
isect = POINT_ON_TRIANGLE_VERTEX_2;
|
||
}
|
||
double velLen = velX * velX + velY * velY + velZ * velZ;
|
||
// test against edge10
|
||
double len10 = v10X * v10X + v10Y * v10Y + v10Z * v10Z;
|
||
double baseTo0Len = centerV0X * centerV0X + centerV0Y * centerV0Y + centerV0Z * centerV0Z;
|
||
double v10Vel = (v10X * velX + v10Y * velY + v10Z * velZ);
|
||
double A10 = len10 * -velLen + v10Vel * v10Vel;
|
||
double v10BaseTo0 = v10X * -centerV0X + v10Y * -centerV0Y + v10Z * -centerV0Z;
|
||
double velBaseTo0 = velX * -centerV0X + velY * -centerV0Y + velZ * -centerV0Z;
|
||
double B10 = len10 * 2 * velBaseTo0 - 2 * v10Vel * v10BaseTo0;
|
||
double C10 = len10 * (radius2 - baseTo0Len) + v10BaseTo0 * v10BaseTo0;
|
||
double root10 = computeLowestRoot(A10, B10, C10, t0);
|
||
double f10 = (v10Vel * root10 - v10BaseTo0) / len10;
|
||
if (f10 >= 0.0 && f10 <= 1.0 && root10 < t0) {
|
||
pointAndTime.x = v0X + f10 * v10X;
|
||
pointAndTime.y = v0Y + f10 * v10Y;
|
||
pointAndTime.z = v0Z + f10 * v10Z;
|
||
pointAndTime.w = root10;
|
||
t0 = root10;
|
||
isect = POINT_ON_TRIANGLE_EDGE_01;
|
||
}
|
||
// test against edge20
|
||
double len20 = v20X * v20X + v20Y * v20Y + v20Z * v20Z;
|
||
double v20Vel = (v20X * velX + v20Y * velY + v20Z * velZ);
|
||
double A20 = len20 * -velLen + v20Vel * v20Vel;
|
||
double v20BaseTo0 = v20X * -centerV0X + v20Y * -centerV0Y + v20Z * -centerV0Z;
|
||
double B20 = len20 * 2 * velBaseTo0 - 2 * v20Vel * v20BaseTo0;
|
||
double C20 = len20 * (radius2 - baseTo0Len) + v20BaseTo0 * v20BaseTo0;
|
||
double root20 = computeLowestRoot(A20, B20, C20, t0);
|
||
double f20 = (v20Vel * root20 - v20BaseTo0) / len20;
|
||
if (f20 >= 0.0 && f20 <= 1.0 && root20 < pt1) {
|
||
pointAndTime.x = v0X + f20 * v20X;
|
||
pointAndTime.y = v0Y + f20 * v20Y;
|
||
pointAndTime.z = v0Z + f20 * v20Z;
|
||
pointAndTime.w = root20;
|
||
t0 = root20;
|
||
isect = POINT_ON_TRIANGLE_EDGE_20;
|
||
}
|
||
// test against edge21
|
||
double v21X = v2X - v1X;
|
||
double v21Y = v2Y - v1Y;
|
||
double v21Z = v2Z - v1Z;
|
||
double len21 = v21X * v21X + v21Y * v21Y + v21Z * v21Z;
|
||
double baseTo1Len = centerV1Len;
|
||
double v21Vel = (v21X * velX + v21Y * velY + v21Z * velZ);
|
||
double A21 = len21 * -velLen + v21Vel * v21Vel;
|
||
double v21BaseTo1 = v21X * -centerV1X + v21Y * -centerV1Y + v21Z * -centerV1Z;
|
||
double velBaseTo1 = velX * -centerV1X + velY * -centerV1Y + velZ * -centerV1Z;
|
||
double B21 = len21 * 2 * velBaseTo1 - 2 * v21Vel * v21BaseTo1;
|
||
double C21 = len21 * (radius2 - baseTo1Len) + v21BaseTo1 * v21BaseTo1;
|
||
double root21 = computeLowestRoot(A21, B21, C21, t0);
|
||
double f21 = (v21Vel * root21 - v21BaseTo1) / len21;
|
||
if (f21 >= 0.0 && f21 <= 1.0 && root21 < t0) {
|
||
pointAndTime.x = v1X + f21 * v21X;
|
||
pointAndTime.y = v1Y + f21 * v21Y;
|
||
pointAndTime.z = v1Z + f21 * v21Z;
|
||
pointAndTime.w = root21;
|
||
t0 = root21;
|
||
isect = POINT_ON_TRIANGLE_EDGE_12;
|
||
}
|
||
return isect;
|
||
}
|
||
|
||
/**
|
||
* Compute the lowest root for <code>t</code> in the quadratic equation <code>a*t*t + b*t + c = 0</code>.
|
||
* <p>
|
||
* This is a helper method for {@link #intersectSweptSphereTriangle}
|
||
*
|
||
* @param a
|
||
* the quadratic factor
|
||
* @param b
|
||
* the linear factor
|
||
* @param c
|
||
* the constant
|
||
* @param maxR
|
||
* the maximum expected root
|
||
* @return the lowest of the two roots of the quadratic equation; or {@link Double#POSITIVE_INFINITY}
|
||
*/
|
||
private static double computeLowestRoot(double a, double b, double c, double maxR) {
|
||
double determinant = b * b - 4.0 * a * c;
|
||
if (determinant < 0.0)
|
||
return Double.POSITIVE_INFINITY;
|
||
double sqrtD = Math.sqrt(determinant);
|
||
double r1 = (-b - sqrtD) / (2.0 * a);
|
||
double r2 = (-b + sqrtD) / (2.0 * a);
|
||
if (r1 > r2) {
|
||
double temp = r2;
|
||
r2 = r1;
|
||
r1 = temp;
|
||
}
|
||
if (r1 > 0.0 && r1 < maxR) {
|
||
return r1;
|
||
}
|
||
if (r2 > 0.0 && r2 < maxR) {
|
||
return r2;
|
||
}
|
||
return Double.POSITIVE_INFINITY;
|
||
}
|
||
|
||
/**
|
||
* Test whether the projection of the given point <code>(pX, pY, pZ)</code> lies inside of the triangle defined by the three vertices
|
||
* <code>(v0X, v0Y, v0Z)</code>, <code>(v1X, v1Y, v1Z)</code> and <code>(v2X, v2Y, v2Z)</code>.
|
||
* <p>
|
||
* Reference: <a href="http://www.peroxide.dk/papers/collision/collision.pdf">Improved Collision detection and Response</a>
|
||
*
|
||
* @param pX
|
||
* the x coordinate of the point to test
|
||
* @param pY
|
||
* the y coordinate of the point to test
|
||
* @param pZ
|
||
* the z coordinate of the point to test
|
||
* @param v0X
|
||
* the x coordinate of the first vertex
|
||
* @param v0Y
|
||
* the y coordinate of the first vertex
|
||
* @param v0Z
|
||
* the z coordinate of the first vertex
|
||
* @param v1X
|
||
* the x coordinate of the second vertex
|
||
* @param v1Y
|
||
* the y coordinate of the second vertex
|
||
* @param v1Z
|
||
* the z coordinate of the second vertex
|
||
* @param v2X
|
||
* the x coordinate of the third vertex
|
||
* @param v2Y
|
||
* the y coordinate of the third vertex
|
||
* @param v2Z
|
||
* the z coordinate of the third vertex
|
||
* @return <code>true</code> if the projection of the given point lies inside of the given triangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testPointInTriangle(double pX, double pY, double pZ, double v0X, double v0Y, double v0Z, double v1X, double v1Y, double v1Z, double v2X, double v2Y, double v2Z) {
|
||
double e10X = v1X - v0X;
|
||
double e10Y = v1Y - v0Y;
|
||
double e10Z = v1Z - v0Z;
|
||
double e20X = v2X - v0X;
|
||
double e20Y = v2Y - v0Y;
|
||
double e20Z = v2Z - v0Z;
|
||
double a = e10X * e10X + e10Y * e10Y + e10Z * e10Z;
|
||
double b = e10X * e20X + e10Y * e20Y + e10Z * e20Z;
|
||
double c = e20X * e20X + e20Y * e20Y + e20Z * e20Z;
|
||
double ac_bb = a * c - b * b;
|
||
double vpX = pX - v0X;
|
||
double vpY = pY - v0Y;
|
||
double vpZ = pZ - v0Z;
|
||
double d = vpX * e10X + vpY * e10Y + vpZ * e10Z;
|
||
double e = vpX * e20X + vpY * e20Y + vpZ * e20Z;
|
||
double x = d * c - e * b;
|
||
double y = e * a - d * b;
|
||
double z = x + y - ac_bb;
|
||
return ((Runtime.doubleToLongBits(z) & ~(Runtime.doubleToLongBits(x) | Runtime.doubleToLongBits(y))) & 0x8000000000000000L) != 0L;
|
||
}
|
||
|
||
/**
|
||
* Test whether the given ray with the origin <code>(originX, originY, originZ)</code> and normalized direction <code>(dirX, dirY, dirZ)</code>
|
||
* intersects the given sphere with center <code>(centerX, centerY, centerZ)</code> and square radius <code>radiusSquared</code>,
|
||
* and store the values of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> for both points (near
|
||
* and far) of intersections into the given <code>result</code> vector.
|
||
* <p>
|
||
* This method returns <code>true</code> for a ray whose origin lies inside the sphere.
|
||
* <p>
|
||
* Reference: <a href="http://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection">http://www.scratchapixel.com/</a>
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param originZ
|
||
* the z coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's normalized direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's normalized direction
|
||
* @param dirZ
|
||
* the z coordinate of the ray's normalized direction
|
||
* @param centerX
|
||
* the x coordinate of the sphere's center
|
||
* @param centerY
|
||
* the y coordinate of the sphere's center
|
||
* @param centerZ
|
||
* the z coordinate of the sphere's center
|
||
* @param radiusSquared
|
||
* the sphere radius squared
|
||
* @param result
|
||
* a vector that will contain the values of the parameter <i>t</i> in the ray equation
|
||
* <i>p(t) = origin + t * dir</i> for both points (near, far) of intersections with the sphere
|
||
* @return <code>true</code> if the ray intersects the sphere; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectRaySphere(double originX, double originY, double originZ, double dirX, double dirY, double dirZ,
|
||
double centerX, double centerY, double centerZ, double radiusSquared, Vector2d result) {
|
||
double Lx = centerX - originX;
|
||
double Ly = centerY - originY;
|
||
double Lz = centerZ - originZ;
|
||
double tca = Lx * dirX + Ly * dirY + Lz * dirZ;
|
||
double d2 = Lx * Lx + Ly * Ly + Lz * Lz - tca * tca;
|
||
if (d2 > radiusSquared)
|
||
return false;
|
||
double thc = Math.sqrt(radiusSquared - d2);
|
||
double t0 = tca - thc;
|
||
double t1 = tca + thc;
|
||
if (t0 < t1 && t1 >= 0.0) {
|
||
result.x = t0;
|
||
result.y = t1;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Test whether the ray with the given <code>origin</code> and normalized direction <code>dir</code>
|
||
* intersects the sphere with the given <code>center</code> and square radius <code>radiusSquared</code>,
|
||
* and store the values of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> for both points (near
|
||
* and far) of intersections into the given <code>result</code> vector.
|
||
* <p>
|
||
* This method returns <code>true</code> for a ray whose origin lies inside the sphere.
|
||
* <p>
|
||
* Reference: <a href="http://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection">http://www.scratchapixel.com/</a>
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's normalized direction
|
||
* @param center
|
||
* the sphere's center
|
||
* @param radiusSquared
|
||
* the sphere radius squared
|
||
* @param result
|
||
* a vector that will contain the values of the parameter <i>t</i> in the ray equation
|
||
* <i>p(t) = origin + t * dir</i> for both points (near, far) of intersections with the sphere
|
||
* @return <code>true</code> if the ray intersects the sphere; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectRaySphere(Vector3dc origin, Vector3dc dir, Vector3dc center, double radiusSquared, Vector2d result) {
|
||
return intersectRaySphere(origin.x(), origin.y(), origin.z(), dir.x(), dir.y(), dir.z(), center.x(), center.y(), center.z(), radiusSquared, result);
|
||
}
|
||
|
||
/**
|
||
* Test whether the given ray with the origin <code>(originX, originY, originZ)</code> and normalized direction <code>(dirX, dirY, dirZ)</code>
|
||
* intersects the given sphere with center <code>(centerX, centerY, centerZ)</code> and square radius <code>radiusSquared</code>.
|
||
* <p>
|
||
* This method returns <code>true</code> for a ray whose origin lies inside the sphere.
|
||
* <p>
|
||
* Reference: <a href="http://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection">http://www.scratchapixel.com/</a>
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param originZ
|
||
* the z coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's normalized direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's normalized direction
|
||
* @param dirZ
|
||
* the z coordinate of the ray's normalized direction
|
||
* @param centerX
|
||
* the x coordinate of the sphere's center
|
||
* @param centerY
|
||
* the y coordinate of the sphere's center
|
||
* @param centerZ
|
||
* the z coordinate of the sphere's center
|
||
* @param radiusSquared
|
||
* the sphere radius squared
|
||
* @return <code>true</code> if the ray intersects the sphere; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testRaySphere(double originX, double originY, double originZ, double dirX, double dirY, double dirZ,
|
||
double centerX, double centerY, double centerZ, double radiusSquared) {
|
||
double Lx = centerX - originX;
|
||
double Ly = centerY - originY;
|
||
double Lz = centerZ - originZ;
|
||
double tca = Lx * dirX + Ly * dirY + Lz * dirZ;
|
||
double d2 = Lx * Lx + Ly * Ly + Lz * Lz - tca * tca;
|
||
if (d2 > radiusSquared)
|
||
return false;
|
||
double thc = Math.sqrt(radiusSquared - d2);
|
||
double t0 = tca - thc;
|
||
double t1 = tca + thc;
|
||
return t0 < t1 && t1 >= 0.0;
|
||
}
|
||
|
||
/**
|
||
* Test whether the ray with the given <code>origin</code> and normalized direction <code>dir</code>
|
||
* intersects the sphere with the given <code>center</code> and square radius.
|
||
* <p>
|
||
* This method returns <code>true</code> for a ray whose origin lies inside the sphere.
|
||
* <p>
|
||
* Reference: <a href="http://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection">http://www.scratchapixel.com/</a>
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's normalized direction
|
||
* @param center
|
||
* the sphere's center
|
||
* @param radiusSquared
|
||
* the sphere radius squared
|
||
* @return <code>true</code> if the ray intersects the sphere; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testRaySphere(Vector3dc origin, Vector3dc dir, Vector3dc center, double radiusSquared) {
|
||
return testRaySphere(origin.x(), origin.y(), origin.z(), dir.x(), dir.y(), dir.z(), center.x(), center.y(), center.z(), radiusSquared);
|
||
}
|
||
|
||
/**
|
||
* Test whether the line segment with the end points <code>(p0X, p0Y, p0Z)</code> and <code>(p1X, p1Y, p1Z)</code>
|
||
* intersects the given sphere with center <code>(centerX, centerY, centerZ)</code> and square radius <code>radiusSquared</code>.
|
||
* <p>
|
||
* Reference: <a href="http://paulbourke.net/geometry/circlesphere/index.html#linesphere">http://paulbourke.net/</a>
|
||
*
|
||
* @param p0X
|
||
* the x coordinate of the line segment's first end point
|
||
* @param p0Y
|
||
* the y coordinate of the line segment's first end point
|
||
* @param p0Z
|
||
* the z coordinate of the line segment's first end point
|
||
* @param p1X
|
||
* the x coordinate of the line segment's second end point
|
||
* @param p1Y
|
||
* the y coordinate of the line segment's second end point
|
||
* @param p1Z
|
||
* the z coordinate of the line segment's second end point
|
||
* @param centerX
|
||
* the x coordinate of the sphere's center
|
||
* @param centerY
|
||
* the y coordinate of the sphere's center
|
||
* @param centerZ
|
||
* the z coordinate of the sphere's center
|
||
* @param radiusSquared
|
||
* the sphere radius squared
|
||
* @return <code>true</code> if the line segment intersects the sphere; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testLineSegmentSphere(double p0X, double p0Y, double p0Z, double p1X, double p1Y, double p1Z,
|
||
double centerX, double centerY, double centerZ, double radiusSquared) {
|
||
double dX = p1X - p0X;
|
||
double dY = p1Y - p0Y;
|
||
double dZ = p1Z - p0Z;
|
||
double nom = (centerX - p0X) * dX + (centerY - p0Y) * dY + (centerZ - p0Z) * dZ;
|
||
double den = dX * dX + dY * dY + dZ * dZ;
|
||
double u = nom / den;
|
||
if (u < 0.0) {
|
||
dX = p0X - centerX;
|
||
dY = p0Y - centerY;
|
||
dZ = p0Z - centerZ;
|
||
} else if (u > 1.0) {
|
||
dX = p1X - centerX;
|
||
dY = p1Y - centerY;
|
||
dZ = p1Z - centerZ;
|
||
} else { // has to be >= 0 and <= 1
|
||
double pX = p0X + u * dX;
|
||
double pY = p0Y + u * dY;
|
||
double pZ = p0Z + u * dZ;
|
||
dX = pX - centerX;
|
||
dY = pY - centerY;
|
||
dZ = pZ - centerZ;
|
||
}
|
||
double dist = dX * dX + dY * dY + dZ * dZ;
|
||
return dist <= radiusSquared;
|
||
}
|
||
|
||
/**
|
||
* Test whether the line segment with the end points <code>p0</code> and <code>p1</code>
|
||
* intersects the given sphere with center <code>center</code> and square radius <code>radiusSquared</code>.
|
||
* <p>
|
||
* Reference: <a href="http://paulbourke.net/geometry/circlesphere/index.html#linesphere">http://paulbourke.net/</a>
|
||
*
|
||
* @param p0
|
||
* the line segment's first end point
|
||
* @param p1
|
||
* the line segment's second end point
|
||
* @param center
|
||
* the sphere's center
|
||
* @param radiusSquared
|
||
* the sphere radius squared
|
||
* @return <code>true</code> if the line segment intersects the sphere; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testLineSegmentSphere(Vector3dc p0, Vector3dc p1, Vector3dc center, double radiusSquared) {
|
||
return testLineSegmentSphere(p0.x(), p0.y(), p0.z(), p1.x(), p1.y(), p1.z(), center.x(), center.y(), center.z(), radiusSquared);
|
||
}
|
||
|
||
/**
|
||
* Test whether the given ray with the origin <code>(originX, originY, originZ)</code> and direction <code>(dirX, dirY, dirZ)</code>
|
||
* intersects the axis-aligned box given as its minimum corner <code>(minX, minY, minZ)</code> and maximum corner <code>(maxX, maxY, maxZ)</code>,
|
||
* and return the values of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the near and far point of intersection.
|
||
* <p>
|
||
* This method returns <code>true</code> for a ray whose origin lies inside the axis-aligned box.
|
||
* <p>
|
||
* If many boxes need to be tested against the same ray, then the {@link RayAabIntersection} class is likely more efficient.
|
||
* <p>
|
||
* Reference: <a href="https://dl.acm.org/citation.cfm?id=1198748">An Efficient and Robust Ray–Box Intersection</a>
|
||
*
|
||
* @see #intersectRayAab(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector2d)
|
||
* @see RayAabIntersection
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param originZ
|
||
* the z coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param dirZ
|
||
* the z coordinate of the ray's direction
|
||
* @param minX
|
||
* the x coordinate of the minimum corner of the axis-aligned box
|
||
* @param minY
|
||
* the y coordinate of the minimum corner of the axis-aligned box
|
||
* @param minZ
|
||
* the z coordinate of the minimum corner of the axis-aligned box
|
||
* @param maxX
|
||
* the x coordinate of the maximum corner of the axis-aligned box
|
||
* @param maxY
|
||
* the y coordinate of the maximum corner of the axis-aligned box
|
||
* @param maxZ
|
||
* the y coordinate of the maximum corner of the axis-aligned box
|
||
* @param result
|
||
* a vector which will hold the resulting values of the parameter
|
||
* <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the near and far point of intersection
|
||
* iff the ray intersects the axis-aligned box
|
||
* @return <code>true</code> if the given ray intersects the axis-aligned box; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectRayAab(double originX, double originY, double originZ, double dirX, double dirY, double dirZ,
|
||
double minX, double minY, double minZ, double maxX, double maxY, double maxZ, Vector2d result) {
|
||
double invDirX = 1.0 / dirX, invDirY = 1.0 / dirY, invDirZ = 1.0 / dirZ;
|
||
double tNear, tFar, tymin, tymax, tzmin, tzmax;
|
||
if (invDirX >= 0.0) {
|
||
tNear = (minX - originX) * invDirX;
|
||
tFar = (maxX - originX) * invDirX;
|
||
} else {
|
||
tNear = (maxX - originX) * invDirX;
|
||
tFar = (minX - originX) * invDirX;
|
||
}
|
||
if (invDirY >= 0.0) {
|
||
tymin = (minY - originY) * invDirY;
|
||
tymax = (maxY - originY) * invDirY;
|
||
} else {
|
||
tymin = (maxY - originY) * invDirY;
|
||
tymax = (minY - originY) * invDirY;
|
||
}
|
||
if (tNear > tymax || tymin > tFar)
|
||
return false;
|
||
if (invDirZ >= 0.0) {
|
||
tzmin = (minZ - originZ) * invDirZ;
|
||
tzmax = (maxZ - originZ) * invDirZ;
|
||
} else {
|
||
tzmin = (maxZ - originZ) * invDirZ;
|
||
tzmax = (minZ - originZ) * invDirZ;
|
||
}
|
||
if (tNear > tzmax || tzmin > tFar)
|
||
return false;
|
||
tNear = tymin > tNear || Double.isNaN(tNear) ? tymin : tNear;
|
||
tFar = tymax < tFar || Double.isNaN(tFar) ? tymax : tFar;
|
||
tNear = tzmin > tNear ? tzmin : tNear;
|
||
tFar = tzmax < tFar ? tzmax : tFar;
|
||
if (tNear < tFar && tFar >= 0.0) {
|
||
result.x = tNear;
|
||
result.y = tFar;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Test whether the ray with the given <code>origin</code> and direction <code>dir</code>
|
||
* intersects the axis-aligned box specified as its minimum corner <code>min</code> and maximum corner <code>max</code>,
|
||
* and return the values of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the near and far point of intersection..
|
||
* <p>
|
||
* This method returns <code>true</code> for a ray whose origin lies inside the axis-aligned box.
|
||
* <p>
|
||
* If many boxes need to be tested against the same ray, then the {@link RayAabIntersection} class is likely more efficient.
|
||
* <p>
|
||
* Reference: <a href="https://dl.acm.org/citation.cfm?id=1198748">An Efficient and Robust Ray–Box Intersection</a>
|
||
*
|
||
* @see #intersectRayAab(double, double, double, double, double, double, double, double, double, double, double, double, Vector2d)
|
||
* @see RayAabIntersection
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's direction
|
||
* @param min
|
||
* the minimum corner of the axis-aligned box
|
||
* @param max
|
||
* the maximum corner of the axis-aligned box
|
||
* @param result
|
||
* a vector which will hold the resulting values of the parameter
|
||
* <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the near and far point of intersection
|
||
* iff the ray intersects the axis-aligned box
|
||
* @return <code>true</code> if the given ray intersects the axis-aligned box; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectRayAab(Vector3dc origin, Vector3dc dir, Vector3dc min, Vector3dc max, Vector2d result) {
|
||
return intersectRayAab(origin.x(), origin.y(), origin.z(), dir.x(), dir.y(), dir.z(), min.x(), min.y(), min.z(), max.x(), max.y(), max.z(), result);
|
||
}
|
||
|
||
/**
|
||
* Determine whether the undirected line segment with the end points <code>(p0X, p0Y, p0Z)</code> and <code>(p1X, p1Y, p1Z)</code>
|
||
* intersects the axis-aligned box given as its minimum corner <code>(minX, minY, minZ)</code> and maximum corner <code>(maxX, maxY, maxZ)</code>,
|
||
* and return the values of the parameter <i>t</i> in the ray equation <i>p(t) = origin + p0 * (p1 - p0)</i> of the near and far point of intersection.
|
||
* <p>
|
||
* This method returns <code>true</code> for a line segment whose either end point lies inside the axis-aligned box.
|
||
* <p>
|
||
* Reference: <a href="https://dl.acm.org/citation.cfm?id=1198748">An Efficient and Robust Ray–Box Intersection</a>
|
||
*
|
||
* @see #intersectLineSegmentAab(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector2d)
|
||
*
|
||
* @param p0X
|
||
* the x coordinate of the line segment's first end point
|
||
* @param p0Y
|
||
* the y coordinate of the line segment's first end point
|
||
* @param p0Z
|
||
* the z coordinate of the line segment's first end point
|
||
* @param p1X
|
||
* the x coordinate of the line segment's second end point
|
||
* @param p1Y
|
||
* the y coordinate of the line segment's second end point
|
||
* @param p1Z
|
||
* the z coordinate of the line segment's second end point
|
||
* @param minX
|
||
* the x coordinate of one corner of the axis-aligned box
|
||
* @param minY
|
||
* the y coordinate of one corner of the axis-aligned box
|
||
* @param minZ
|
||
* the z coordinate of one corner of the axis-aligned box
|
||
* @param maxX
|
||
* the x coordinate of the opposite corner of the axis-aligned box
|
||
* @param maxY
|
||
* the y coordinate of the opposite corner of the axis-aligned box
|
||
* @param maxZ
|
||
* the y coordinate of the opposite corner of the axis-aligned box
|
||
* @param result
|
||
* a vector which will hold the resulting values of the parameter
|
||
* <i>t</i> in the ray equation <i>p(t) = p0 + t * (p1 - p0)</i> of the near and far point of intersection
|
||
* iff the line segment intersects the axis-aligned box
|
||
* @return {@link #INSIDE} if the line segment lies completely inside of the axis-aligned box; or
|
||
* {@link #OUTSIDE} if the line segment lies completely outside of the axis-aligned box; or
|
||
* {@link #ONE_INTERSECTION} if one of the end points of the line segment lies inside of the axis-aligned box; or
|
||
* {@link #TWO_INTERSECTION} if the line segment intersects two sides of the axis-aligned box
|
||
* or lies on an edge or a side of the box
|
||
*/
|
||
public static int intersectLineSegmentAab(double p0X, double p0Y, double p0Z, double p1X, double p1Y, double p1Z,
|
||
double minX, double minY, double minZ, double maxX, double maxY, double maxZ, Vector2d result) {
|
||
double dirX = p1X - p0X, dirY = p1Y - p0Y, dirZ = p1Z - p0Z;
|
||
double invDirX = 1.0 / dirX, invDirY = 1.0 / dirY, invDirZ = 1.0 / dirZ;
|
||
double tNear, tFar, tymin, tymax, tzmin, tzmax;
|
||
if (invDirX >= 0.0) {
|
||
tNear = (minX - p0X) * invDirX;
|
||
tFar = (maxX - p0X) * invDirX;
|
||
} else {
|
||
tNear = (maxX - p0X) * invDirX;
|
||
tFar = (minX - p0X) * invDirX;
|
||
}
|
||
if (invDirY >= 0.0) {
|
||
tymin = (minY - p0Y) * invDirY;
|
||
tymax = (maxY - p0Y) * invDirY;
|
||
} else {
|
||
tymin = (maxY - p0Y) * invDirY;
|
||
tymax = (minY - p0Y) * invDirY;
|
||
}
|
||
if (tNear > tymax || tymin > tFar)
|
||
return OUTSIDE;
|
||
if (invDirZ >= 0.0) {
|
||
tzmin = (minZ - p0Z) * invDirZ;
|
||
tzmax = (maxZ - p0Z) * invDirZ;
|
||
} else {
|
||
tzmin = (maxZ - p0Z) * invDirZ;
|
||
tzmax = (minZ - p0Z) * invDirZ;
|
||
}
|
||
if (tNear > tzmax || tzmin > tFar)
|
||
return OUTSIDE;
|
||
tNear = tymin > tNear || Double.isNaN(tNear) ? tymin : tNear;
|
||
tFar = tymax < tFar || Double.isNaN(tFar) ? tymax : tFar;
|
||
tNear = tzmin > tNear ? tzmin : tNear;
|
||
tFar = tzmax < tFar ? tzmax : tFar;
|
||
int type = OUTSIDE;
|
||
if (tNear <= tFar && tNear <= 1.0f && tFar >= 0.0f) {
|
||
if (tNear >= 0.0f && tFar > 1.0f) {
|
||
tFar = tNear;
|
||
type = ONE_INTERSECTION;
|
||
} else if (tNear < 0.0f && tFar <= 1.0f) {
|
||
tNear = tFar;
|
||
type = ONE_INTERSECTION;
|
||
} else if (tNear < 0.0f && tFar > 1.0f) {
|
||
type = INSIDE;
|
||
} else {
|
||
type = TWO_INTERSECTION;
|
||
}
|
||
result.x = tNear;
|
||
result.y = tFar;
|
||
}
|
||
return type;
|
||
}
|
||
|
||
/**
|
||
* Determine whether the undirected line segment with the end points <code>p0</code> and <code>p1</code>
|
||
* intersects the axis-aligned box given as its minimum corner <code>min</code> and maximum corner <code>max</code>,
|
||
* and return the values of the parameter <i>t</i> in the ray equation <i>p(t) = origin + p0 * (p1 - p0)</i> of the near and far point of intersection.
|
||
* <p>
|
||
* This method returns <code>true</code> for a line segment whose either end point lies inside the axis-aligned box.
|
||
* <p>
|
||
* Reference: <a href="https://dl.acm.org/citation.cfm?id=1198748">An Efficient and Robust Ray–Box Intersection</a>
|
||
*
|
||
* @see #intersectLineSegmentAab(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector2d)
|
||
*
|
||
* @param p0
|
||
* the line segment's first end point
|
||
* @param p1
|
||
* the line segment's second end point
|
||
* @param min
|
||
* the minimum corner of the axis-aligned box
|
||
* @param max
|
||
* the maximum corner of the axis-aligned box
|
||
* @param result
|
||
* a vector which will hold the resulting values of the parameter
|
||
* <i>t</i> in the ray equation <i>p(t) = p0 + t * (p1 - p0)</i> of the near and far point of intersection
|
||
* iff the line segment intersects the axis-aligned box
|
||
* @return {@link #INSIDE} if the line segment lies completely inside of the axis-aligned box; or
|
||
* {@link #OUTSIDE} if the line segment lies completely outside of the axis-aligned box; or
|
||
* {@link #ONE_INTERSECTION} if one of the end points of the line segment lies inside of the axis-aligned box; or
|
||
* {@link #TWO_INTERSECTION} if the line segment intersects two sides of the axis-aligned box
|
||
* or lies on an edge or a side of the box
|
||
*/
|
||
public static int intersectLineSegmentAab(Vector3dc p0, Vector3dc p1, Vector3dc min, Vector3dc max, Vector2d result) {
|
||
return intersectLineSegmentAab(p0.x(), p0.y(), p0.z(), p1.x(), p1.y(), p1.z(), min.x(), min.y(), min.z(), max.x(), max.y(), max.z(), result);
|
||
}
|
||
|
||
/**
|
||
* Test whether the given ray with the origin <code>(originX, originY, originZ)</code> and direction <code>(dirX, dirY, dirZ)</code>
|
||
* intersects the axis-aligned box given as its minimum corner <code>(minX, minY, minZ)</code> and maximum corner <code>(maxX, maxY, maxZ)</code>.
|
||
* <p>
|
||
* This method returns <code>true</code> for a ray whose origin lies inside the axis-aligned box.
|
||
* <p>
|
||
* If many boxes need to be tested against the same ray, then the {@link RayAabIntersection} class is likely more efficient.
|
||
* <p>
|
||
* Reference: <a href="https://dl.acm.org/citation.cfm?id=1198748">An Efficient and Robust Ray–Box Intersection</a>
|
||
*
|
||
* @see #testRayAab(Vector3dc, Vector3dc, Vector3dc, Vector3dc)
|
||
* @see RayAabIntersection
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param originZ
|
||
* the z coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param dirZ
|
||
* the z coordinate of the ray's direction
|
||
* @param minX
|
||
* the x coordinate of the minimum corner of the axis-aligned box
|
||
* @param minY
|
||
* the y coordinate of the minimum corner of the axis-aligned box
|
||
* @param minZ
|
||
* the z coordinate of the minimum corner of the axis-aligned box
|
||
* @param maxX
|
||
* the x coordinate of the maximum corner of the axis-aligned box
|
||
* @param maxY
|
||
* the y coordinate of the maximum corner of the axis-aligned box
|
||
* @param maxZ
|
||
* the y coordinate of the maximum corner of the axis-aligned box
|
||
* @return <code>true</code> if the given ray intersects the axis-aligned box; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testRayAab(double originX, double originY, double originZ, double dirX, double dirY, double dirZ,
|
||
double minX, double minY, double minZ, double maxX, double maxY, double maxZ) {
|
||
double invDirX = 1.0 / dirX, invDirY = 1.0 / dirY, invDirZ = 1.0 / dirZ;
|
||
double tNear, tFar, tymin, tymax, tzmin, tzmax;
|
||
if (invDirX >= 0.0) {
|
||
tNear = (minX - originX) * invDirX;
|
||
tFar = (maxX - originX) * invDirX;
|
||
} else {
|
||
tNear = (maxX - originX) * invDirX;
|
||
tFar = (minX - originX) * invDirX;
|
||
}
|
||
if (invDirY >= 0.0) {
|
||
tymin = (minY - originY) * invDirY;
|
||
tymax = (maxY - originY) * invDirY;
|
||
} else {
|
||
tymin = (maxY - originY) * invDirY;
|
||
tymax = (minY - originY) * invDirY;
|
||
}
|
||
if (tNear > tymax || tymin > tFar)
|
||
return false;
|
||
if (invDirZ >= 0.0) {
|
||
tzmin = (minZ - originZ) * invDirZ;
|
||
tzmax = (maxZ - originZ) * invDirZ;
|
||
} else {
|
||
tzmin = (maxZ - originZ) * invDirZ;
|
||
tzmax = (minZ - originZ) * invDirZ;
|
||
}
|
||
if (tNear > tzmax || tzmin > tFar)
|
||
return false;
|
||
tNear = tymin > tNear || Double.isNaN(tNear) ? tymin : tNear;
|
||
tFar = tymax < tFar || Double.isNaN(tFar) ? tymax : tFar;
|
||
tNear = tzmin > tNear ? tzmin : tNear;
|
||
tFar = tzmax < tFar ? tzmax : tFar;
|
||
return tNear < tFar && tFar >= 0.0;
|
||
}
|
||
|
||
/**
|
||
* Test whether the ray with the given <code>origin</code> and direction <code>dir</code>
|
||
* intersects the axis-aligned box specified as its minimum corner <code>min</code> and maximum corner <code>max</code>.
|
||
* <p>
|
||
* This method returns <code>true</code> for a ray whose origin lies inside the axis-aligned box.
|
||
* <p>
|
||
* If many boxes need to be tested against the same ray, then the {@link RayAabIntersection} class is likely more efficient.
|
||
* <p>
|
||
* Reference: <a href="https://dl.acm.org/citation.cfm?id=1198748">An Efficient and Robust Ray–Box Intersection</a>
|
||
*
|
||
* @see #testRayAab(double, double, double, double, double, double, double, double, double, double, double, double)
|
||
* @see RayAabIntersection
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's direction
|
||
* @param min
|
||
* the minimum corner of the axis-aligned box
|
||
* @param max
|
||
* the maximum corner of the axis-aligned box
|
||
* @return <code>true</code> if the given ray intersects the axis-aligned box; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testRayAab(Vector3dc origin, Vector3dc dir, Vector3dc min, Vector3dc max) {
|
||
return testRayAab(origin.x(), origin.y(), origin.z(), dir.x(), dir.y(), dir.z(), min.x(), min.y(), min.z(), max.x(), max.y(), max.z());
|
||
}
|
||
|
||
/**
|
||
* Test whether the given ray with the origin <code>(originX, originY, originZ)</code> and direction <code>(dirX, dirY, dirZ)</code>
|
||
* intersects the frontface of the triangle consisting of the three vertices <code>(v0X, v0Y, v0Z)</code>, <code>(v1X, v1Y, v1Z)</code> and <code>(v2X, v2Y, v2Z)</code>.
|
||
* <p>
|
||
* This is an implementation of the <a href="http://www.graphics.cornell.edu/pubs/1997/MT97.pdf">
|
||
* Fast, Minimum Storage Ray/Triangle Intersection</a> method.
|
||
* <p>
|
||
* This test implements backface culling, that is, it will return <code>false</code> when the triangle is in clockwise
|
||
* winding order assuming a <i>right-handed</i> coordinate system when seen along the ray's direction, even if the ray intersects the triangle.
|
||
* This is in compliance with how OpenGL handles backface culling with default frontface/backface settings.
|
||
*
|
||
* @see #testRayTriangleFront(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector3dc, double)
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param originZ
|
||
* the z coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param dirZ
|
||
* the z coordinate of the ray's direction
|
||
* @param v0X
|
||
* the x coordinate of the first vertex
|
||
* @param v0Y
|
||
* the y coordinate of the first vertex
|
||
* @param v0Z
|
||
* the z coordinate of the first vertex
|
||
* @param v1X
|
||
* the x coordinate of the second vertex
|
||
* @param v1Y
|
||
* the y coordinate of the second vertex
|
||
* @param v1Z
|
||
* the z coordinate of the second vertex
|
||
* @param v2X
|
||
* the x coordinate of the third vertex
|
||
* @param v2Y
|
||
* the y coordinate of the third vertex
|
||
* @param v2Z
|
||
* the z coordinate of the third vertex
|
||
* @param epsilon
|
||
* a small epsilon when testing rays that are almost parallel to the triangle
|
||
* @return <code>true</code> if the given ray intersects the frontface of the triangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testRayTriangleFront(double originX, double originY, double originZ, double dirX, double dirY, double dirZ,
|
||
double v0X, double v0Y, double v0Z, double v1X, double v1Y, double v1Z, double v2X, double v2Y, double v2Z,
|
||
double epsilon) {
|
||
double edge1X = v1X - v0X;
|
||
double edge1Y = v1Y - v0Y;
|
||
double edge1Z = v1Z - v0Z;
|
||
double edge2X = v2X - v0X;
|
||
double edge2Y = v2Y - v0Y;
|
||
double edge2Z = v2Z - v0Z;
|
||
double pvecX = dirY * edge2Z - dirZ * edge2Y;
|
||
double pvecY = dirZ * edge2X - dirX * edge2Z;
|
||
double pvecZ = dirX * edge2Y - dirY * edge2X;
|
||
double det = edge1X * pvecX + edge1Y * pvecY + edge1Z * pvecZ;
|
||
if (det < epsilon)
|
||
return false;
|
||
double tvecX = originX - v0X;
|
||
double tvecY = originY - v0Y;
|
||
double tvecZ = originZ - v0Z;
|
||
double u = (tvecX * pvecX + tvecY * pvecY + tvecZ * pvecZ);
|
||
if (u < 0.0 || u > det)
|
||
return false;
|
||
double qvecX = tvecY * edge1Z - tvecZ * edge1Y;
|
||
double qvecY = tvecZ * edge1X - tvecX * edge1Z;
|
||
double qvecZ = tvecX * edge1Y - tvecY * edge1X;
|
||
double v = (dirX * qvecX + dirY * qvecY + dirZ * qvecZ);
|
||
if (v < 0.0 || u + v > det)
|
||
return false;
|
||
double invDet = 1.0 / det;
|
||
double t = (edge2X * qvecX + edge2Y * qvecY + edge2Z * qvecZ) * invDet;
|
||
return t >= epsilon;
|
||
}
|
||
|
||
/**
|
||
* Test whether the ray with the given <code>origin</code> and the given <code>dir</code> intersects the frontface of the triangle consisting of the three vertices
|
||
* <code>v0</code>, <code>v1</code> and <code>v2</code>.
|
||
* <p>
|
||
* This is an implementation of the <a href="http://www.graphics.cornell.edu/pubs/1997/MT97.pdf">
|
||
* Fast, Minimum Storage Ray/Triangle Intersection</a> method.
|
||
* <p>
|
||
* This test implements backface culling, that is, it will return <code>false</code> when the triangle is in clockwise
|
||
* winding order assuming a <i>right-handed</i> coordinate system when seen along the ray's direction, even if the ray intersects the triangle.
|
||
* This is in compliance with how OpenGL handles backface culling with default frontface/backface settings.
|
||
*
|
||
* @see #testRayTriangleFront(double, double, double, double, double, double, double, double, double, double, double, double, double, double, double, double)
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's direction
|
||
* @param v0
|
||
* the position of the first vertex
|
||
* @param v1
|
||
* the position of the second vertex
|
||
* @param v2
|
||
* the position of the third vertex
|
||
* @param epsilon
|
||
* a small epsilon when testing rays that are almost parallel to the triangle
|
||
* @return <code>true</code> if the given ray intersects the frontface of the triangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testRayTriangleFront(Vector3dc origin, Vector3dc dir, Vector3dc v0, Vector3dc v1, Vector3dc v2, double epsilon) {
|
||
return testRayTriangleFront(origin.x(), origin.y(), origin.z(), dir.x(), dir.y(), dir.z(), v0.x(), v0.y(), v0.z(), v1.x(), v1.y(), v1.z(), v2.x(), v2.y(), v2.z(), epsilon);
|
||
}
|
||
|
||
/**
|
||
* Test whether the given ray with the origin <code>(originX, originY, originZ)</code> and direction <code>(dirX, dirY, dirZ)</code>
|
||
* intersects the triangle consisting of the three vertices <code>(v0X, v0Y, v0Z)</code>, <code>(v1X, v1Y, v1Z)</code> and <code>(v2X, v2Y, v2Z)</code>.
|
||
* <p>
|
||
* This is an implementation of the <a href="http://www.graphics.cornell.edu/pubs/1997/MT97.pdf">
|
||
* Fast, Minimum Storage Ray/Triangle Intersection</a> method.
|
||
* <p>
|
||
* This test does not take into account the winding order of the triangle, so a ray will intersect a front-facing triangle as well as a back-facing triangle.
|
||
*
|
||
* @see #testRayTriangle(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector3dc, double)
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param originZ
|
||
* the z coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param dirZ
|
||
* the z coordinate of the ray's direction
|
||
* @param v0X
|
||
* the x coordinate of the first vertex
|
||
* @param v0Y
|
||
* the y coordinate of the first vertex
|
||
* @param v0Z
|
||
* the z coordinate of the first vertex
|
||
* @param v1X
|
||
* the x coordinate of the second vertex
|
||
* @param v1Y
|
||
* the y coordinate of the second vertex
|
||
* @param v1Z
|
||
* the z coordinate of the second vertex
|
||
* @param v2X
|
||
* the x coordinate of the third vertex
|
||
* @param v2Y
|
||
* the y coordinate of the third vertex
|
||
* @param v2Z
|
||
* the z coordinate of the third vertex
|
||
* @param epsilon
|
||
* a small epsilon when testing rays that are almost parallel to the triangle
|
||
* @return <code>true</code> if the given ray intersects the frontface of the triangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testRayTriangle(double originX, double originY, double originZ, double dirX, double dirY, double dirZ,
|
||
double v0X, double v0Y, double v0Z, double v1X, double v1Y, double v1Z, double v2X, double v2Y, double v2Z,
|
||
double epsilon) {
|
||
double edge1X = v1X - v0X;
|
||
double edge1Y = v1Y - v0Y;
|
||
double edge1Z = v1Z - v0Z;
|
||
double edge2X = v2X - v0X;
|
||
double edge2Y = v2Y - v0Y;
|
||
double edge2Z = v2Z - v0Z;
|
||
double pvecX = dirY * edge2Z - dirZ * edge2Y;
|
||
double pvecY = dirZ * edge2X - dirX * edge2Z;
|
||
double pvecZ = dirX * edge2Y - dirY * edge2X;
|
||
double det = edge1X * pvecX + edge1Y * pvecY + edge1Z * pvecZ;
|
||
if (det > -epsilon && det < epsilon)
|
||
return false;
|
||
double tvecX = originX - v0X;
|
||
double tvecY = originY - v0Y;
|
||
double tvecZ = originZ - v0Z;
|
||
double invDet = 1.0 / det;
|
||
double u = (tvecX * pvecX + tvecY * pvecY + tvecZ * pvecZ) * invDet;
|
||
if (u < 0.0 || u > 1.0)
|
||
return false;
|
||
double qvecX = tvecY * edge1Z - tvecZ * edge1Y;
|
||
double qvecY = tvecZ * edge1X - tvecX * edge1Z;
|
||
double qvecZ = tvecX * edge1Y - tvecY * edge1X;
|
||
double v = (dirX * qvecX + dirY * qvecY + dirZ * qvecZ) * invDet;
|
||
if (v < 0.0 || u + v > 1.0)
|
||
return false;
|
||
double t = (edge2X * qvecX + edge2Y * qvecY + edge2Z * qvecZ) * invDet;
|
||
return t >= epsilon;
|
||
}
|
||
|
||
/**
|
||
* Test whether the ray with the given <code>origin</code> and the given <code>dir</code> intersects the frontface of the triangle consisting of the three vertices
|
||
* <code>v0</code>, <code>v1</code> and <code>v2</code>.
|
||
* <p>
|
||
* This is an implementation of the <a href="http://www.graphics.cornell.edu/pubs/1997/MT97.pdf">
|
||
* Fast, Minimum Storage Ray/Triangle Intersection</a> method.
|
||
* <p>
|
||
* This test does not take into account the winding order of the triangle, so a ray will intersect a front-facing triangle as well as a back-facing triangle.
|
||
*
|
||
* @see #testRayTriangle(double, double, double, double, double, double, double, double, double, double, double, double, double, double, double, double)
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's direction
|
||
* @param v0
|
||
* the position of the first vertex
|
||
* @param v1
|
||
* the position of the second vertex
|
||
* @param v2
|
||
* the position of the third vertex
|
||
* @param epsilon
|
||
* a small epsilon when testing rays that are almost parallel to the triangle
|
||
* @return <code>true</code> if the given ray intersects the frontface of the triangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testRayTriangle(Vector3dc origin, Vector3dc dir, Vector3dc v0, Vector3dc v1, Vector3dc v2, double epsilon) {
|
||
return testRayTriangle(origin.x(), origin.y(), origin.z(), dir.x(), dir.y(), dir.z(), v0.x(), v0.y(), v0.z(), v1.x(), v1.y(), v1.z(), v2.x(), v2.y(), v2.z(), epsilon);
|
||
}
|
||
|
||
/**
|
||
* Determine whether the given ray with the origin <code>(originX, originY, originZ)</code> and direction <code>(dirX, dirY, dirZ)</code>
|
||
* intersects the frontface of the triangle consisting of the three vertices <code>(v0X, v0Y, v0Z)</code>, <code>(v1X, v1Y, v1Z)</code> and <code>(v2X, v2Y, v2Z)</code>
|
||
* and return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the point of intersection.
|
||
* <p>
|
||
* This is an implementation of the <a href="http://www.graphics.cornell.edu/pubs/1997/MT97.pdf">
|
||
* Fast, Minimum Storage Ray/Triangle Intersection</a> method.
|
||
* <p>
|
||
* This test implements backface culling, that is, it will return <code>false</code> when the triangle is in clockwise
|
||
* winding order assuming a <i>right-handed</i> coordinate system when seen along the ray's direction, even if the ray intersects the triangle.
|
||
* This is in compliance with how OpenGL handles backface culling with default frontface/backface settings.
|
||
*
|
||
* @see #testRayTriangleFront(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector3dc, double)
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param originZ
|
||
* the z coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param dirZ
|
||
* the z coordinate of the ray's direction
|
||
* @param v0X
|
||
* the x coordinate of the first vertex
|
||
* @param v0Y
|
||
* the y coordinate of the first vertex
|
||
* @param v0Z
|
||
* the z coordinate of the first vertex
|
||
* @param v1X
|
||
* the x coordinate of the second vertex
|
||
* @param v1Y
|
||
* the y coordinate of the second vertex
|
||
* @param v1Z
|
||
* the z coordinate of the second vertex
|
||
* @param v2X
|
||
* the x coordinate of the third vertex
|
||
* @param v2Y
|
||
* the y coordinate of the third vertex
|
||
* @param v2Z
|
||
* the z coordinate of the third vertex
|
||
* @param epsilon
|
||
* a small epsilon when testing rays that are almost parallel to the triangle
|
||
* @return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the point of intersection
|
||
* if the ray intersects the frontface of the triangle; <code>-1.0</code> otherwise
|
||
*/
|
||
public static double intersectRayTriangleFront(double originX, double originY, double originZ, double dirX, double dirY, double dirZ,
|
||
double v0X, double v0Y, double v0Z, double v1X, double v1Y, double v1Z, double v2X, double v2Y, double v2Z,
|
||
double epsilon) {
|
||
double edge1X = v1X - v0X;
|
||
double edge1Y = v1Y - v0Y;
|
||
double edge1Z = v1Z - v0Z;
|
||
double edge2X = v2X - v0X;
|
||
double edge2Y = v2Y - v0Y;
|
||
double edge2Z = v2Z - v0Z;
|
||
double pvecX = dirY * edge2Z - dirZ * edge2Y;
|
||
double pvecY = dirZ * edge2X - dirX * edge2Z;
|
||
double pvecZ = dirX * edge2Y - dirY * edge2X;
|
||
double det = edge1X * pvecX + edge1Y * pvecY + edge1Z * pvecZ;
|
||
if (det <= epsilon)
|
||
return -1.0;
|
||
double tvecX = originX - v0X;
|
||
double tvecY = originY - v0Y;
|
||
double tvecZ = originZ - v0Z;
|
||
double u = tvecX * pvecX + tvecY * pvecY + tvecZ * pvecZ;
|
||
if (u < 0.0 || u > det)
|
||
return -1.0;
|
||
double qvecX = tvecY * edge1Z - tvecZ * edge1Y;
|
||
double qvecY = tvecZ * edge1X - tvecX * edge1Z;
|
||
double qvecZ = tvecX * edge1Y - tvecY * edge1X;
|
||
double v = dirX * qvecX + dirY * qvecY + dirZ * qvecZ;
|
||
if (v < 0.0 || u + v > det)
|
||
return -1.0;
|
||
double invDet = 1.0 / det;
|
||
double t = (edge2X * qvecX + edge2Y * qvecY + edge2Z * qvecZ) * invDet;
|
||
return t;
|
||
}
|
||
|
||
/**
|
||
* Determine whether the ray with the given <code>origin</code> and the given <code>dir</code> intersects the frontface of the triangle consisting of the three vertices
|
||
* <code>v0</code>, <code>v1</code> and <code>v2</code> and return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the point of intersection.
|
||
* <p>
|
||
* This is an implementation of the <a href="http://www.graphics.cornell.edu/pubs/1997/MT97.pdf">
|
||
* Fast, Minimum Storage Ray/Triangle Intersection</a> method.
|
||
* <p>
|
||
* This test implements backface culling, that is, it will return <code>false</code> when the triangle is in clockwise
|
||
* winding order assuming a <i>right-handed</i> coordinate system when seen along the ray's direction, even if the ray intersects the triangle.
|
||
* This is in compliance with how OpenGL handles backface culling with default frontface/backface settings.
|
||
*
|
||
* @see #intersectRayTriangleFront(double, double, double, double, double, double, double, double, double, double, double, double, double, double, double, double)
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's direction
|
||
* @param v0
|
||
* the position of the first vertex
|
||
* @param v1
|
||
* the position of the second vertex
|
||
* @param v2
|
||
* the position of the third vertex
|
||
* @param epsilon
|
||
* a small epsilon when testing rays that are almost parallel to the triangle
|
||
* @return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the point of intersection
|
||
* if the ray intersects the frontface of the triangle; <code>-1.0</code> otherwise
|
||
*/
|
||
public static double intersectRayTriangleFront(Vector3dc origin, Vector3dc dir, Vector3dc v0, Vector3dc v1, Vector3dc v2, double epsilon) {
|
||
return intersectRayTriangleFront(origin.x(), origin.y(), origin.z(), dir.x(), dir.y(), dir.z(), v0.x(), v0.y(), v0.z(), v1.x(), v1.y(), v1.z(), v2.x(), v2.y(), v2.z(), epsilon);
|
||
}
|
||
|
||
/**
|
||
* Determine whether the given ray with the origin <code>(originX, originY, originZ)</code> and direction <code>(dirX, dirY, dirZ)</code>
|
||
* intersects the triangle consisting of the three vertices <code>(v0X, v0Y, v0Z)</code>, <code>(v1X, v1Y, v1Z)</code> and <code>(v2X, v2Y, v2Z)</code>
|
||
* and return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the point of intersection.
|
||
* <p>
|
||
* This is an implementation of the <a href="http://www.graphics.cornell.edu/pubs/1997/MT97.pdf">
|
||
* Fast, Minimum Storage Ray/Triangle Intersection</a> method.
|
||
* <p>
|
||
* This test does not take into account the winding order of the triangle, so a ray will intersect a front-facing triangle as well as a back-facing triangle.
|
||
*
|
||
* @see #testRayTriangle(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector3dc, double)
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param originZ
|
||
* the z coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param dirZ
|
||
* the z coordinate of the ray's direction
|
||
* @param v0X
|
||
* the x coordinate of the first vertex
|
||
* @param v0Y
|
||
* the y coordinate of the first vertex
|
||
* @param v0Z
|
||
* the z coordinate of the first vertex
|
||
* @param v1X
|
||
* the x coordinate of the second vertex
|
||
* @param v1Y
|
||
* the y coordinate of the second vertex
|
||
* @param v1Z
|
||
* the z coordinate of the second vertex
|
||
* @param v2X
|
||
* the x coordinate of the third vertex
|
||
* @param v2Y
|
||
* the y coordinate of the third vertex
|
||
* @param v2Z
|
||
* the z coordinate of the third vertex
|
||
* @param epsilon
|
||
* a small epsilon when testing rays that are almost parallel to the triangle
|
||
* @return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the point of intersection
|
||
* if the ray intersects the triangle; <code>-1.0</code> otherwise
|
||
*/
|
||
public static double intersectRayTriangle(double originX, double originY, double originZ, double dirX, double dirY, double dirZ,
|
||
double v0X, double v0Y, double v0Z, double v1X, double v1Y, double v1Z, double v2X, double v2Y, double v2Z,
|
||
double epsilon) {
|
||
double edge1X = v1X - v0X;
|
||
double edge1Y = v1Y - v0Y;
|
||
double edge1Z = v1Z - v0Z;
|
||
double edge2X = v2X - v0X;
|
||
double edge2Y = v2Y - v0Y;
|
||
double edge2Z = v2Z - v0Z;
|
||
double pvecX = dirY * edge2Z - dirZ * edge2Y;
|
||
double pvecY = dirZ * edge2X - dirX * edge2Z;
|
||
double pvecZ = dirX * edge2Y - dirY * edge2X;
|
||
double det = edge1X * pvecX + edge1Y * pvecY + edge1Z * pvecZ;
|
||
if (det > -epsilon && det < epsilon)
|
||
return -1.0;
|
||
double tvecX = originX - v0X;
|
||
double tvecY = originY - v0Y;
|
||
double tvecZ = originZ - v0Z;
|
||
double invDet = 1.0 / det;
|
||
double u = (tvecX * pvecX + tvecY * pvecY + tvecZ * pvecZ) * invDet;
|
||
if (u < 0.0 || u > 1.0)
|
||
return -1.0;
|
||
double qvecX = tvecY * edge1Z - tvecZ * edge1Y;
|
||
double qvecY = tvecZ * edge1X - tvecX * edge1Z;
|
||
double qvecZ = tvecX * edge1Y - tvecY * edge1X;
|
||
double v = (dirX * qvecX + dirY * qvecY + dirZ * qvecZ) * invDet;
|
||
if (v < 0.0 || u + v > 1.0)
|
||
return -1.0;
|
||
double t = (edge2X * qvecX + edge2Y * qvecY + edge2Z * qvecZ) * invDet;
|
||
return t;
|
||
}
|
||
|
||
/**
|
||
* Determine whether the ray with the given <code>origin</code> and the given <code>dir</code> intersects the triangle consisting of the three vertices
|
||
* <code>v0</code>, <code>v1</code> and <code>v2</code> and return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the point of intersection.
|
||
* <p>
|
||
* This is an implementation of the <a href="http://www.graphics.cornell.edu/pubs/1997/MT97.pdf">
|
||
* Fast, Minimum Storage Ray/Triangle Intersection</a> method.
|
||
* <p>
|
||
* This test does not take into account the winding order of the triangle, so a ray will intersect a front-facing triangle as well as a back-facing triangle.
|
||
*
|
||
* @see #intersectRayTriangle(double, double, double, double, double, double, double, double, double, double, double, double, double, double, double, double)
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's direction
|
||
* @param v0
|
||
* the position of the first vertex
|
||
* @param v1
|
||
* the position of the second vertex
|
||
* @param v2
|
||
* the position of the third vertex
|
||
* @param epsilon
|
||
* a small epsilon when testing rays that are almost parallel to the triangle
|
||
* @return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the point of intersection
|
||
* if the ray intersects the triangle; <code>-1.0</code> otherwise
|
||
*/
|
||
public static double intersectRayTriangle(Vector3dc origin, Vector3dc dir, Vector3dc v0, Vector3dc v1, Vector3dc v2, double epsilon) {
|
||
return intersectRayTriangle(origin.x(), origin.y(), origin.z(), dir.x(), dir.y(), dir.z(), v0.x(), v0.y(), v0.z(), v1.x(), v1.y(), v1.z(), v2.x(), v2.y(), v2.z(), epsilon);
|
||
}
|
||
|
||
/**
|
||
* Test whether the line segment with the end points <code>(p0X, p0Y, p0Z)</code> and <code>(p1X, p1Y, p1Z)</code>
|
||
* intersects the triangle consisting of the three vertices <code>(v0X, v0Y, v0Z)</code>, <code>(v1X, v1Y, v1Z)</code> and <code>(v2X, v2Y, v2Z)</code>,
|
||
* regardless of the winding order of the triangle or the direction of the line segment between its two end points.
|
||
* <p>
|
||
* Reference: <a href="http://www.graphics.cornell.edu/pubs/1997/MT97.pdf">
|
||
* Fast, Minimum Storage Ray/Triangle Intersection</a>
|
||
*
|
||
* @see #testLineSegmentTriangle(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector3dc, double)
|
||
*
|
||
* @param p0X
|
||
* the x coordinate of the line segment's first end point
|
||
* @param p0Y
|
||
* the y coordinate of the line segment's first end point
|
||
* @param p0Z
|
||
* the z coordinate of the line segment's first end point
|
||
* @param p1X
|
||
* the x coordinate of the line segment's second end point
|
||
* @param p1Y
|
||
* the y coordinate of the line segment's second end point
|
||
* @param p1Z
|
||
* the z coordinate of the line segment's second end point
|
||
* @param v0X
|
||
* the x coordinate of the first vertex
|
||
* @param v0Y
|
||
* the y coordinate of the first vertex
|
||
* @param v0Z
|
||
* the z coordinate of the first vertex
|
||
* @param v1X
|
||
* the x coordinate of the second vertex
|
||
* @param v1Y
|
||
* the y coordinate of the second vertex
|
||
* @param v1Z
|
||
* the z coordinate of the second vertex
|
||
* @param v2X
|
||
* the x coordinate of the third vertex
|
||
* @param v2Y
|
||
* the y coordinate of the third vertex
|
||
* @param v2Z
|
||
* the z coordinate of the third vertex
|
||
* @param epsilon
|
||
* a small epsilon when testing line segments that are almost parallel to the triangle
|
||
* @return <code>true</code> if the given line segment intersects the triangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testLineSegmentTriangle(double p0X, double p0Y, double p0Z, double p1X, double p1Y, double p1Z,
|
||
double v0X, double v0Y, double v0Z, double v1X, double v1Y, double v1Z, double v2X, double v2Y, double v2Z,
|
||
double epsilon) {
|
||
double dirX = p1X - p0X;
|
||
double dirY = p1Y - p0Y;
|
||
double dirZ = p1Z - p0Z;
|
||
double t = intersectRayTriangle(p0X, p0Y, p0Z, dirX, dirY, dirZ, v0X, v0Y, v0Z, v1X, v1Y, v1Z, v2X, v2Y, v2Z, epsilon);
|
||
return t >= 0.0 && t <= 1.0;
|
||
}
|
||
|
||
/**
|
||
* Test whether the line segment with the end points <code>p0</code> and <code>p1</code>
|
||
* intersects the triangle consisting of the three vertices <code>(v0X, v0Y, v0Z)</code>, <code>(v1X, v1Y, v1Z)</code> and <code>(v2X, v2Y, v2Z)</code>,
|
||
* regardless of the winding order of the triangle or the direction of the line segment between its two end points.
|
||
* <p>
|
||
* Reference: <a href="http://www.graphics.cornell.edu/pubs/1997/MT97.pdf">
|
||
* Fast, Minimum Storage Ray/Triangle Intersection</a>
|
||
*
|
||
* @see #testLineSegmentTriangle(double, double, double, double, double, double, double, double, double, double, double, double, double, double, double, double)
|
||
*
|
||
* @param p0
|
||
* the line segment's first end point
|
||
* @param p1
|
||
* the line segment's second end point
|
||
* @param v0
|
||
* the position of the first vertex
|
||
* @param v1
|
||
* the position of the second vertex
|
||
* @param v2
|
||
* the position of the third vertex
|
||
* @param epsilon
|
||
* a small epsilon when testing line segments that are almost parallel to the triangle
|
||
* @return <code>true</code> if the given line segment intersects the triangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testLineSegmentTriangle(Vector3dc p0, Vector3dc p1, Vector3dc v0, Vector3dc v1, Vector3dc v2, double epsilon) {
|
||
return testLineSegmentTriangle(p0.x(), p0.y(), p0.z(), p1.x(), p1.y(), p1.z(), v0.x(), v0.y(), v0.z(), v1.x(), v1.y(), v1.z(), v2.x(), v2.y(), v2.z(), epsilon);
|
||
}
|
||
|
||
/**
|
||
* Determine whether the line segment with the end points <code>(p0X, p0Y, p0Z)</code> and <code>(p1X, p1Y, p1Z)</code>
|
||
* intersects the triangle consisting of the three vertices <code>(v0X, v0Y, v0Z)</code>, <code>(v1X, v1Y, v1Z)</code> and <code>(v2X, v2Y, v2Z)</code>,
|
||
* regardless of the winding order of the triangle or the direction of the line segment between its two end points,
|
||
* and return the point of intersection.
|
||
* <p>
|
||
* Reference: <a href="http://www.graphics.cornell.edu/pubs/1997/MT97.pdf">
|
||
* Fast, Minimum Storage Ray/Triangle Intersection</a>
|
||
*
|
||
* @see #intersectLineSegmentTriangle(Vector3dc, Vector3dc, Vector3dc, Vector3dc, Vector3dc, double, Vector3d)
|
||
*
|
||
* @param p0X
|
||
* the x coordinate of the line segment's first end point
|
||
* @param p0Y
|
||
* the y coordinate of the line segment's first end point
|
||
* @param p0Z
|
||
* the z coordinate of the line segment's first end point
|
||
* @param p1X
|
||
* the x coordinate of the line segment's second end point
|
||
* @param p1Y
|
||
* the y coordinate of the line segment's second end point
|
||
* @param p1Z
|
||
* the z coordinate of the line segment's second end point
|
||
* @param v0X
|
||
* the x coordinate of the first vertex
|
||
* @param v0Y
|
||
* the y coordinate of the first vertex
|
||
* @param v0Z
|
||
* the z coordinate of the first vertex
|
||
* @param v1X
|
||
* the x coordinate of the second vertex
|
||
* @param v1Y
|
||
* the y coordinate of the second vertex
|
||
* @param v1Z
|
||
* the z coordinate of the second vertex
|
||
* @param v2X
|
||
* the x coordinate of the third vertex
|
||
* @param v2Y
|
||
* the y coordinate of the third vertex
|
||
* @param v2Z
|
||
* the z coordinate of the third vertex
|
||
* @param epsilon
|
||
* a small epsilon when testing line segments that are almost parallel to the triangle
|
||
* @param intersectionPoint
|
||
* the point of intersection
|
||
* @return <code>true</code> if the given line segment intersects the triangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectLineSegmentTriangle(double p0X, double p0Y, double p0Z, double p1X, double p1Y, double p1Z,
|
||
double v0X, double v0Y, double v0Z, double v1X, double v1Y, double v1Z, double v2X, double v2Y, double v2Z,
|
||
double epsilon, Vector3d intersectionPoint) {
|
||
double dirX = p1X - p0X;
|
||
double dirY = p1Y - p0Y;
|
||
double dirZ = p1Z - p0Z;
|
||
double t = intersectRayTriangle(p0X, p0Y, p0Z, dirX, dirY, dirZ, v0X, v0Y, v0Z, v1X, v1Y, v1Z, v2X, v2Y, v2Z, epsilon);
|
||
if (t >= 0.0 && t <= 1.0) {
|
||
intersectionPoint.x = p0X + dirX * t;
|
||
intersectionPoint.y = p0Y + dirY * t;
|
||
intersectionPoint.z = p0Z + dirZ * t;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Determine whether the line segment with the end points <code>p0</code> and <code>p1</code>
|
||
* intersects the triangle consisting of the three vertices <code>(v0X, v0Y, v0Z)</code>, <code>(v1X, v1Y, v1Z)</code> and <code>(v2X, v2Y, v2Z)</code>,
|
||
* regardless of the winding order of the triangle or the direction of the line segment between its two end points,
|
||
* and return the point of intersection.
|
||
* <p>
|
||
* Reference: <a href="http://www.graphics.cornell.edu/pubs/1997/MT97.pdf">
|
||
* Fast, Minimum Storage Ray/Triangle Intersection</a>
|
||
*
|
||
* @see #intersectLineSegmentTriangle(double, double, double, double, double, double, double, double, double, double, double, double, double, double, double, double, Vector3d)
|
||
*
|
||
* @param p0
|
||
* the line segment's first end point
|
||
* @param p1
|
||
* the line segment's second end point
|
||
* @param v0
|
||
* the position of the first vertex
|
||
* @param v1
|
||
* the position of the second vertex
|
||
* @param v2
|
||
* the position of the third vertex
|
||
* @param epsilon
|
||
* a small epsilon when testing line segments that are almost parallel to the triangle
|
||
* @param intersectionPoint
|
||
* the point of intersection
|
||
* @return <code>true</code> if the given line segment intersects the triangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectLineSegmentTriangle(Vector3dc p0, Vector3dc p1, Vector3dc v0, Vector3dc v1, Vector3dc v2, double epsilon, Vector3d intersectionPoint) {
|
||
return intersectLineSegmentTriangle(p0.x(), p0.y(), p0.z(), p1.x(), p1.y(), p1.z(), v0.x(), v0.y(), v0.z(), v1.x(), v1.y(), v1.z(), v2.x(), v2.y(), v2.z(), epsilon, intersectionPoint);
|
||
}
|
||
|
||
/**
|
||
* Determine whether the line segment with the end points <code>(p0X, p0Y, p0Z)</code> and <code>(p1X, p1Y, p1Z)</code>
|
||
* intersects the plane given as the general plane equation <i>a*x + b*y + c*z + d = 0</i>,
|
||
* and return the point of intersection.
|
||
*
|
||
* @param p0X
|
||
* the x coordinate of the line segment's first end point
|
||
* @param p0Y
|
||
* the y coordinate of the line segment's first end point
|
||
* @param p0Z
|
||
* the z coordinate of the line segment's first end point
|
||
* @param p1X
|
||
* the x coordinate of the line segment's second end point
|
||
* @param p1Y
|
||
* the y coordinate of the line segment's second end point
|
||
* @param p1Z
|
||
* the z coordinate of the line segment's second end point
|
||
* @param a
|
||
* the x factor in the plane equation
|
||
* @param b
|
||
* the y factor in the plane equation
|
||
* @param c
|
||
* the z factor in the plane equation
|
||
* @param d
|
||
* the constant in the plane equation
|
||
* @param intersectionPoint
|
||
* the point of intersection
|
||
* @return <code>true</code> if the given line segment intersects the plane; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectLineSegmentPlane(double p0X, double p0Y, double p0Z, double p1X, double p1Y, double p1Z,
|
||
double a, double b, double c, double d, Vector3d intersectionPoint) {
|
||
double dirX = p1X - p0X;
|
||
double dirY = p1Y - p0Y;
|
||
double dirZ = p1Z - p0Z;
|
||
double denom = a * dirX + b * dirY + c * dirZ;
|
||
double t = -(a * p0X + b * p0Y + c * p0Z + d) / denom;
|
||
if (t >= 0.0 && t <= 1.0) {
|
||
intersectionPoint.x = p0X + t * dirX;
|
||
intersectionPoint.y = p0Y + t * dirY;
|
||
intersectionPoint.z = p0Z + t * dirZ;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Test whether the line with the general line equation <i>a*x + b*y + c = 0</i> intersects the circle with center
|
||
* <code>(centerX, centerY)</code> and <code>radius</code>.
|
||
* <p>
|
||
* Reference: <a href="http://math.stackexchange.com/questions/943383/determine-circle-of-intersection-of-plane-and-sphere">http://math.stackexchange.com</a>
|
||
*
|
||
* @param a
|
||
* the x factor in the line equation
|
||
* @param b
|
||
* the y factor in the line equation
|
||
* @param c
|
||
* the constant in the line equation
|
||
* @param centerX
|
||
* the x coordinate of the circle's center
|
||
* @param centerY
|
||
* the y coordinate of the circle's center
|
||
* @param radius
|
||
* the radius of the circle
|
||
* @return <code>true</code> iff the line intersects the circle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testLineCircle(double a, double b, double c, double centerX, double centerY, double radius) {
|
||
double denom = Math.sqrt(a * a + b * b);
|
||
double dist = (a * centerX + b * centerY + c) / denom;
|
||
return -radius <= dist && dist <= radius;
|
||
}
|
||
|
||
/**
|
||
* Test whether the line with the general line equation <i>a*x + b*y + c = 0</i> intersects the circle with center
|
||
* <code>(centerX, centerY)</code> and <code>radius</code>, and store the center of the line segment of
|
||
* intersection in the <code>(x, y)</code> components of the supplied vector and the half-length of that line segment in the z component.
|
||
* <p>
|
||
* Reference: <a href="http://math.stackexchange.com/questions/943383/determine-circle-of-intersection-of-plane-and-sphere">http://math.stackexchange.com</a>
|
||
*
|
||
* @param a
|
||
* the x factor in the line equation
|
||
* @param b
|
||
* the y factor in the line equation
|
||
* @param c
|
||
* the constant in the line equation
|
||
* @param centerX
|
||
* the x coordinate of the circle's center
|
||
* @param centerY
|
||
* the y coordinate of the circle's center
|
||
* @param radius
|
||
* the radius of the circle
|
||
* @param intersectionCenterAndHL
|
||
* will hold the center of the line segment of intersection in the <code>(x, y)</code> components and the half-length in the z component
|
||
* @return <code>true</code> iff the line intersects the circle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectLineCircle(double a, double b, double c, double centerX, double centerY, double radius, Vector3d intersectionCenterAndHL) {
|
||
double invDenom = Math.invsqrt(a * a + b * b);
|
||
double dist = (a * centerX + b * centerY + c) * invDenom;
|
||
if (-radius <= dist && dist <= radius) {
|
||
intersectionCenterAndHL.x = centerX + dist * a * invDenom;
|
||
intersectionCenterAndHL.y = centerY + dist * b * invDenom;
|
||
intersectionCenterAndHL.z = Math.sqrt(radius * radius - dist * dist);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Test whether the line defined by the two points <code>(x0, y0)</code> and <code>(x1, y1)</code> intersects the circle with center
|
||
* <code>(centerX, centerY)</code> and <code>radius</code>, and store the center of the line segment of
|
||
* intersection in the <code>(x, y)</code> components of the supplied vector and the half-length of that line segment in the z component.
|
||
* <p>
|
||
* Reference: <a href="http://math.stackexchange.com/questions/943383/determine-circle-of-intersection-of-plane-and-sphere">http://math.stackexchange.com</a>
|
||
*
|
||
* @param x0
|
||
* the x coordinate of the first point on the line
|
||
* @param y0
|
||
* the y coordinate of the first point on the line
|
||
* @param x1
|
||
* the x coordinate of the second point on the line
|
||
* @param y1
|
||
* the y coordinate of the second point on the line
|
||
* @param centerX
|
||
* the x coordinate of the circle's center
|
||
* @param centerY
|
||
* the y coordinate of the circle's center
|
||
* @param radius
|
||
* the radius of the circle
|
||
* @param intersectionCenterAndHL
|
||
* will hold the center of the line segment of intersection in the <code>(x, y)</code> components and the half-length in the z component
|
||
* @return <code>true</code> iff the line intersects the circle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectLineCircle(double x0, double y0, double x1, double y1, double centerX, double centerY, double radius, Vector3d intersectionCenterAndHL) {
|
||
// Build general line equation from two points and use the other method
|
||
return intersectLineCircle(y0 - y1, x1 - x0, (x0 - x1) * y0 + (y1 - y0) * x0, centerX, centerY, radius, intersectionCenterAndHL);
|
||
}
|
||
|
||
/**
|
||
* Test whether the axis-aligned rectangle with minimum corner <code>(minX, minY)</code> and maximum corner <code>(maxX, maxY)</code>
|
||
* intersects the line with the general equation <i>a*x + b*y + c = 0</i>.
|
||
* <p>
|
||
* Reference: <a href="http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-testing-boxes-ii/">http://www.lighthouse3d.com</a> ("Geometric Approach - Testing Boxes II")
|
||
*
|
||
* @param minX
|
||
* the x coordinate of the minimum corner of the axis-aligned rectangle
|
||
* @param minY
|
||
* the y coordinate of the minimum corner of the axis-aligned rectangle
|
||
* @param maxX
|
||
* the x coordinate of the maximum corner of the axis-aligned rectangle
|
||
* @param maxY
|
||
* the y coordinate of the maximum corner of the axis-aligned rectangle
|
||
* @param a
|
||
* the x factor in the line equation
|
||
* @param b
|
||
* the y factor in the line equation
|
||
* @param c
|
||
* the constant in the plane equation
|
||
* @return <code>true</code> iff the axis-aligned rectangle intersects the line; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testAarLine(double minX, double minY, double maxX, double maxY, double a, double b, double c) {
|
||
double pX, pY, nX, nY;
|
||
if (a > 0.0) {
|
||
pX = maxX;
|
||
nX = minX;
|
||
} else {
|
||
pX = minX;
|
||
nX = maxX;
|
||
}
|
||
if (b > 0.0) {
|
||
pY = maxY;
|
||
nY = minY;
|
||
} else {
|
||
pY = minY;
|
||
nY = maxY;
|
||
}
|
||
double distN = c + a * nX + b * nY;
|
||
double distP = c + a * pX + b * pY;
|
||
return distN <= 0.0 && distP >= 0.0;
|
||
}
|
||
|
||
/**
|
||
* Test whether the axis-aligned rectangle with minimum corner <code>min</code> and maximum corner <code>max</code>
|
||
* intersects the line with the general equation <i>a*x + b*y + c = 0</i>.
|
||
* <p>
|
||
* Reference: <a href="http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-testing-boxes-ii/">http://www.lighthouse3d.com</a> ("Geometric Approach - Testing Boxes II")
|
||
*
|
||
* @param min
|
||
* the minimum corner of the axis-aligned rectangle
|
||
* @param max
|
||
* the maximum corner of the axis-aligned rectangle
|
||
* @param a
|
||
* the x factor in the line equation
|
||
* @param b
|
||
* the y factor in the line equation
|
||
* @param c
|
||
* the constant in the line equation
|
||
* @return <code>true</code> iff the axis-aligned rectangle intersects the line; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testAarLine(Vector2dc min, Vector2dc max, double a, double b, double c) {
|
||
return testAarLine(min.x(), min.y(), max.x(), max.y(), a, b, c);
|
||
}
|
||
|
||
/**
|
||
* Test whether the axis-aligned rectangle with minimum corner <code>(minX, minY)</code> and maximum corner <code>(maxX, maxY)</code>
|
||
* intersects the line defined by the two points <code>(x0, y0)</code> and <code>(x1, y1)</code>.
|
||
* <p>
|
||
* Reference: <a href="http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-testing-boxes-ii/">http://www.lighthouse3d.com</a> ("Geometric Approach - Testing Boxes II")
|
||
*
|
||
* @param minX
|
||
* the x coordinate of the minimum corner of the axis-aligned rectangle
|
||
* @param minY
|
||
* the y coordinate of the minimum corner of the axis-aligned rectangle
|
||
* @param maxX
|
||
* the x coordinate of the maximum corner of the axis-aligned rectangle
|
||
* @param maxY
|
||
* the y coordinate of the maximum corner of the axis-aligned rectangle
|
||
* @param x0
|
||
* the x coordinate of the first point on the line
|
||
* @param y0
|
||
* the y coordinate of the first point on the line
|
||
* @param x1
|
||
* the x coordinate of the second point on the line
|
||
* @param y1
|
||
* the y coordinate of the second point on the line
|
||
* @return <code>true</code> iff the axis-aligned rectangle intersects the line; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testAarLine(double minX, double minY, double maxX, double maxY, double x0, double y0, double x1, double y1) {
|
||
double a = y0 - y1;
|
||
double b = x1 - x0;
|
||
double c = -b * y0 - a * x0;
|
||
return testAarLine(minX, minY, maxX, maxY, a, b, c);
|
||
}
|
||
|
||
/**
|
||
* Test whether the axis-aligned rectangle with minimum corner <code>(minXA, minYA)</code> and maximum corner <code>(maxXA, maxYA)</code>
|
||
* intersects the axis-aligned rectangle with minimum corner <code>(minXB, minYB)</code> and maximum corner <code>(maxXB, maxYB)</code>.
|
||
*
|
||
* @param minXA
|
||
* the x coordinate of the minimum corner of the first axis-aligned rectangle
|
||
* @param minYA
|
||
* the y coordinate of the minimum corner of the first axis-aligned rectangle
|
||
* @param maxXA
|
||
* the x coordinate of the maximum corner of the first axis-aligned rectangle
|
||
* @param maxYA
|
||
* the y coordinate of the maximum corner of the first axis-aligned rectangle
|
||
* @param minXB
|
||
* the x coordinate of the minimum corner of the second axis-aligned rectangle
|
||
* @param minYB
|
||
* the y coordinate of the minimum corner of the second axis-aligned rectangle
|
||
* @param maxXB
|
||
* the x coordinate of the maximum corner of the second axis-aligned rectangle
|
||
* @param maxYB
|
||
* the y coordinate of the maximum corner of the second axis-aligned rectangle
|
||
* @return <code>true</code> iff both axis-aligned rectangles intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testAarAar(double minXA, double minYA, double maxXA, double maxYA, double minXB, double minYB, double maxXB, double maxYB) {
|
||
return maxXA >= minXB && maxYA >= minYB && minXA <= maxXB && minYA <= maxYB;
|
||
}
|
||
|
||
/**
|
||
* Test whether the axis-aligned rectangle with minimum corner <code>minA</code> and maximum corner <code>maxA</code>
|
||
* intersects the axis-aligned rectangle with minimum corner <code>minB</code> and maximum corner <code>maxB</code>.
|
||
*
|
||
* @param minA
|
||
* the minimum corner of the first axis-aligned rectangle
|
||
* @param maxA
|
||
* the maximum corner of the first axis-aligned rectangle
|
||
* @param minB
|
||
* the minimum corner of the second axis-aligned rectangle
|
||
* @param maxB
|
||
* the maximum corner of the second axis-aligned rectangle
|
||
* @return <code>true</code> iff both axis-aligned rectangles intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testAarAar(Vector2dc minA, Vector2dc maxA, Vector2dc minB, Vector2dc maxB) {
|
||
return testAarAar(minA.x(), minA.y(), maxA.x(), maxA.y(), minB.x(), minB.y(), maxB.x(), maxB.y());
|
||
}
|
||
|
||
/**
|
||
* Test whether a given circle with center <code>(aX, aY)</code> and radius <code>aR</code> and travelled distance vector <code>(maX, maY)</code>
|
||
* intersects a given static circle with center <code>(bX, bY)</code> and radius <code>bR</code>.
|
||
* <p>
|
||
* Note that the case of two moving circles can always be reduced to this case by expressing the moved distance of one of the circles relative
|
||
* to the other.
|
||
* <p>
|
||
* Reference: <a href="https://www.gamasutra.com/view/feature/131424/pool_hall_lessons_fast_accurate_.php?page=2">https://www.gamasutra.com</a>
|
||
*
|
||
* @param aX
|
||
* the x coordinate of the first circle's center
|
||
* @param aY
|
||
* the y coordinate of the first circle's center
|
||
* @param maX
|
||
* the x coordinate of the first circle's travelled distance vector
|
||
* @param maY
|
||
* the y coordinate of the first circle's travelled distance vector
|
||
* @param aR
|
||
* the radius of the first circle
|
||
* @param bX
|
||
* the x coordinate of the second circle's center
|
||
* @param bY
|
||
* the y coordinate of the second circle's center
|
||
* @param bR
|
||
* the radius of the second circle
|
||
* @return <code>true</code> if both circle intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testMovingCircleCircle(double aX, double aY, double maX, double maY, double aR, double bX, double bY, double bR) {
|
||
double aRbR = aR + bR;
|
||
double dist = Math.sqrt((aX - bX) * (aX - bX) + (aY - bY) * (aY - bY)) - aRbR;
|
||
double mLen = Math.sqrt(maX * maX + maY * maY);
|
||
if (mLen < dist)
|
||
return false;
|
||
double invMLen = 1.0 / mLen;
|
||
double nX = maX * invMLen;
|
||
double nY = maY * invMLen;
|
||
double cX = bX - aX;
|
||
double cY = bY - aY;
|
||
double nDotC = nX * cX + nY * cY;
|
||
if (nDotC <= 0.0)
|
||
return false;
|
||
double cLen = Math.sqrt(cX * cX + cY * cY);
|
||
double cLenNdotC = cLen * cLen - nDotC * nDotC;
|
||
double aRbR2 = aRbR * aRbR;
|
||
if (cLenNdotC >= aRbR2)
|
||
return false;
|
||
double t = aRbR2 - cLenNdotC;
|
||
if (t < 0.0)
|
||
return false;
|
||
double distance = nDotC - Math.sqrt(t);
|
||
double mag = mLen;
|
||
if (mag < distance)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/**
|
||
* Test whether a given circle with center <code>centerA</code> and radius <code>aR</code> and travelled distance vector <code>moveA</code>
|
||
* intersects a given static circle with center <code>centerB</code> and radius <code>bR</code>.
|
||
* <p>
|
||
* Note that the case of two moving circles can always be reduced to this case by expressing the moved distance of one of the circles relative
|
||
* to the other.
|
||
* <p>
|
||
* Reference: <a href="https://www.gamasutra.com/view/feature/131424/pool_hall_lessons_fast_accurate_.php?page=2">https://www.gamasutra.com</a>
|
||
*
|
||
* @param centerA
|
||
* the coordinates of the first circle's center
|
||
* @param moveA
|
||
* the coordinates of the first circle's travelled distance vector
|
||
* @param aR
|
||
* the radius of the first circle
|
||
* @param centerB
|
||
* the coordinates of the second circle's center
|
||
* @param bR
|
||
* the radius of the second circle
|
||
* @return <code>true</code> if both circle intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testMovingCircleCircle(Vector2d centerA, Vector2d moveA, double aR, Vector2d centerB, double bR) {
|
||
return testMovingCircleCircle(centerA.x, centerA.y, moveA.x, moveA.y, aR, centerB.x, centerB.y, bR);
|
||
}
|
||
|
||
/**
|
||
* Test whether the one circle with center <code>(aX, aY)</code> and square radius <code>radiusSquaredA</code> intersects the other
|
||
* circle with center <code>(bX, bY)</code> and square radius <code>radiusSquaredB</code>, and store the center of the line segment of
|
||
* intersection in the <code>(x, y)</code> components of the supplied vector and the half-length of that line segment in the z component.
|
||
* <p>
|
||
* This method returns <code>false</code> when one circle contains the other circle.
|
||
* <p>
|
||
* Reference: <a href="http://gamedev.stackexchange.com/questions/75756/sphere-sphere-intersection-and-circle-sphere-intersection">http://gamedev.stackexchange.com</a>
|
||
*
|
||
* @param aX
|
||
* the x coordinate of the first circle's center
|
||
* @param aY
|
||
* the y coordinate of the first circle's center
|
||
* @param radiusSquaredA
|
||
* the square of the first circle's radius
|
||
* @param bX
|
||
* the x coordinate of the second circle's center
|
||
* @param bY
|
||
* the y coordinate of the second circle's center
|
||
* @param radiusSquaredB
|
||
* the square of the second circle's radius
|
||
* @param intersectionCenterAndHL
|
||
* will hold the center of the circle of intersection in the <code>(x, y, z)</code> components and the radius in the w component
|
||
* @return <code>true</code> iff both circles intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectCircleCircle(double aX, double aY, double radiusSquaredA, double bX, double bY, double radiusSquaredB, Vector3d intersectionCenterAndHL) {
|
||
double dX = bX - aX, dY = bY - aY;
|
||
double distSquared = dX * dX + dY * dY;
|
||
double h = 0.5 + (radiusSquaredA - radiusSquaredB) / distSquared;
|
||
double r_i = Math.sqrt(radiusSquaredA - h * h * distSquared);
|
||
if (r_i >= 0.0) {
|
||
intersectionCenterAndHL.x = aX + h * dX;
|
||
intersectionCenterAndHL.y = aY + h * dY;
|
||
intersectionCenterAndHL.z = r_i;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Test whether the one circle with center <code>centerA</code> and square radius <code>radiusSquaredA</code> intersects the other
|
||
* circle with center <code>centerB</code> and square radius <code>radiusSquaredB</code>, and store the center of the line segment of
|
||
* intersection in the <code>(x, y)</code> components of the supplied vector and the half-length of that line segment in the z component.
|
||
* <p>
|
||
* This method returns <code>false</code> when one circle contains the other circle.
|
||
* <p>
|
||
* Reference: <a href="http://gamedev.stackexchange.com/questions/75756/sphere-sphere-intersection-and-circle-sphere-intersection">http://gamedev.stackexchange.com</a>
|
||
*
|
||
* @param centerA
|
||
* the first circle's center
|
||
* @param radiusSquaredA
|
||
* the square of the first circle's radius
|
||
* @param centerB
|
||
* the second circle's center
|
||
* @param radiusSquaredB
|
||
* the square of the second circle's radius
|
||
* @param intersectionCenterAndHL
|
||
* will hold the center of the line segment of intersection in the <code>(x, y)</code> components and the half-length in the z component
|
||
* @return <code>true</code> iff both circles intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectCircleCircle(Vector2dc centerA, double radiusSquaredA, Vector2dc centerB, double radiusSquaredB, Vector3d intersectionCenterAndHL) {
|
||
return intersectCircleCircle(centerA.x(), centerA.y(), radiusSquaredA, centerB.x(), centerB.y(), radiusSquaredB, intersectionCenterAndHL);
|
||
}
|
||
|
||
/**
|
||
* Test whether the one circle with center <code>(aX, aY)</code> and radius <code>rA</code> intersects the other circle with center <code>(bX, bY)</code> and radius <code>rB</code>.
|
||
* <p>
|
||
* This method returns <code>true</code> when one circle contains the other circle.
|
||
* <p>
|
||
* Reference: <a href="http://math.stackexchange.com/questions/275514/two-circles-overlap">http://math.stackexchange.com/</a>
|
||
*
|
||
* @param aX
|
||
* the x coordinate of the first circle's center
|
||
* @param aY
|
||
* the y coordinate of the first circle's center
|
||
* @param rA
|
||
* the square of the first circle's radius
|
||
* @param bX
|
||
* the x coordinate of the second circle's center
|
||
* @param bY
|
||
* the y coordinate of the second circle's center
|
||
* @param rB
|
||
* the square of the second circle's radius
|
||
* @return <code>true</code> iff both circles intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testCircleCircle(double aX, double aY, double rA, double bX, double bY, double rB) {
|
||
double d = (aX - bX) * (aX - bX) + (aY - bY) * (aY - bY);
|
||
return d <= (rA + rB) * (rA + rB);
|
||
}
|
||
|
||
/**
|
||
* Test whether the one circle with center <code>centerA</code> and square radius <code>radiusSquaredA</code> intersects the other
|
||
* circle with center <code>centerB</code> and square radius <code>radiusSquaredB</code>.
|
||
* <p>
|
||
* This method returns <code>true</code> when one circle contains the other circle.
|
||
* <p>
|
||
* Reference: <a href="http://gamedev.stackexchange.com/questions/75756/sphere-sphere-intersection-and-circle-sphere-intersection">http://gamedev.stackexchange.com</a>
|
||
*
|
||
* @param centerA
|
||
* the first circle's center
|
||
* @param radiusSquaredA
|
||
* the square of the first circle's radius
|
||
* @param centerB
|
||
* the second circle's center
|
||
* @param radiusSquaredB
|
||
* the square of the second circle's radius
|
||
* @return <code>true</code> iff both circles intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testCircleCircle(Vector2dc centerA, double radiusSquaredA, Vector2dc centerB, double radiusSquaredB) {
|
||
return testCircleCircle(centerA.x(), centerA.y(), radiusSquaredA, centerB.x(), centerB.y(), radiusSquaredB);
|
||
}
|
||
|
||
/**
|
||
* Determine the signed distance of the given point <code>(pointX, pointY)</code> to the line specified via its general plane equation
|
||
* <i>a*x + b*y + c = 0</i>.
|
||
* <p>
|
||
* Reference: <a href="http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html">http://mathworld.wolfram.com</a>
|
||
*
|
||
* @param pointX
|
||
* the x coordinate of the point
|
||
* @param pointY
|
||
* the y coordinate of the point
|
||
* @param a
|
||
* the x factor in the plane equation
|
||
* @param b
|
||
* the y factor in the plane equation
|
||
* @param c
|
||
* the constant in the plane equation
|
||
* @return the distance between the point and the line
|
||
*/
|
||
public static double distancePointLine(double pointX, double pointY, double a, double b, double c) {
|
||
double denom = Math.sqrt(a * a + b * b);
|
||
return (a * pointX + b * pointY + c) / denom;
|
||
}
|
||
|
||
/**
|
||
* Determine the signed distance of the given point <code>(pointX, pointY)</code> to the line defined by the two points <code>(x0, y0)</code> and <code>(x1, y1)</code>.
|
||
* <p>
|
||
* Reference: <a href="http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html">http://mathworld.wolfram.com</a>
|
||
*
|
||
* @param pointX
|
||
* the x coordinate of the point
|
||
* @param pointY
|
||
* the y coordinate of the point
|
||
* @param x0
|
||
* the x coordinate of the first point on the line
|
||
* @param y0
|
||
* the y coordinate of the first point on the line
|
||
* @param x1
|
||
* the x coordinate of the second point on the line
|
||
* @param y1
|
||
* the y coordinate of the second point on the line
|
||
* @return the distance between the point and the line
|
||
*/
|
||
public static double distancePointLine(double pointX, double pointY, double x0, double y0, double x1, double y1) {
|
||
double dx = x1 - x0;
|
||
double dy = y1 - y0;
|
||
double denom = Math.sqrt(dx * dx + dy * dy);
|
||
return (dx * (y0 - pointY) - (x0 - pointX) * dy) / denom;
|
||
}
|
||
|
||
/**
|
||
* Compute the distance of the given point <code>(pX, pY, pZ)</code> to the line defined by the two points <code>(x0, y0, z0)</code> and <code>(x1, y1, z1)</code>.
|
||
* <p>
|
||
* Reference: <a href="http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html">http://mathworld.wolfram.com</a>
|
||
*
|
||
* @param pX
|
||
* the x coordinate of the point
|
||
* @param pY
|
||
* the y coordinate of the point
|
||
* @param pZ
|
||
* the z coordinate of the point
|
||
* @param x0
|
||
* the x coordinate of the first point on the line
|
||
* @param y0
|
||
* the y coordinate of the first point on the line
|
||
* @param z0
|
||
* the z coordinate of the first point on the line
|
||
* @param x1
|
||
* the x coordinate of the second point on the line
|
||
* @param y1
|
||
* the y coordinate of the second point on the line
|
||
* @param z1
|
||
* the z coordinate of the second point on the line
|
||
* @return the distance between the point and the line
|
||
*/
|
||
public static double distancePointLine(double pX, double pY, double pZ,
|
||
double x0, double y0, double z0, double x1, double y1, double z1) {
|
||
double d21x = x1 - x0, d21y = y1 - y0, d21z = z1 - z0;
|
||
double d10x = x0 - pX, d10y = y0 - pY, d10z = z0 - pZ;
|
||
double cx = d21y * d10z - d21z * d10y, cy = d21z * d10x - d21x * d10z, cz = d21x * d10y - d21y * d10x;
|
||
return Math.sqrt((cx*cx + cy*cy + cz*cz) / (d21x*d21x + d21y*d21y + d21z*d21z));
|
||
}
|
||
|
||
/**
|
||
* Test whether the ray with given origin <code>(originX, originY)</code> and direction <code>(dirX, dirY)</code> intersects the line
|
||
* containing the given point <code>(pointX, pointY)</code> and having the normal <code>(normalX, normalY)</code>, and return the
|
||
* value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the intersection point.
|
||
* <p>
|
||
* This method returns <code>-1.0</code> if the ray does not intersect the line, because it is either parallel to the line or its direction points
|
||
* away from the line or the ray's origin is on the <i>negative</i> side of the line (i.e. the line's normal points away from the ray's origin).
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param pointX
|
||
* the x coordinate of a point on the line
|
||
* @param pointY
|
||
* the y coordinate of a point on the line
|
||
* @param normalX
|
||
* the x coordinate of the line's normal
|
||
* @param normalY
|
||
* the y coordinate of the line's normal
|
||
* @param epsilon
|
||
* some small epsilon for when the ray is parallel to the line
|
||
* @return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the intersection point, if the ray
|
||
* intersects the line; <code>-1.0</code> otherwise
|
||
*/
|
||
public static double intersectRayLine(double originX, double originY, double dirX, double dirY, double pointX, double pointY, double normalX, double normalY, double epsilon) {
|
||
double denom = normalX * dirX + normalY * dirY;
|
||
if (denom < epsilon) {
|
||
double t = ((pointX - originX) * normalX + (pointY - originY) * normalY) / denom;
|
||
if (t >= 0.0)
|
||
return t;
|
||
}
|
||
return -1.0;
|
||
}
|
||
|
||
/**
|
||
* Test whether the ray with given <code>origin</code> and direction <code>dir</code> intersects the line
|
||
* containing the given <code>point</code> and having the given <code>normal</code>, and return the
|
||
* value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the intersection point.
|
||
* <p>
|
||
* This method returns <code>-1.0</code> if the ray does not intersect the line, because it is either parallel to the line or its direction points
|
||
* away from the line or the ray's origin is on the <i>negative</i> side of the line (i.e. the line's normal points away from the ray's origin).
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's direction
|
||
* @param point
|
||
* a point on the line
|
||
* @param normal
|
||
* the line's normal
|
||
* @param epsilon
|
||
* some small epsilon for when the ray is parallel to the line
|
||
* @return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the intersection point, if the ray
|
||
* intersects the line; <code>-1.0</code> otherwise
|
||
*/
|
||
public static double intersectRayLine(Vector2dc origin, Vector2dc dir, Vector2dc point, Vector2dc normal, double epsilon) {
|
||
return intersectRayLine(origin.x(), origin.y(), dir.x(), dir.y(), point.x(), point.y(), normal.x(), normal.y(), epsilon);
|
||
}
|
||
|
||
/**
|
||
* Determine whether the ray with given origin <code>(originX, originY)</code> and direction <code>(dirX, dirY)</code> intersects the undirected line segment
|
||
* given by the two end points <code>(aX, bY)</code> and <code>(bX, bY)</code>, and return the value of the parameter <i>t</i> in the ray equation
|
||
* <i>p(t) = origin + t * dir</i> of the intersection point, if any.
|
||
* <p>
|
||
* This method returns <code>-1.0</code> if the ray does not intersect the line segment.
|
||
*
|
||
* @see #intersectRayLineSegment(Vector2dc, Vector2dc, Vector2dc, Vector2dc)
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param aX
|
||
* the x coordinate of the line segment's first end point
|
||
* @param aY
|
||
* the y coordinate of the line segment's first end point
|
||
* @param bX
|
||
* the x coordinate of the line segment's second end point
|
||
* @param bY
|
||
* the y coordinate of the line segment's second end point
|
||
* @return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the intersection point, if the ray
|
||
* intersects the line segment; <code>-1.0</code> otherwise
|
||
*/
|
||
public static double intersectRayLineSegment(double originX, double originY, double dirX, double dirY, double aX, double aY, double bX, double bY) {
|
||
double v1X = originX - aX;
|
||
double v1Y = originY - aY;
|
||
double v2X = bX - aX;
|
||
double v2Y = bY - aY;
|
||
double invV23 = 1.0 / (v2Y * dirX - v2X * dirY);
|
||
double t1 = (v2X * v1Y - v2Y * v1X) * invV23;
|
||
double t2 = (v1Y * dirX - v1X * dirY) * invV23;
|
||
if (t1 >= 0.0 && t2 >= 0.0 && t2 <= 1.0)
|
||
return t1;
|
||
return -1.0;
|
||
}
|
||
|
||
/**
|
||
* Determine whether the ray with given <code>origin</code> and direction <code>dir</code> intersects the undirected line segment
|
||
* given by the two end points <code>a</code> and <code>b</code>, and return the value of the parameter <i>t</i> in the ray equation
|
||
* <i>p(t) = origin + t * dir</i> of the intersection point, if any.
|
||
* <p>
|
||
* This method returns <code>-1.0</code> if the ray does not intersect the line segment.
|
||
*
|
||
* @see #intersectRayLineSegment(double, double, double, double, double, double, double, double)
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's direction
|
||
* @param a
|
||
* the line segment's first end point
|
||
* @param b
|
||
* the line segment's second end point
|
||
* @return the value of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the intersection point, if the ray
|
||
* intersects the line segment; <code>-1.0</code> otherwise
|
||
*/
|
||
public static double intersectRayLineSegment(Vector2dc origin, Vector2dc dir, Vector2dc a, Vector2dc b) {
|
||
return intersectRayLineSegment(origin.x(), origin.y(), dir.x(), dir.y(), a.x(), a.y(), b.x(), b.y());
|
||
}
|
||
|
||
/**
|
||
* Test whether the axis-aligned rectangle with minimum corner <code>(minX, minY)</code> and maximum corner <code>(maxX, maxY)</code>
|
||
* intersects the circle with the given center <code>(centerX, centerY)</code> and square radius <code>radiusSquared</code>.
|
||
* <p>
|
||
* Reference: <a href="http://stackoverflow.com/questions/4578967/cube-sphere-intersection-test#answer-4579069">http://stackoverflow.com</a>
|
||
*
|
||
* @param minX
|
||
* the x coordinate of the minimum corner of the axis-aligned rectangle
|
||
* @param minY
|
||
* the y coordinate of the minimum corner of the axis-aligned rectangle
|
||
* @param maxX
|
||
* the x coordinate of the maximum corner of the axis-aligned rectangle
|
||
* @param maxY
|
||
* the y coordinate of the maximum corner of the axis-aligned rectangle
|
||
* @param centerX
|
||
* the x coordinate of the circle's center
|
||
* @param centerY
|
||
* the y coordinate of the circle's center
|
||
* @param radiusSquared
|
||
* the square of the circle's radius
|
||
* @return <code>true</code> iff the axis-aligned rectangle intersects the circle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testAarCircle(double minX, double minY, double maxX, double maxY, double centerX, double centerY, double radiusSquared) {
|
||
double radius2 = radiusSquared;
|
||
if (centerX < minX) {
|
||
double d = (centerX - minX);
|
||
radius2 -= d * d;
|
||
} else if (centerX > maxX) {
|
||
double d = (centerX - maxX);
|
||
radius2 -= d * d;
|
||
}
|
||
if (centerY < minY) {
|
||
double d = (centerY - minY);
|
||
radius2 -= d * d;
|
||
} else if (centerY > maxY) {
|
||
double d = (centerY - maxY);
|
||
radius2 -= d * d;
|
||
}
|
||
return radius2 >= 0.0;
|
||
}
|
||
|
||
/**
|
||
* Test whether the axis-aligned rectangle with minimum corner <code>min</code> and maximum corner <code>max</code>
|
||
* intersects the circle with the given <code>center</code> and square radius <code>radiusSquared</code>.
|
||
* <p>
|
||
* Reference: <a href="http://stackoverflow.com/questions/4578967/cube-sphere-intersection-test#answer-4579069">http://stackoverflow.com</a>
|
||
*
|
||
* @param min
|
||
* the minimum corner of the axis-aligned rectangle
|
||
* @param max
|
||
* the maximum corner of the axis-aligned rectangle
|
||
* @param center
|
||
* the circle's center
|
||
* @param radiusSquared
|
||
* the squared of the circle's radius
|
||
* @return <code>true</code> iff the axis-aligned rectangle intersects the circle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testAarCircle(Vector2dc min, Vector2dc max, Vector2dc center, double radiusSquared) {
|
||
return testAarCircle(min.x(), min.y(), max.x(), max.y(), center.x(), center.y(), radiusSquared);
|
||
}
|
||
|
||
/**
|
||
* Determine the closest point on the triangle with the given vertices <code>(v0X, v0Y)</code>, <code>(v1X, v1Y)</code>, <code>(v2X, v2Y)</code>
|
||
* between that triangle and the given point <code>(pX, pY)</code> and store that point into the given <code>result</code>.
|
||
* <p>
|
||
* Additionally, this method returns whether the closest point is a vertex ({@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2})
|
||
* of the triangle, lies on an edge ({@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20})
|
||
* or on the {@link #POINT_ON_TRIANGLE_FACE face} of the triangle.
|
||
* <p>
|
||
* Reference: Book "Real-Time Collision Detection" chapter 5.1.5 "Closest Point on Triangle to Point"
|
||
*
|
||
* @param v0X
|
||
* the x coordinate of the first vertex of the triangle
|
||
* @param v0Y
|
||
* the y coordinate of the first vertex of the triangle
|
||
* @param v1X
|
||
* the x coordinate of the second vertex of the triangle
|
||
* @param v1Y
|
||
* the y coordinate of the second vertex of the triangle
|
||
* @param v2X
|
||
* the x coordinate of the third vertex of the triangle
|
||
* @param v2Y
|
||
* the y coordinate of the third vertex of the triangle
|
||
* @param pX
|
||
* the x coordinate of the point
|
||
* @param pY
|
||
* the y coordinate of the point
|
||
* @param result
|
||
* will hold the closest point
|
||
* @return one of {@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2},
|
||
* {@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20} or
|
||
* {@link #POINT_ON_TRIANGLE_FACE}
|
||
*/
|
||
public static int findClosestPointOnTriangle(double v0X, double v0Y, double v1X, double v1Y, double v2X, double v2Y, double pX, double pY, Vector2d result) {
|
||
double abX = v1X - v0X, abY = v1Y - v0Y;
|
||
double acX = v2X - v0X, acY = v2Y - v0Y;
|
||
double apX = pX - v0X, apY = pY - v0Y;
|
||
double d1 = abX * apX + abY * apY;
|
||
double d2 = acX * apX + acY * apY;
|
||
if (d1 <= 0.0 && d2 <= 0.0) {
|
||
result.x = v0X;
|
||
result.y = v0Y;
|
||
return POINT_ON_TRIANGLE_VERTEX_0;
|
||
}
|
||
double bpX = pX - v1X, bpY = pY - v1Y;
|
||
double d3 = abX * bpX + abY * bpY;
|
||
double d4 = acX * bpX + acY * bpY;
|
||
if (d3 >= 0.0 && d4 <= d3) {
|
||
result.x = v1X;
|
||
result.y = v1Y;
|
||
return POINT_ON_TRIANGLE_VERTEX_1;
|
||
}
|
||
double vc = d1 * d4 - d3 * d2;
|
||
if (vc <= 0.0 && d1 >= 0.0 && d3 <= 0.0) {
|
||
double v = d1 / (d1 - d3);
|
||
result.x = v0X + v * abX;
|
||
result.y = v0Y + v * abY;
|
||
return POINT_ON_TRIANGLE_EDGE_01;
|
||
}
|
||
double cpX = pX - v2X, cpY = pY - v2Y;
|
||
double d5 = abX * cpX + abY * cpY;
|
||
double d6 = acX * cpX + acY * cpY;
|
||
if (d6 >= 0.0 && d5 <= d6) {
|
||
result.x = v2X;
|
||
result.y = v2Y;
|
||
return POINT_ON_TRIANGLE_VERTEX_2;
|
||
}
|
||
double vb = d5 * d2 - d1 * d6;
|
||
if (vb <= 0.0 && d2 >= 0.0 && d6 <= 0.0) {
|
||
double w = d2 / (d2 - d6);
|
||
result.x = v0X + w * acX;
|
||
result.y = v0Y + w * acY;
|
||
return POINT_ON_TRIANGLE_EDGE_20;
|
||
}
|
||
double va = d3 * d6 - d5 * d4;
|
||
if (va <= 0.0 && d4 - d3 >= 0.0 && d5 - d6 >= 0.0) {
|
||
double w = (d4 - d3) / (d4 - d3 + d5 - d6);
|
||
result.x = v1X + w * (v2X - v1X);
|
||
result.y = v1Y + w * (v2Y - v1Y);
|
||
return POINT_ON_TRIANGLE_EDGE_12;
|
||
}
|
||
double denom = 1.0 / (va + vb + vc);
|
||
double v = vb * denom;
|
||
double w = vc * denom;
|
||
result.x = v0X + abX * v + acX * w;
|
||
result.y = v0Y + abY * v + acY * w;
|
||
return POINT_ON_TRIANGLE_FACE;
|
||
}
|
||
|
||
/**
|
||
* Determine the closest point on the triangle with the vertices <code>v0</code>, <code>v1</code>, <code>v2</code>
|
||
* between that triangle and the given point <code>p</code> and store that point into the given <code>result</code>.
|
||
* <p>
|
||
* Additionally, this method returns whether the closest point is a vertex ({@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2})
|
||
* of the triangle, lies on an edge ({@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20})
|
||
* or on the {@link #POINT_ON_TRIANGLE_FACE face} of the triangle.
|
||
* <p>
|
||
* Reference: Book "Real-Time Collision Detection" chapter 5.1.5 "Closest Point on Triangle to Point"
|
||
*
|
||
* @param v0
|
||
* the first vertex of the triangle
|
||
* @param v1
|
||
* the second vertex of the triangle
|
||
* @param v2
|
||
* the third vertex of the triangle
|
||
* @param p
|
||
* the point
|
||
* @param result
|
||
* will hold the closest point
|
||
* @return one of {@link #POINT_ON_TRIANGLE_VERTEX_0}, {@link #POINT_ON_TRIANGLE_VERTEX_1}, {@link #POINT_ON_TRIANGLE_VERTEX_2},
|
||
* {@link #POINT_ON_TRIANGLE_EDGE_01}, {@link #POINT_ON_TRIANGLE_EDGE_12}, {@link #POINT_ON_TRIANGLE_EDGE_20} or
|
||
* {@link #POINT_ON_TRIANGLE_FACE}
|
||
*/
|
||
public static int findClosestPointOnTriangle(Vector2dc v0, Vector2dc v1, Vector2dc v2, Vector2dc p, Vector2d result) {
|
||
return findClosestPointOnTriangle(v0.x(), v0.y(), v1.x(), v1.y(), v2.x(), v2.y(), p.x(), p.y(), result);
|
||
}
|
||
|
||
/**
|
||
* Test whether the given ray with the origin <code>(originX, originY)</code> and direction <code>(dirX, dirY)</code>
|
||
* intersects the given circle with center <code>(centerX, centerY)</code> and square radius <code>radiusSquared</code>,
|
||
* and store the values of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> for both points (near
|
||
* and far) of intersections into the given <code>result</code> vector.
|
||
* <p>
|
||
* This method returns <code>true</code> for a ray whose origin lies inside the circle.
|
||
* <p>
|
||
* Reference: <a href="http://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection">http://www.scratchapixel.com/</a>
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param centerX
|
||
* the x coordinate of the circle's center
|
||
* @param centerY
|
||
* the y coordinate of the circle's center
|
||
* @param radiusSquared
|
||
* the circle radius squared
|
||
* @param result
|
||
* a vector that will contain the values of the parameter <i>t</i> in the ray equation
|
||
* <i>p(t) = origin + t * dir</i> for both points (near, far) of intersections with the circle
|
||
* @return <code>true</code> if the ray intersects the circle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectRayCircle(double originX, double originY, double dirX, double dirY,
|
||
double centerX, double centerY, double radiusSquared, Vector2d result) {
|
||
double Lx = centerX - originX;
|
||
double Ly = centerY - originY;
|
||
double tca = Lx * dirX + Ly * dirY;
|
||
double d2 = Lx * Lx + Ly * Ly - tca * tca;
|
||
if (d2 > radiusSquared)
|
||
return false;
|
||
double thc = Math.sqrt(radiusSquared - d2);
|
||
double t0 = tca - thc;
|
||
double t1 = tca + thc;
|
||
if (t0 < t1 && t1 >= 0.0) {
|
||
result.x = t0;
|
||
result.y = t1;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Test whether the ray with the given <code>origin</code> and direction <code>dir</code>
|
||
* intersects the circle with the given <code>center</code> and square radius <code>radiusSquared</code>,
|
||
* and store the values of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> for both points (near
|
||
* and far) of intersections into the given <code>result</code> vector.
|
||
* <p>
|
||
* This method returns <code>true</code> for a ray whose origin lies inside the circle.
|
||
* <p>
|
||
* Reference: <a href="http://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection">http://www.scratchapixel.com/</a>
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's direction
|
||
* @param center
|
||
* the circle's center
|
||
* @param radiusSquared
|
||
* the circle radius squared
|
||
* @param result
|
||
* a vector that will contain the values of the parameter <i>t</i> in the ray equation
|
||
* <i>p(t) = origin + t * dir</i> for both points (near, far) of intersections with the circle
|
||
* @return <code>true</code> if the ray intersects the circle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectRayCircle(Vector2dc origin, Vector2dc dir, Vector2dc center, double radiusSquared, Vector2d result) {
|
||
return intersectRayCircle(origin.x(), origin.y(), dir.x(), dir.y(), center.x(), center.y(), radiusSquared, result);
|
||
}
|
||
|
||
/**
|
||
* Test whether the given ray with the origin <code>(originX, originY)</code> and direction <code>(dirX, dirY)</code>
|
||
* intersects the given circle with center <code>(centerX, centerY)</code> and square radius <code>radiusSquared</code>.
|
||
* <p>
|
||
* This method returns <code>true</code> for a ray whose origin lies inside the circle.
|
||
* <p>
|
||
* Reference: <a href="http://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection">http://www.scratchapixel.com/</a>
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param centerX
|
||
* the x coordinate of the circle's center
|
||
* @param centerY
|
||
* the y coordinate of the circle's center
|
||
* @param radiusSquared
|
||
* the circle radius squared
|
||
* @return <code>true</code> if the ray intersects the circle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testRayCircle(double originX, double originY, double dirX, double dirY,
|
||
double centerX, double centerY, double radiusSquared) {
|
||
double Lx = centerX - originX;
|
||
double Ly = centerY - originY;
|
||
double tca = Lx * dirX + Ly * dirY;
|
||
double d2 = Lx * Lx + Ly * Ly - tca * tca;
|
||
if (d2 > radiusSquared)
|
||
return false;
|
||
double thc = Math.sqrt(radiusSquared - d2);
|
||
double t0 = tca - thc;
|
||
double t1 = tca + thc;
|
||
return t0 < t1 && t1 >= 0.0;
|
||
}
|
||
|
||
/**
|
||
* Test whether the ray with the given <code>origin</code> and direction <code>dir</code>
|
||
* intersects the circle with the given <code>center</code> and square radius.
|
||
* <p>
|
||
* This method returns <code>true</code> for a ray whose origin lies inside the circle.
|
||
* <p>
|
||
* Reference: <a href="http://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection">http://www.scratchapixel.com/</a>
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's direction
|
||
* @param center
|
||
* the circle's center
|
||
* @param radiusSquared
|
||
* the circle radius squared
|
||
* @return <code>true</code> if the ray intersects the circle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testRayCircle(Vector2dc origin, Vector2dc dir, Vector2dc center, double radiusSquared) {
|
||
return testRayCircle(origin.x(), origin.y(), dir.x(), dir.y(), center.x(), center.y(), radiusSquared);
|
||
}
|
||
|
||
/**
|
||
* Determine whether the given ray with the origin <code>(originX, originY)</code> and direction <code>(dirX, dirY)</code>
|
||
* intersects the axis-aligned rectangle given as its minimum corner <code>(minX, minY)</code> and maximum corner <code>(maxX, maxY)</code>,
|
||
* and return the values of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the near and far point of intersection
|
||
* as well as the side of the axis-aligned rectangle the ray intersects.
|
||
* <p>
|
||
* This method also detects an intersection for a ray whose origin lies inside the axis-aligned rectangle.
|
||
* <p>
|
||
* Reference: <a href="https://dl.acm.org/citation.cfm?id=1198748">An Efficient and Robust Ray–Box Intersection</a>
|
||
*
|
||
* @see #intersectRayAar(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param minX
|
||
* the x coordinate of the minimum corner of the axis-aligned rectangle
|
||
* @param minY
|
||
* the y coordinate of the minimum corner of the axis-aligned rectangle
|
||
* @param maxX
|
||
* the x coordinate of the maximum corner of the axis-aligned rectangle
|
||
* @param maxY
|
||
* the y coordinate of the maximum corner of the axis-aligned rectangle
|
||
* @param result
|
||
* a vector which will hold the values of the parameter <i>t</i> in the ray equation
|
||
* <i>p(t) = origin + t * dir</i> of the near and far point of intersection
|
||
* @return the side on which the near intersection occurred as one of
|
||
* {@link #AAR_SIDE_MINX}, {@link #AAR_SIDE_MINY}, {@link #AAR_SIDE_MAXX} or {@link #AAR_SIDE_MAXY};
|
||
* or <code>-1</code> if the ray does not intersect the axis-aligned rectangle;
|
||
*/
|
||
public static int intersectRayAar(double originX, double originY, double dirX, double dirY,
|
||
double minX, double minY, double maxX, double maxY, Vector2d result) {
|
||
double invDirX = 1.0 / dirX, invDirY = 1.0 / dirY;
|
||
double tNear, tFar, tymin, tymax;
|
||
if (invDirX >= 0.0) {
|
||
tNear = (minX - originX) * invDirX;
|
||
tFar = (maxX - originX) * invDirX;
|
||
} else {
|
||
tNear = (maxX - originX) * invDirX;
|
||
tFar = (minX - originX) * invDirX;
|
||
}
|
||
if (invDirY >= 0.0) {
|
||
tymin = (minY - originY) * invDirY;
|
||
tymax = (maxY - originY) * invDirY;
|
||
} else {
|
||
tymin = (maxY - originY) * invDirY;
|
||
tymax = (minY - originY) * invDirY;
|
||
}
|
||
if (tNear > tymax || tymin > tFar)
|
||
return OUTSIDE;
|
||
tNear = tymin > tNear || Double.isNaN(tNear) ? tymin : tNear;
|
||
tFar = tymax < tFar || Double.isNaN(tFar) ? tymax : tFar;
|
||
int side = -1; // no intersection side
|
||
if (tNear < tFar && tFar >= 0.0) {
|
||
double px = originX + tNear * dirX;
|
||
double py = originY + tNear * dirY;
|
||
result.x = tNear;
|
||
result.y = tFar;
|
||
double daX = Math.abs(px - minX);
|
||
double daY = Math.abs(py - minY);
|
||
double dbX = Math.abs(px - maxX);
|
||
double dbY = Math.abs(py - maxY);
|
||
side = 0; // min x coordinate
|
||
double min = daX;
|
||
if (daY < min) {
|
||
min = daY;
|
||
side = 1; // min y coordinate
|
||
}
|
||
if (dbX < min) {
|
||
min = dbX;
|
||
side = 2; // max xcoordinate
|
||
}
|
||
if (dbY < min)
|
||
side = 3; // max y coordinate
|
||
}
|
||
return side;
|
||
}
|
||
|
||
/**
|
||
* Determine whether the given ray with the given <code>origin</code> and direction <code>dir</code>
|
||
* intersects the axis-aligned rectangle given as its minimum corner <code>min</code> and maximum corner <code>max</code>,
|
||
* and return the values of the parameter <i>t</i> in the ray equation <i>p(t) = origin + t * dir</i> of the near and far point of intersection
|
||
* as well as the side of the axis-aligned rectangle the ray intersects.
|
||
* <p>
|
||
* This method also detects an intersection for a ray whose origin lies inside the axis-aligned rectangle.
|
||
* <p>
|
||
* Reference: <a href="https://dl.acm.org/citation.cfm?id=1198748">An Efficient and Robust Ray–Box Intersection</a>
|
||
*
|
||
* @see #intersectRayAar(double, double, double, double, double, double, double, double, Vector2d)
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's direction
|
||
* @param min
|
||
* the minimum corner of the axis-aligned rectangle
|
||
* @param max
|
||
* the maximum corner of the axis-aligned rectangle
|
||
* @param result
|
||
* a vector which will hold the values of the parameter <i>t</i> in the ray equation
|
||
* <i>p(t) = origin + t * dir</i> of the near and far point of intersection
|
||
* @return the side on which the near intersection occurred as one of
|
||
* {@link #AAR_SIDE_MINX}, {@link #AAR_SIDE_MINY}, {@link #AAR_SIDE_MAXX} or {@link #AAR_SIDE_MAXY};
|
||
* or <code>-1</code> if the ray does not intersect the axis-aligned rectangle;
|
||
*/
|
||
public static int intersectRayAar(Vector2dc origin, Vector2dc dir, Vector2dc min, Vector2dc max, Vector2d result) {
|
||
return intersectRayAar(origin.x(), origin.y(), dir.x(), dir.y(), min.x(), min.y(), max.x(), max.y(), result);
|
||
}
|
||
|
||
/**
|
||
* Determine whether the undirected line segment with the end points <code>(p0X, p0Y)</code> and <code>(p1X, p1Y)</code>
|
||
* intersects the axis-aligned rectangle given as its minimum corner <code>(minX, minY)</code> and maximum corner <code>(maxX, maxY)</code>,
|
||
* and store the values of the parameter <i>t</i> in the ray equation <i>p(t) = p0 + t * (p1 - p0)</i> of the near and far point of intersection
|
||
* into <code>result</code>.
|
||
* <p>
|
||
* This method also detects an intersection of a line segment whose either end point lies inside the axis-aligned rectangle.
|
||
* <p>
|
||
* Reference: <a href="https://dl.acm.org/citation.cfm?id=1198748">An Efficient and Robust Ray–Box Intersection</a>
|
||
*
|
||
* @see #intersectLineSegmentAar(Vector2dc, Vector2dc, Vector2dc, Vector2dc, Vector2d)
|
||
*
|
||
* @param p0X
|
||
* the x coordinate of the line segment's first end point
|
||
* @param p0Y
|
||
* the y coordinate of the line segment's first end point
|
||
* @param p1X
|
||
* the x coordinate of the line segment's second end point
|
||
* @param p1Y
|
||
* the y coordinate of the line segment's second end point
|
||
* @param minX
|
||
* the x coordinate of the minimum corner of the axis-aligned rectangle
|
||
* @param minY
|
||
* the y coordinate of the minimum corner of the axis-aligned rectangle
|
||
* @param maxX
|
||
* the x coordinate of the maximum corner of the axis-aligned rectangle
|
||
* @param maxY
|
||
* the y coordinate of the maximum corner of the axis-aligned rectangle
|
||
* @param result
|
||
* a vector which will hold the values of the parameter <i>t</i> in the ray equation
|
||
* <i>p(t) = p0 + t * (p1 - p0)</i> of the near and far point of intersection
|
||
* @return {@link #INSIDE} if the line segment lies completely inside of the axis-aligned rectangle; or
|
||
* {@link #OUTSIDE} if the line segment lies completely outside of the axis-aligned rectangle; or
|
||
* {@link #ONE_INTERSECTION} if one of the end points of the line segment lies inside of the axis-aligned rectangle; or
|
||
* {@link #TWO_INTERSECTION} if the line segment intersects two edges of the axis-aligned rectangle or lies on one edge of the rectangle
|
||
*/
|
||
public static int intersectLineSegmentAar(double p0X, double p0Y, double p1X, double p1Y,
|
||
double minX, double minY, double maxX, double maxY, Vector2d result) {
|
||
double dirX = p1X - p0X, dirY = p1Y - p0Y;
|
||
double invDirX = 1.0 / dirX, invDirY = 1.0 / dirY;
|
||
double tNear, tFar, tymin, tymax;
|
||
if (invDirX >= 0.0) {
|
||
tNear = (minX - p0X) * invDirX;
|
||
tFar = (maxX - p0X) * invDirX;
|
||
} else {
|
||
tNear = (maxX - p0X) * invDirX;
|
||
tFar = (minX - p0X) * invDirX;
|
||
}
|
||
if (invDirY >= 0.0) {
|
||
tymin = (minY - p0Y) * invDirY;
|
||
tymax = (maxY - p0Y) * invDirY;
|
||
} else {
|
||
tymin = (maxY - p0Y) * invDirY;
|
||
tymax = (minY - p0Y) * invDirY;
|
||
}
|
||
if (tNear > tymax || tymin > tFar)
|
||
return OUTSIDE;
|
||
tNear = tymin > tNear || Double.isNaN(tNear) ? tymin : tNear;
|
||
tFar = tymax < tFar || Double.isNaN(tFar) ? tymax : tFar;
|
||
int type = OUTSIDE;
|
||
if (tNear <= tFar && tNear <= 1.0f && tFar >= 0.0f) {
|
||
if (tNear >= 0.0f && tFar > 1.0f) {
|
||
tFar = tNear;
|
||
type = ONE_INTERSECTION;
|
||
} else if (tNear < 0.0f && tFar <= 1.0f) {
|
||
tNear = tFar;
|
||
type = ONE_INTERSECTION;
|
||
} else if (tNear < 0.0f && tFar > 1.0f) {
|
||
type = INSIDE;
|
||
} else {
|
||
type = TWO_INTERSECTION;
|
||
}
|
||
result.x = tNear;
|
||
result.y = tFar;
|
||
}
|
||
return type;
|
||
}
|
||
|
||
/**
|
||
* Determine whether the undirected line segment with the end points <code>p0</code> and <code>p1</code>
|
||
* intersects the axis-aligned rectangle given as its minimum corner <code>min</code> and maximum corner <code>max</code>,
|
||
* and store the values of the parameter <i>t</i> in the ray equation <i>p(t) = p0 + t * (p1 - p0)</i> of the near and far point of intersection
|
||
* into <code>result</code>.
|
||
* <p>
|
||
* This method also detects an intersection of a line segment whose either end point lies inside the axis-aligned rectangle.
|
||
* <p>
|
||
* Reference: <a href="https://dl.acm.org/citation.cfm?id=1198748">An Efficient and Robust Ray–Box Intersection</a>
|
||
*
|
||
* #see {@link #intersectLineSegmentAar(double, double, double, double, double, double, double, double, Vector2d)}
|
||
*
|
||
* @param p0
|
||
* the line segment's first end point
|
||
* @param p1
|
||
* the line segment's second end point
|
||
* @param min
|
||
* the minimum corner of the axis-aligned rectangle
|
||
* @param max
|
||
* the maximum corner of the axis-aligned rectangle
|
||
* @param result
|
||
* a vector which will hold the values of the parameter <i>t</i> in the ray equation
|
||
* <i>p(t) = p0 + t * (p1 - p0)</i> of the near and far point of intersection
|
||
* @return {@link #INSIDE} if the line segment lies completely inside of the axis-aligned rectangle; or
|
||
* {@link #OUTSIDE} if the line segment lies completely outside of the axis-aligned rectangle; or
|
||
* {@link #ONE_INTERSECTION} if one of the end points of the line segment lies inside of the axis-aligned rectangle; or
|
||
* {@link #TWO_INTERSECTION} if the line segment intersects two edges of the axis-aligned rectangle
|
||
*/
|
||
public static int intersectLineSegmentAar(Vector2dc p0, Vector2dc p1, Vector2dc min, Vector2dc max, Vector2d result) {
|
||
return intersectLineSegmentAar(p0.x(), p0.y(), p1.x(), p1.y(), min.x(), min.y(), max.x(), max.y(), result);
|
||
}
|
||
|
||
/**
|
||
* Test whether the given ray with the origin <code>(originX, originY)</code> and direction <code>(dirX, dirY)</code>
|
||
* intersects the given axis-aligned rectangle given as its minimum corner <code>(minX, minY)</code> and maximum corner <code>(maxX, maxY)</code>.
|
||
* <p>
|
||
* This method returns <code>true</code> for a ray whose origin lies inside the axis-aligned rectangle.
|
||
* <p>
|
||
* Reference: <a href="https://dl.acm.org/citation.cfm?id=1198748">An Efficient and Robust Ray–Box Intersection</a>
|
||
*
|
||
* @see #testRayAar(Vector2dc, Vector2dc, Vector2dc, Vector2dc)
|
||
*
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param minX
|
||
* the x coordinate of the minimum corner of the axis-aligned rectangle
|
||
* @param minY
|
||
* the y coordinate of the minimum corner of the axis-aligned rectangle
|
||
* @param maxX
|
||
* the x coordinate of the maximum corner of the axis-aligned rectangle
|
||
* @param maxY
|
||
* the y coordinate of the maximum corner of the axis-aligned rectangle
|
||
* @return <code>true</code> if the given ray intersects the axis-aligned rectangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testRayAar(double originX, double originY, double dirX, double dirY, double minX, double minY, double maxX, double maxY) {
|
||
double invDirX = 1.0 / dirX, invDirY = 1.0 / dirY;
|
||
double tNear, tFar, tymin, tymax;
|
||
if (invDirX >= 0.0) {
|
||
tNear = (minX - originX) * invDirX;
|
||
tFar = (maxX - originX) * invDirX;
|
||
} else {
|
||
tNear = (maxX - originX) * invDirX;
|
||
tFar = (minX - originX) * invDirX;
|
||
}
|
||
if (invDirY >= 0.0) {
|
||
tymin = (minY - originY) * invDirY;
|
||
tymax = (maxY - originY) * invDirY;
|
||
} else {
|
||
tymin = (maxY - originY) * invDirY;
|
||
tymax = (minY - originY) * invDirY;
|
||
}
|
||
if (tNear > tymax || tymin > tFar)
|
||
return false;
|
||
tNear = tymin > tNear || Double.isNaN(tNear) ? tymin : tNear;
|
||
tFar = tymax < tFar || Double.isNaN(tFar) ? tymax : tFar;
|
||
return tNear < tFar && tFar >= 0.0;
|
||
}
|
||
|
||
/**
|
||
* Test whether the ray with the given <code>origin</code> and direction <code>dir</code>
|
||
* intersects the given axis-aligned rectangle specified as its minimum corner <code>min</code> and maximum corner <code>max</code>.
|
||
* <p>
|
||
* This method returns <code>true</code> for a ray whose origin lies inside the axis-aligned rectangle.
|
||
* <p>
|
||
* Reference: <a href="https://dl.acm.org/citation.cfm?id=1198748">An Efficient and Robust Ray–Box Intersection</a>
|
||
*
|
||
* @see #testRayAar(double, double, double, double, double, double, double, double)
|
||
*
|
||
* @param origin
|
||
* the ray's origin
|
||
* @param dir
|
||
* the ray's direction
|
||
* @param min
|
||
* the minimum corner of the axis-aligned rectangle
|
||
* @param max
|
||
* the maximum corner of the axis-aligned rectangle
|
||
* @return <code>true</code> if the given ray intersects the axis-aligned rectangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testRayAar(Vector2dc origin, Vector2dc dir, Vector2dc min, Vector2dc max) {
|
||
return testRayAar(origin.x(), origin.y(), dir.x(), dir.y(), min.x(), min.y(), max.x(), max.y());
|
||
}
|
||
|
||
/**
|
||
* Test whether the given point <code>(pX, pY)</code> lies inside the triangle with the vertices <code>(v0X, v0Y)</code>, <code>(v1X, v1Y)</code>, <code>(v2X, v2Y)</code>.
|
||
*
|
||
* @param pX
|
||
* the x coordinate of the point
|
||
* @param pY
|
||
* the y coordinate of the point
|
||
* @param v0X
|
||
* the x coordinate of the first vertex of the triangle
|
||
* @param v0Y
|
||
* the y coordinate of the first vertex of the triangle
|
||
* @param v1X
|
||
* the x coordinate of the second vertex of the triangle
|
||
* @param v1Y
|
||
* the y coordinate of the second vertex of the triangle
|
||
* @param v2X
|
||
* the x coordinate of the third vertex of the triangle
|
||
* @param v2Y
|
||
* the y coordinate of the third vertex of the triangle
|
||
* @return <code>true</code> iff the point lies inside the triangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testPointTriangle(double pX, double pY, double v0X, double v0Y, double v1X, double v1Y, double v2X, double v2Y) {
|
||
boolean b1 = (pX - v1X) * (v0Y - v1Y) - (v0X - v1X) * (pY - v1Y) < 0.0;
|
||
boolean b2 = (pX - v2X) * (v1Y - v2Y) - (v1X - v2X) * (pY - v2Y) < 0.0;
|
||
if (b1 != b2)
|
||
return false;
|
||
boolean b3 = (pX - v0X) * (v2Y - v0Y) - (v2X - v0X) * (pY - v0Y) < 0.0;
|
||
return b2 == b3;
|
||
}
|
||
|
||
/**
|
||
* Test whether the given <code>point</code> lies inside the triangle with the vertices <code>v0</code>, <code>v1</code>, <code>v2</code>.
|
||
*
|
||
* @param v0
|
||
* the first vertex of the triangle
|
||
* @param v1
|
||
* the second vertex of the triangle
|
||
* @param v2
|
||
* the third vertex of the triangle
|
||
* @param point
|
||
* the point
|
||
* @return <code>true</code> iff the point lies inside the triangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testPointTriangle(Vector2dc point, Vector2dc v0, Vector2dc v1, Vector2dc v2) {
|
||
return testPointTriangle(point.x(), point.y(), v0.x(), v0.y(), v1.x(), v1.y(), v2.x(), v2.y());
|
||
}
|
||
|
||
/**
|
||
* Test whether the given point <code>(pX, pY)</code> lies inside the axis-aligned rectangle with the minimum corner <code>(minX, minY)</code>
|
||
* and maximum corner <code>(maxX, maxY)</code>.
|
||
*
|
||
* @param pX
|
||
* the x coordinate of the point
|
||
* @param pY
|
||
* the y coordinate of the point
|
||
* @param minX
|
||
* the x coordinate of the minimum corner of the axis-aligned rectangle
|
||
* @param minY
|
||
* the y coordinate of the minimum corner of the axis-aligned rectangle
|
||
* @param maxX
|
||
* the x coordinate of the maximum corner of the axis-aligned rectangle
|
||
* @param maxY
|
||
* the y coordinate of the maximum corner of the axis-aligned rectangle
|
||
* @return <code>true</code> iff the point lies inside the axis-aligned rectangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testPointAar(double pX, double pY, double minX, double minY, double maxX, double maxY) {
|
||
return pX >= minX && pY >= minY && pX <= maxX && pY <= maxY;
|
||
}
|
||
|
||
/**
|
||
* Test whether the point <code>(pX, pY)</code> lies inside the circle with center <code>(centerX, centerY)</code> and square radius <code>radiusSquared</code>.
|
||
*
|
||
* @param pX
|
||
* the x coordinate of the point
|
||
* @param pY
|
||
* the y coordinate of the point
|
||
* @param centerX
|
||
* the x coordinate of the circle's center
|
||
* @param centerY
|
||
* the y coordinate of the circle's center
|
||
* @param radiusSquared
|
||
* the square radius of the circle
|
||
* @return <code>true</code> iff the point lies inside the circle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testPointCircle(double pX, double pY, double centerX, double centerY, double radiusSquared) {
|
||
double dx = pX - centerX;
|
||
double dy = pY - centerY;
|
||
double dx2 = dx * dx;
|
||
double dy2 = dy * dy;
|
||
return dx2 + dy2 <= radiusSquared;
|
||
}
|
||
|
||
/**
|
||
* Test whether the circle with center <code>(centerX, centerY)</code> and square radius <code>radiusSquared</code> intersects the triangle with counter-clockwise vertices
|
||
* <code>(v0X, v0Y)</code>, <code>(v1X, v1Y)</code>, <code>(v2X, v2Y)</code>.
|
||
* <p>
|
||
* The vertices of the triangle must be specified in counter-clockwise order.
|
||
* <p>
|
||
* Reference: <a href="http://www.phatcode.net/articles.php?id=459">http://www.phatcode.net/</a>
|
||
*
|
||
* @param centerX
|
||
* the x coordinate of the circle's center
|
||
* @param centerY
|
||
* the y coordinate of the circle's center
|
||
* @param radiusSquared
|
||
* the square radius of the circle
|
||
* @param v0X
|
||
* the x coordinate of the first vertex of the triangle
|
||
* @param v0Y
|
||
* the y coordinate of the first vertex of the triangle
|
||
* @param v1X
|
||
* the x coordinate of the second vertex of the triangle
|
||
* @param v1Y
|
||
* the y coordinate of the second vertex of the triangle
|
||
* @param v2X
|
||
* the x coordinate of the third vertex of the triangle
|
||
* @param v2Y
|
||
* the y coordinate of the third vertex of the triangle
|
||
* @return <code>true</code> iff the circle intersects the triangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testCircleTriangle(double centerX, double centerY, double radiusSquared, double v0X, double v0Y, double v1X, double v1Y, double v2X, double v2Y) {
|
||
double c1x = centerX - v0X, c1y = centerY - v0Y;
|
||
double c1sqr = c1x * c1x + c1y * c1y - radiusSquared;
|
||
if (c1sqr <= 0.0)
|
||
return true;
|
||
double c2x = centerX - v1X, c2y = centerY - v1Y;
|
||
double c2sqr = c2x * c2x + c2y * c2y - radiusSquared;
|
||
if (c2sqr <= 0.0)
|
||
return true;
|
||
double c3x = centerX - v2X, c3y = centerY - v2Y;
|
||
double c3sqr = c3x * c3x + c3y * c3y - radiusSquared;
|
||
if (c3sqr <= 0.0)
|
||
return true;
|
||
double e1x = v1X - v0X, e1y = v1Y - v0Y;
|
||
double e2x = v2X - v1X, e2y = v2Y - v1Y;
|
||
double e3x = v0X - v2X, e3y = v0Y - v2Y;
|
||
if (e1x * c1y - e1y * c1x >= 0.0 && e2x * c2y - e2y * c2x >= 0.0 && e3x * c3y - e3y * c3x >= 0.0)
|
||
return true;
|
||
double k = c1x * e1x + c1y * e1y;
|
||
if (k >= 0.0) {
|
||
double len = e1x * e1x + e1y * e1y;
|
||
if (k <= len) {
|
||
if (c1sqr * len <= k * k)
|
||
return true;
|
||
}
|
||
}
|
||
k = c2x * e2x + c2y * e2y;
|
||
if (k > 0.0) {
|
||
double len = e2x * e2x + e2y * e2y;
|
||
if (k <= len) {
|
||
if (c2sqr * len <= k * k)
|
||
return true;
|
||
}
|
||
}
|
||
k = c3x * e3x + c3y * e3y;
|
||
if (k >= 0.0) {
|
||
double len = e3x * e3x + e3y * e3y;
|
||
if (k < len) {
|
||
if (c3sqr * len <= k * k)
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Test whether the circle with given <code>center</code> and square radius <code>radiusSquared</code> intersects the triangle with counter-clockwise vertices
|
||
* <code>v0</code>, <code>v1</code>, <code>v2</code>.
|
||
* <p>
|
||
* The vertices of the triangle must be specified in counter-clockwise order.
|
||
* <p>
|
||
* Reference: <a href="http://www.phatcode.net/articles.php?id=459">http://www.phatcode.net/</a>
|
||
*
|
||
* @param center
|
||
* the circle's center
|
||
* @param radiusSquared
|
||
* the square radius of the circle
|
||
* @param v0
|
||
* the first vertex of the triangle
|
||
* @param v1
|
||
* the second vertex of the triangle
|
||
* @param v2
|
||
* the third vertex of the triangle
|
||
* @return <code>true</code> iff the circle intersects the triangle; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testCircleTriangle(Vector2dc center, double radiusSquared, Vector2dc v0, Vector2dc v1, Vector2dc v2) {
|
||
return testCircleTriangle(center.x(), center.y(), radiusSquared, v0.x(), v0.y(), v1.x(), v1.y(), v2.x(), v2.y());
|
||
}
|
||
|
||
/**
|
||
* Determine whether the polygon specified by the given sequence of <code>(x, y)</code> coordinate pairs intersects with the ray
|
||
* with given origin <code>(originX, originY, originZ)</code> and direction <code>(dirX, dirY, dirZ)</code>, and store the point of intersection
|
||
* into the given vector <code>p</code>.
|
||
* <p>
|
||
* If the polygon intersects the ray, this method returns the index of the polygon edge intersecting the ray, that is, the index of the
|
||
* first vertex of the directed line segment. The second vertex is always that index + 1, modulus the number of polygon vertices.
|
||
*
|
||
* @param verticesXY
|
||
* the sequence of <code>(x, y)</code> coordinate pairs of all vertices of the polygon
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param p
|
||
* will hold the point of intersection
|
||
* @return the index of the first vertex of the polygon edge that intersects the ray; or <code>-1</code> if the ray does not intersect the polygon
|
||
*/
|
||
public static int intersectPolygonRay(double[] verticesXY, double originX, double originY, double dirX, double dirY, Vector2d p) {
|
||
double nearestT = Double.POSITIVE_INFINITY;
|
||
int count = verticesXY.length >> 1;
|
||
int edgeIndex = -1;
|
||
double aX = verticesXY[(count-1)<<1], aY = verticesXY[((count-1)<<1) + 1];
|
||
for (int i = 0; i < count; i++) {
|
||
double bX = verticesXY[i << 1], bY = verticesXY[(i << 1) + 1];
|
||
double doaX = originX - aX, doaY = originY - aY;
|
||
double dbaX = bX - aX, dbaY = bY - aY;
|
||
double invDbaDir = 1.0 / (dbaY * dirX - dbaX * dirY);
|
||
double t = (dbaX * doaY - dbaY * doaX) * invDbaDir;
|
||
if (t >= 0.0 && t < nearestT) {
|
||
double t2 = (doaY * dirX - doaX * dirY) * invDbaDir;
|
||
if (t2 >= 0.0 && t2 <= 1.0) {
|
||
edgeIndex = (i - 1 + count) % count;
|
||
nearestT = t;
|
||
p.x = originX + t * dirX;
|
||
p.y = originY + t * dirY;
|
||
}
|
||
}
|
||
aX = bX;
|
||
aY = bY;
|
||
}
|
||
return edgeIndex;
|
||
}
|
||
|
||
/**
|
||
* Determine whether the polygon specified by the given sequence of <code>vertices</code> intersects with the ray
|
||
* with given origin <code>(originX, originY, originZ)</code> and direction <code>(dirX, dirY, dirZ)</code>, and store the point of intersection
|
||
* into the given vector <code>p</code>.
|
||
* <p>
|
||
* If the polygon intersects the ray, this method returns the index of the polygon edge intersecting the ray, that is, the index of the
|
||
* first vertex of the directed line segment. The second vertex is always that index + 1, modulus the number of polygon vertices.
|
||
*
|
||
* @param vertices
|
||
* the sequence of <code>(x, y)</code> coordinate pairs of all vertices of the polygon
|
||
* @param originX
|
||
* the x coordinate of the ray's origin
|
||
* @param originY
|
||
* the y coordinate of the ray's origin
|
||
* @param dirX
|
||
* the x coordinate of the ray's direction
|
||
* @param dirY
|
||
* the y coordinate of the ray's direction
|
||
* @param p
|
||
* will hold the point of intersection
|
||
* @return the index of the first vertex of the polygon edge that intersects the ray; or <code>-1</code> if the ray does not intersect the polygon
|
||
*/
|
||
public static int intersectPolygonRay(Vector2dc[] vertices, double originX, double originY, double dirX, double dirY, Vector2d p) {
|
||
double nearestT = Double.POSITIVE_INFINITY;
|
||
int count = vertices.length;
|
||
int edgeIndex = -1;
|
||
double aX = vertices[count-1].x(), aY = vertices[count-1].y();
|
||
for (int i = 0; i < count; i++) {
|
||
Vector2dc b = vertices[i];
|
||
double bX = b.x(), bY = b.y();
|
||
double doaX = originX - aX, doaY = originY - aY;
|
||
double dbaX = bX - aX, dbaY = bY - aY;
|
||
double invDbaDir = 1.0 / (dbaY * dirX - dbaX * dirY);
|
||
double t = (dbaX * doaY - dbaY * doaX) * invDbaDir;
|
||
if (t >= 0.0 && t < nearestT) {
|
||
double t2 = (doaY * dirX - doaX * dirY) * invDbaDir;
|
||
if (t2 >= 0.0 && t2 <= 1.0) {
|
||
edgeIndex = (i - 1 + count) % count;
|
||
nearestT = t;
|
||
p.x = originX + t * dirX;
|
||
p.y = originY + t * dirY;
|
||
}
|
||
}
|
||
aX = bX;
|
||
aY = bY;
|
||
}
|
||
return edgeIndex;
|
||
}
|
||
|
||
/**
|
||
* Determine whether the two lines, specified via two points lying on each line, intersect each other, and store the point of intersection
|
||
* into the given vector <code>p</code>.
|
||
*
|
||
* @param ps1x
|
||
* the x coordinate of the first point on the first line
|
||
* @param ps1y
|
||
* the y coordinate of the first point on the first line
|
||
* @param pe1x
|
||
* the x coordinate of the second point on the first line
|
||
* @param pe1y
|
||
* the y coordinate of the second point on the first line
|
||
* @param ps2x
|
||
* the x coordinate of the first point on the second line
|
||
* @param ps2y
|
||
* the y coordinate of the first point on the second line
|
||
* @param pe2x
|
||
* the x coordinate of the second point on the second line
|
||
* @param pe2y
|
||
* the y coordinate of the second point on the second line
|
||
* @param p
|
||
* will hold the point of intersection
|
||
* @return <code>true</code> iff the two lines intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean intersectLineLine(double ps1x, double ps1y, double pe1x, double pe1y, double ps2x, double ps2y, double pe2x, double pe2y, Vector2d p) {
|
||
double d1x = ps1x - pe1x;
|
||
double d1y = pe1y - ps1y;
|
||
double d1ps1 = d1y * ps1x + d1x * ps1y;
|
||
double d2x = ps2x - pe2x;
|
||
double d2y = pe2y - ps2y;
|
||
double d2ps2 = d2y * ps2x + d2x * ps2y;
|
||
double det = d1y * d2x - d2y * d1x;
|
||
if (det == 0.0)
|
||
return false;
|
||
p.x = (d2x * d1ps1 - d1x * d2ps2) / det;
|
||
p.y = (d1y * d2ps2 - d2y * d1ps1) / det;
|
||
return true;
|
||
}
|
||
|
||
private static boolean separatingAxis(Vector2d[] v1s, Vector2d[] v2s, double aX, double aY) {
|
||
double minA = Double.POSITIVE_INFINITY, maxA = Double.NEGATIVE_INFINITY;
|
||
double minB = Double.POSITIVE_INFINITY, maxB = Double.NEGATIVE_INFINITY;
|
||
int maxLen = Math.max(v1s.length, v2s.length);
|
||
/* Project both polygons on axis */
|
||
for (int k = 0; k < maxLen; k++) {
|
||
if (k < v1s.length) {
|
||
Vector2d v1 = v1s[k];
|
||
double d = v1.x * aX + v1.y * aY;
|
||
if (d < minA) minA = d;
|
||
if (d > maxA) maxA = d;
|
||
}
|
||
if (k < v2s.length) {
|
||
Vector2d v2 = v2s[k];
|
||
double d = v2.x * aX + v2.y * aY;
|
||
if (d < minB) minB = d;
|
||
if (d > maxB) maxB = d;
|
||
}
|
||
/* Early-out if overlap found */
|
||
if (minA <= maxB && minB <= maxA) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/**
|
||
* Test if the two convex polygons, given via their vertices, intersect.
|
||
*
|
||
* @param v1s
|
||
* the vertices of the first convex polygon
|
||
* @param v2s
|
||
* the vertices of the second convex polygon
|
||
* @return <code>true</code> if the convex polygons intersect; <code>false</code> otherwise
|
||
*/
|
||
public static boolean testPolygonPolygon(Vector2d[] v1s, Vector2d[] v2s) {
|
||
/* Try to find a separating axis using the first polygon's edges */
|
||
for (int i = 0, j = v1s.length - 1; i < v1s.length; j = i, i++) {
|
||
Vector2d s = v1s[i], t = v1s[j];
|
||
if (separatingAxis(v1s, v2s, s.y - t.y, t.x - s.x))
|
||
return false;
|
||
}
|
||
/* Try to find a separating axis using the second polygon's edges */
|
||
for (int i = 0, j = v2s.length - 1; i < v2s.length; j = i, i++) {
|
||
Vector2d s = v2s[i], t = v2s[j];
|
||
if (separatingAxis(v1s, v2s, s.y - t.y, t.x - s.x))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
}
|