mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2025-01-12 23:36:09 +01:00
a42c027b6f
- Fix Resources not being closed properly - Change versioning scheme to match Create - Add LICENSE to built jar - Fix mods.toml version sync - Move JOML code to non-src directory - Update Gradle - Organize imports
2492 lines
89 KiB
Java
2492 lines
89 KiB
Java
/*
|
|
* The MIT License
|
|
*
|
|
* Copyright (c) 2017-2021 JOML
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
package com.jozufozu.flywheel.repack.joml;
|
|
|
|
import java.io.Externalizable;
|
|
import java.io.IOException;
|
|
import java.io.ObjectInput;
|
|
import java.io.ObjectOutput;
|
|
import java.nio.ByteBuffer;
|
|
import java.nio.FloatBuffer;
|
|
import java.text.DecimalFormat;
|
|
import java.text.NumberFormat;
|
|
|
|
|
|
/**
|
|
* Contains the definition of a 3x2 matrix of floats, and associated functions to transform
|
|
* it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:
|
|
* <p>
|
|
* m00 m10 m20<br>
|
|
* m01 m11 m21<br>
|
|
*
|
|
* @author Kai Burjack
|
|
*/
|
|
public class Matrix3x2f implements Matrix3x2fc, Externalizable, Cloneable {
|
|
|
|
private static final long serialVersionUID = 1L;
|
|
|
|
public float m00, m01;
|
|
public float m10, m11;
|
|
public float m20, m21;
|
|
|
|
/**
|
|
* Create a new {@link Matrix3x2f} and set it to {@link #identity() identity}.
|
|
*/
|
|
public Matrix3x2f() {
|
|
this.m00 = 1.0f;
|
|
this.m11 = 1.0f;
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link Matrix3x2f} and make it a copy of the given matrix.
|
|
*
|
|
* @param mat
|
|
* the {@link Matrix3x2fc} to copy the values from
|
|
*/
|
|
public Matrix3x2f(Matrix3x2fc mat) {
|
|
if (mat instanceof Matrix3x2f) {
|
|
MemUtil.INSTANCE.copy((Matrix3x2f) mat, this);
|
|
} else {
|
|
setMatrix3x2fc(mat);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link Matrix3x2f} by setting its left 2x2 submatrix to the values of the given {@link Matrix2fc}
|
|
* and the rest to identity.
|
|
*
|
|
* @param mat
|
|
* the {@link Matrix2fc}
|
|
*/
|
|
public Matrix3x2f(Matrix2fc mat) {
|
|
if (mat instanceof Matrix2f) {
|
|
MemUtil.INSTANCE.copy((Matrix2f) mat, this);
|
|
} else {
|
|
setMatrix2fc(mat);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Create a new 3x2 matrix using the supplied float values. The order of the parameter is column-major,
|
|
* so the first two parameters specify the two elements of the first column.
|
|
*
|
|
* @param m00
|
|
* the value of m00
|
|
* @param m01
|
|
* the value of m01
|
|
* @param m10
|
|
* the value of m10
|
|
* @param m11
|
|
* the value of m11
|
|
* @param m20
|
|
* the value of m20
|
|
* @param m21
|
|
* the value of m21
|
|
*/
|
|
public Matrix3x2f(float m00, float m01,
|
|
float m10, float m11,
|
|
float m20, float m21) {
|
|
this.m00 = m00;
|
|
this.m01 = m01;
|
|
this.m10 = m10;
|
|
this.m11 = m11;
|
|
this.m20 = m20;
|
|
this.m21 = m21;
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link Matrix3x2f} by reading its 6 float components from the given {@link FloatBuffer}
|
|
* at the buffer's current position.
|
|
* <p>
|
|
* That FloatBuffer is expected to hold the values in column-major order.
|
|
* <p>
|
|
* The buffer's position will not be changed by this method.
|
|
*
|
|
* @param buffer
|
|
* the {@link FloatBuffer} to read the matrix values from
|
|
*/
|
|
public Matrix3x2f(FloatBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
|
|
}
|
|
|
|
public float m00() {
|
|
return m00;
|
|
}
|
|
public float m01() {
|
|
return m01;
|
|
}
|
|
public float m10() {
|
|
return m10;
|
|
}
|
|
public float m11() {
|
|
return m11;
|
|
}
|
|
public float m20() {
|
|
return m20;
|
|
}
|
|
public float m21() {
|
|
return m21;
|
|
}
|
|
|
|
/**
|
|
* Set the value of the matrix element at column 0 and row 0.
|
|
*
|
|
* @param m00
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix3x2f _m00(float m00) {
|
|
this.m00 = m00;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 0 and row 1.
|
|
*
|
|
* @param m01
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix3x2f _m01(float m01) {
|
|
this.m01 = m01;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 1 and row 0.
|
|
*
|
|
* @param m10
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix3x2f _m10(float m10) {
|
|
this.m10 = m10;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 1 and row 1.
|
|
*
|
|
* @param m11
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix3x2f _m11(float m11) {
|
|
this.m11 = m11;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 2 and row 0.
|
|
*
|
|
* @param m20
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix3x2f _m20(float m20) {
|
|
this.m20 = m20;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 2 and row 1.
|
|
*
|
|
* @param m21
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix3x2f _m21(float m21) {
|
|
this.m21 = m21;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the elements of this matrix to the ones in <code>m</code>.
|
|
*
|
|
* @param m
|
|
* the matrix to copy the elements from
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f set(Matrix3x2fc m) {
|
|
if (m instanceof Matrix3x2f) {
|
|
MemUtil.INSTANCE.copy((Matrix3x2f) m, this);
|
|
} else {
|
|
setMatrix3x2fc(m);
|
|
}
|
|
return this;
|
|
}
|
|
private void setMatrix3x2fc(Matrix3x2fc mat) {
|
|
m00 = mat.m00();
|
|
m01 = mat.m01();
|
|
m10 = mat.m10();
|
|
m11 = mat.m11();
|
|
m20 = mat.m20();
|
|
m21 = mat.m21();
|
|
}
|
|
|
|
/**
|
|
* Set the left 2x2 submatrix of this {@link Matrix3x2f} to the given {@link Matrix2fc} and don't change the other elements.
|
|
*
|
|
* @param m
|
|
* the 2x2 matrix
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f set(Matrix2fc m) {
|
|
if (m instanceof Matrix2f) {
|
|
MemUtil.INSTANCE.copy((Matrix2f) m, this);
|
|
} else {
|
|
setMatrix2fc(m);
|
|
}
|
|
return this;
|
|
}
|
|
private void setMatrix2fc(Matrix2fc mat) {
|
|
m00 = mat.m00();
|
|
m01 = mat.m01();
|
|
m10 = mat.m10();
|
|
m11 = mat.m11();
|
|
}
|
|
|
|
/**
|
|
* Multiply this matrix by the supplied <code>right</code> matrix by assuming a third row in
|
|
* both matrices of <code>(0, 0, 1)</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* transformation of the right matrix will be applied first!
|
|
*
|
|
* @param right
|
|
* the right operand of the matrix multiplication
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f mul(Matrix3x2fc right) {
|
|
return mul(right, this);
|
|
}
|
|
|
|
/**
|
|
* Multiply this matrix by the supplied <code>right</code> matrix by assuming a third row in
|
|
* both matrices of <code>(0, 0, 1)</code> and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* transformation of the right matrix will be applied first!
|
|
*
|
|
* @param right
|
|
* the right operand of the matrix multiplication
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f mul(Matrix3x2fc right, Matrix3x2f dest) {
|
|
float nm00 = m00 * right.m00() + m10 * right.m01();
|
|
float nm01 = m01 * right.m00() + m11 * right.m01();
|
|
float nm10 = m00 * right.m10() + m10 * right.m11();
|
|
float nm11 = m01 * right.m10() + m11 * right.m11();
|
|
float nm20 = m00 * right.m20() + m10 * right.m21() + m20;
|
|
float nm21 = m01 * right.m20() + m11 * right.m21() + m21;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply this matrix by the supplied <code>left</code> matrix and store the result in <code>this</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the <code>left</code> matrix,
|
|
* then the new matrix will be <code>L * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>L * M * v</code>, the
|
|
* transformation of <code>this</code> matrix will be applied first!
|
|
*
|
|
* @param left
|
|
* the left operand of the matrix multiplication
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f mulLocal(Matrix3x2fc left) {
|
|
return mulLocal(left, this);
|
|
}
|
|
|
|
public Matrix3x2f mulLocal(Matrix3x2fc left, Matrix3x2f dest) {
|
|
float nm00 = left.m00() * m00 + left.m10() * m01;
|
|
float nm01 = left.m01() * m00 + left.m11() * m01;
|
|
float nm10 = left.m00() * m10 + left.m10() * m11;
|
|
float nm11 = left.m01() * m10 + left.m11() * m11;
|
|
float nm20 = left.m00() * m20 + left.m10() * m21 + left.m20();
|
|
float nm21 = left.m01() * m20 + left.m11() * m21 + left.m21();
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Set the values within this matrix to the supplied float values. The result looks like this:
|
|
* <p>
|
|
* m00, m10, m20<br>
|
|
* m01, m11, m21<br>
|
|
*
|
|
* @param m00
|
|
* the new value of m00
|
|
* @param m01
|
|
* the new value of m01
|
|
* @param m10
|
|
* the new value of m10
|
|
* @param m11
|
|
* the new value of m11
|
|
* @param m20
|
|
* the new value of m20
|
|
* @param m21
|
|
* the new value of m21
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f set(float m00, float m01,
|
|
float m10, float m11,
|
|
float m20, float m21) {
|
|
this.m00 = m00;
|
|
this.m01 = m01;
|
|
this.m10 = m10;
|
|
this.m11 = m11;
|
|
this.m20 = m20;
|
|
this.m21 = m21;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the values in this matrix based on the supplied float array. The result looks like this:
|
|
* <p>
|
|
* 0, 2, 4<br>
|
|
* 1, 3, 5<br>
|
|
*
|
|
* This method only uses the first 6 values, all others are ignored.
|
|
*
|
|
* @param m
|
|
* the array to read the matrix values from
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f set(float m[]) {
|
|
MemUtil.INSTANCE.copy(m, 0, this);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Return the determinant of this matrix.
|
|
*
|
|
* @return the determinant
|
|
*/
|
|
public float determinant() {
|
|
return m00 * m11 - m01 * m10;
|
|
}
|
|
|
|
/**
|
|
* Invert this matrix by assuming a third row in this matrix of <code>(0, 0, 1)</code>.
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f invert() {
|
|
return invert(this);
|
|
}
|
|
|
|
/**
|
|
* Invert the <code>this</code> matrix by assuming a third row in this matrix of <code>(0, 0, 1)</code>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f invert(Matrix3x2f dest) {
|
|
// client must make sure that matrix is invertible
|
|
float s = 1.0f / (m00 * m11 - m01 * m10);
|
|
float nm00 = m11 * s;
|
|
float nm01 = -m01 * s;
|
|
float nm10 = -m10 * s;
|
|
float nm11 = m00 * s;
|
|
float nm20 = (m10 * m21 - m20 * m11) * s;
|
|
float nm21 = (m20 * m01 - m00 * m21) * s;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a simple translation matrix in a two-dimensional coordinate system.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional translation.
|
|
* <p>
|
|
* In order to apply a translation via to an already existing transformation
|
|
* matrix, use {@link #translate(float, float) translate()} instead.
|
|
*
|
|
* @see #translate(float, float)
|
|
*
|
|
* @param x
|
|
* the units to translate in x
|
|
* @param y
|
|
* the units to translate in y
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f translation(float x, float y) {
|
|
m00 = 1.0f;
|
|
m01 = 0.0f;
|
|
m10 = 0.0f;
|
|
m11 = 1.0f;
|
|
m20 = x;
|
|
m21 = y;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a simple translation matrix in a two-dimensional coordinate system.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional translation.
|
|
* <p>
|
|
* In order to apply a translation via to an already existing transformation
|
|
* matrix, use {@link #translate(Vector2fc) translate()} instead.
|
|
*
|
|
* @see #translate(Vector2fc)
|
|
*
|
|
* @param offset
|
|
* the translation
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f translation(Vector2fc offset) {
|
|
return translation(offset.x(), offset.y());
|
|
}
|
|
|
|
/**
|
|
* Set only the translation components of this matrix <code>(m20, m21)</code> to the given values <code>(x, y)</code>.
|
|
* <p>
|
|
* To build a translation matrix instead, use {@link #translation(float, float)}.
|
|
* To apply a translation to another matrix, use {@link #translate(float, float)}.
|
|
*
|
|
* @see #translation(float, float)
|
|
* @see #translate(float, float)
|
|
*
|
|
* @param x
|
|
* the offset to translate in x
|
|
* @param y
|
|
* the offset to translate in y
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f setTranslation(float x, float y) {
|
|
m20 = x;
|
|
m21 = y;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set only the translation components of this matrix <code>(m20, m21)</code> to the given values <code>(offset.x, offset.y)</code>.
|
|
* <p>
|
|
* To build a translation matrix instead, use {@link #translation(Vector2fc)}.
|
|
* To apply a translation to another matrix, use {@link #translate(Vector2fc)}.
|
|
*
|
|
* @see #translation(Vector2fc)
|
|
* @see #translate(Vector2fc)
|
|
*
|
|
* @param offset
|
|
* the new translation to set
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f setTranslation(Vector2f offset) {
|
|
return setTranslation(offset.x, offset.y);
|
|
}
|
|
|
|
/**
|
|
* Apply a translation to this matrix by translating by the given number of units in x and y and store the result
|
|
* in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>M * T</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>M * T * v</code>, the translation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without post-multiplying
|
|
* it, use {@link #translation(float, float)}.
|
|
*
|
|
* @see #translation(float, float)
|
|
*
|
|
* @param x
|
|
* the offset to translate in x
|
|
* @param y
|
|
* the offset to translate in y
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f translate(float x, float y, Matrix3x2f dest) {
|
|
float rm20 = x;
|
|
float rm21 = y;
|
|
dest.m20 = m00 * rm20 + m10 * rm21 + m20;
|
|
dest.m21 = m01 * rm20 + m11 * rm21 + m21;
|
|
dest.m00 = m00;
|
|
dest.m01 = m01;
|
|
dest.m10 = m10;
|
|
dest.m11 = m11;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply a translation to this matrix by translating by the given number of units in x and y.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>M * T</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>M * T * v</code>, the translation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without post-multiplying
|
|
* it, use {@link #translation(float, float)}.
|
|
*
|
|
* @see #translation(float, float)
|
|
*
|
|
* @param x
|
|
* the offset to translate in x
|
|
* @param y
|
|
* the offset to translate in y
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f translate(float x, float y) {
|
|
return translate(x, y, this);
|
|
}
|
|
|
|
/**
|
|
* Apply a translation to this matrix by translating by the given number of units in x and y, and
|
|
* store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>M * T</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>M * T * v</code>, the translation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without post-multiplying
|
|
* it, use {@link #translation(float, float)}.
|
|
*
|
|
* @see #translation(Vector2fc)
|
|
*
|
|
* @param offset
|
|
* the offset to translate
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f translate(Vector2fc offset, Matrix3x2f dest) {
|
|
return translate(offset.x(), offset.y(), dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a translation to this matrix by translating by the given number of units in x and y.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>M * T</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>M * T * v</code>, the translation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without post-multiplying
|
|
* it, use {@link #translation(float, float)}.
|
|
*
|
|
* @see #translation(Vector2fc)
|
|
*
|
|
* @param offset
|
|
* the offset to translate
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f translate(Vector2fc offset) {
|
|
return translate(offset.x(), offset.y(), this);
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a translation to this matrix by translating by the given number of
|
|
* units in x and y.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>T * M</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>T * M * v</code>, the translation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without pre-multiplying
|
|
* it, use {@link #translation(Vector2fc)}.
|
|
*
|
|
* @see #translation(Vector2fc)
|
|
*
|
|
* @param offset
|
|
* the number of units in x and y by which to translate
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f translateLocal(Vector2fc offset) {
|
|
return translateLocal(offset.x(), offset.y());
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a translation to this matrix by translating by the given number of
|
|
* units in x and y and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>T * M</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>T * M * v</code>, the translation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without pre-multiplying
|
|
* it, use {@link #translation(Vector2fc)}.
|
|
*
|
|
* @see #translation(Vector2fc)
|
|
*
|
|
* @param offset
|
|
* the number of units in x and y by which to translate
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f translateLocal(Vector2fc offset, Matrix3x2f dest) {
|
|
return translateLocal(offset.x(), offset.y(), dest);
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a translation to this matrix by translating by the given number of
|
|
* units in x and y and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>T * M</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>T * M * v</code>, the translation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without pre-multiplying
|
|
* it, use {@link #translation(float, float)}.
|
|
*
|
|
* @see #translation(float, float)
|
|
*
|
|
* @param x
|
|
* the offset to translate in x
|
|
* @param y
|
|
* the offset to translate in y
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f translateLocal(float x, float y, Matrix3x2f dest) {
|
|
dest.m00 = m00;
|
|
dest.m01 = m01;
|
|
dest.m10 = m10;
|
|
dest.m11 = m11;
|
|
dest.m20 = m20 + x;
|
|
dest.m21 = m21 + y;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a translation to this matrix by translating by the given number of
|
|
* units in x and y.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>T * M</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>T * M * v</code>, the translation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without pre-multiplying
|
|
* it, use {@link #translation(float, float)}.
|
|
*
|
|
* @see #translation(float, float)
|
|
*
|
|
* @param x
|
|
* the offset to translate in x
|
|
* @param y
|
|
* the offset to translate in y
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f translateLocal(float x, float y) {
|
|
return translateLocal(x, y, this);
|
|
}
|
|
|
|
/**
|
|
* Return a string representation of this matrix.
|
|
* <p>
|
|
* This method creates a new {@link DecimalFormat} on every invocation with the format string "<code>0.000E0;-</code>".
|
|
*
|
|
* @return the string representation
|
|
*/
|
|
public String toString() {
|
|
String str = toString(Options.NUMBER_FORMAT);
|
|
StringBuffer res = new StringBuffer();
|
|
int eIndex = Integer.MIN_VALUE;
|
|
for (int i = 0; i < str.length(); i++) {
|
|
char c = str.charAt(i);
|
|
if (c == 'E') {
|
|
eIndex = i;
|
|
} else if (c == ' ' && eIndex == i - 1) {
|
|
// workaround Java 1.4 DecimalFormat bug
|
|
res.append('+');
|
|
continue;
|
|
} else if (Character.isDigit(c) && eIndex == i - 1) {
|
|
res.append('+');
|
|
}
|
|
res.append(c);
|
|
}
|
|
return res.toString();
|
|
}
|
|
|
|
/**
|
|
* Return a string representation of this matrix by formatting the matrix elements with the given {@link NumberFormat}.
|
|
*
|
|
* @param formatter
|
|
* the {@link NumberFormat} used to format the matrix values with
|
|
* @return the string representation
|
|
*/
|
|
public String toString(NumberFormat formatter) {
|
|
return Runtime.format(m00, formatter) + " " + Runtime.format(m10, formatter) + " " + Runtime.format(m20, formatter) + "\n"
|
|
+ Runtime.format(m01, formatter) + " " + Runtime.format(m11, formatter) + " " + Runtime.format(m21, formatter) + "\n";
|
|
}
|
|
|
|
/**
|
|
* Get the current values of <code>this</code> matrix and store them into
|
|
* <code>dest</code>.
|
|
* <p>
|
|
* This is the reverse method of {@link #set(Matrix3x2fc)} and allows to obtain
|
|
* intermediate calculation results when chaining multiple transformations.
|
|
*
|
|
* @see #set(Matrix3x2fc)
|
|
*
|
|
* @param dest
|
|
* the destination matrix
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f get(Matrix3x2f dest) {
|
|
return dest.set(this);
|
|
}
|
|
|
|
|
|
/**
|
|
* Store this matrix in column-major order into the supplied {@link FloatBuffer} at the current
|
|
* buffer {@link FloatBuffer#position() position}.
|
|
* <p>
|
|
* This method will not increment the position of the given FloatBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the FloatBuffer at which
|
|
* the matrix is stored, use {@link #get(int, FloatBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #get(int, FloatBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
public FloatBuffer get(FloatBuffer buffer) {
|
|
return get(buffer.position(), buffer);
|
|
}
|
|
|
|
/**
|
|
* Store this matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified
|
|
* absolute buffer position/index.
|
|
* <p>
|
|
* This method will not increment the position of the given FloatBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the FloatBuffer
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
public FloatBuffer get(int index, FloatBuffer buffer) {
|
|
MemUtil.INSTANCE.put(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
/**
|
|
* Store this matrix in column-major order into the supplied {@link ByteBuffer} at the current
|
|
* buffer {@link ByteBuffer#position() position}.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the ByteBuffer at which
|
|
* the matrix is stored, use {@link #get(int, ByteBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #get(int, ByteBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
public ByteBuffer get(ByteBuffer buffer) {
|
|
return get(buffer.position(), buffer);
|
|
}
|
|
|
|
/**
|
|
* Store this matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
|
|
* absolute buffer position/index.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the ByteBuffer
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
public ByteBuffer get(int index, ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.put(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
/**
|
|
* Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied {@link FloatBuffer} at the current
|
|
* buffer {@link FloatBuffer#position() position}.
|
|
* <p>
|
|
* This method will not increment the position of the given FloatBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the FloatBuffer at which
|
|
* the matrix is stored, use {@link #get3x3(int, FloatBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #get3x3(int, FloatBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
public FloatBuffer get3x3(FloatBuffer buffer) {
|
|
MemUtil.INSTANCE.put3x3(this, 0, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
/**
|
|
* Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified
|
|
* absolute buffer position/index.
|
|
* <p>
|
|
* This method will not increment the position of the given FloatBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the FloatBuffer
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
public FloatBuffer get3x3(int index, FloatBuffer buffer) {
|
|
MemUtil.INSTANCE.put3x3(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
/**
|
|
* Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied {@link ByteBuffer} at the current
|
|
* buffer {@link ByteBuffer#position() position}.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the ByteBuffer at which
|
|
* the matrix is stored, use {@link #get3x3(int, ByteBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #get3x3(int, ByteBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
public ByteBuffer get3x3(ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.put3x3(this, 0, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
/**
|
|
* Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
|
|
* absolute buffer position/index.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the ByteBuffer
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
public ByteBuffer get3x3(int index, ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.put3x3(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
/**
|
|
* Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied {@link FloatBuffer} at the current
|
|
* buffer {@link FloatBuffer#position() position}.
|
|
* <p>
|
|
* This method will not increment the position of the given FloatBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the FloatBuffer at which
|
|
* the matrix is stored, use {@link #get4x4(int, FloatBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #get4x4(int, FloatBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
public FloatBuffer get4x4(FloatBuffer buffer) {
|
|
MemUtil.INSTANCE.put4x4(this, 0, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
/**
|
|
* Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified
|
|
* absolute buffer position/index.
|
|
* <p>
|
|
* This method will not increment the position of the given FloatBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the FloatBuffer
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
public FloatBuffer get4x4(int index, FloatBuffer buffer) {
|
|
MemUtil.INSTANCE.put4x4(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
/**
|
|
* Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied {@link ByteBuffer} at the current
|
|
* buffer {@link ByteBuffer#position() position}.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the ByteBuffer at which
|
|
* the matrix is stored, use {@link #get4x4(int, ByteBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #get4x4(int, ByteBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
public ByteBuffer get4x4(ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.put4x4(this, 0, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
/**
|
|
* Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
|
|
* absolute buffer position/index.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the ByteBuffer
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
public ByteBuffer get4x4(int index, ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.put4x4(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
public Matrix3x2fc getToAddress(long address) {
|
|
if (Options.NO_UNSAFE)
|
|
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
|
|
MemUtil.MemUtilUnsafe.put(this, address);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Store this matrix into the supplied float array in column-major order at the given offset.
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @param offset
|
|
* the offset into the array
|
|
* @return the passed in array
|
|
*/
|
|
public float[] get(float[] arr, int offset) {
|
|
MemUtil.INSTANCE.copy(this, arr, offset);
|
|
return arr;
|
|
}
|
|
|
|
/**
|
|
* Store this matrix into the supplied float array in column-major order.
|
|
* <p>
|
|
* In order to specify an explicit offset into the array, use the method {@link #get(float[], int)}.
|
|
*
|
|
* @see #get(float[], int)
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @return the passed in array
|
|
*/
|
|
public float[] get(float[] arr) {
|
|
return get(arr, 0);
|
|
}
|
|
|
|
/**
|
|
* Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied float array at the given offset.
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @param offset
|
|
* the offset into the array
|
|
* @return the passed in array
|
|
*/
|
|
public float[] get3x3(float[] arr, int offset) {
|
|
MemUtil.INSTANCE.copy3x3(this, arr, offset);
|
|
return arr;
|
|
}
|
|
|
|
/**
|
|
* Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied float array.
|
|
* <p>
|
|
* In order to specify an explicit offset into the array, use the method {@link #get3x3(float[], int)}.
|
|
*
|
|
* @see #get3x3(float[], int)
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @return the passed in array
|
|
*/
|
|
public float[] get3x3(float[] arr) {
|
|
return get3x3(arr, 0);
|
|
}
|
|
|
|
/**
|
|
* Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied float array at the given offset.
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @param offset
|
|
* the offset into the array
|
|
* @return the passed in array
|
|
*/
|
|
public float[] get4x4(float[] arr, int offset) {
|
|
MemUtil.INSTANCE.copy4x4(this, arr, offset);
|
|
return arr;
|
|
}
|
|
|
|
/**
|
|
* Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied float array.
|
|
* <p>
|
|
* In order to specify an explicit offset into the array, use the method {@link #get4x4(float[], int)}.
|
|
*
|
|
* @see #get4x4(float[], int)
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @return the passed in array
|
|
*/
|
|
public float[] get4x4(float[] arr) {
|
|
return get4x4(arr, 0);
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 6 float values from the given {@link FloatBuffer} in column-major order,
|
|
* starting at its current position.
|
|
* <p>
|
|
* The FloatBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the FloatBuffer will not be changed by this method.
|
|
*
|
|
* @param buffer
|
|
* the FloatBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f set(FloatBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 6 float values from the given {@link ByteBuffer} in column-major order,
|
|
* starting at its current position.
|
|
* <p>
|
|
* The ByteBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the ByteBuffer will not be changed by this method.
|
|
*
|
|
* @param buffer
|
|
* the ByteBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f set(ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 6 float values from the given {@link FloatBuffer} in column-major order,
|
|
* starting at the specified absolute buffer position/index.
|
|
* <p>
|
|
* The FloatBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the FloatBuffer will not be changed by this method.
|
|
*
|
|
* @param index
|
|
* the absolute position into the FloatBuffer
|
|
* @param buffer
|
|
* the FloatBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f set(int index, FloatBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, index, buffer);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 6 float values from the given {@link ByteBuffer} in column-major order,
|
|
* starting at the specified absolute buffer position/index.
|
|
* <p>
|
|
* The ByteBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the ByteBuffer will not be changed by this method.
|
|
*
|
|
* @param index
|
|
* the absolute position into the ByteBuffer
|
|
* @param buffer
|
|
* the ByteBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f set(int index, ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, index, buffer);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 6 float values from off-heap memory in column-major order,
|
|
* starting at the given address.
|
|
* <p>
|
|
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
|
|
* <p>
|
|
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
|
|
*
|
|
* @param address
|
|
* the off-heap memory address to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f setFromAddress(long address) {
|
|
if (Options.NO_UNSAFE)
|
|
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
|
|
MemUtil.MemUtilUnsafe.get(this, address);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set all values within this matrix to zero.
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f zero() {
|
|
MemUtil.INSTANCE.zero(this);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to the identity.
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f identity() {
|
|
MemUtil.INSTANCE.identity(this);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by scaling the unit axes by the given x and y and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first!
|
|
*
|
|
* @param x
|
|
* the factor of the x component
|
|
* @param y
|
|
* the factor of the y component
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f scale(float x, float y, Matrix3x2f dest) {
|
|
dest.m00 = m00 * x;
|
|
dest.m01 = m01 * x;
|
|
dest.m10 = m10 * y;
|
|
dest.m11 = m11 * y;
|
|
dest.m20 = m20;
|
|
dest.m21 = m21;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by scaling the base axes by the given x and y factors.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first!
|
|
*
|
|
* @param x
|
|
* the factor of the x component
|
|
* @param y
|
|
* the factor of the y component
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f scale(float x, float y) {
|
|
return scale(x, y, this);
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by scaling the base axes by the given <code>xy</code> factors.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first!
|
|
*
|
|
* @param xy
|
|
* the factors of the x and y component, respectively
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f scale(Vector2fc xy) {
|
|
return scale(xy.x(), xy.y(), this);
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by scaling the base axes by the given <code>xy</code> factors
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first!
|
|
*
|
|
* @param xy
|
|
* the factors of the x and y component, respectively
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f scale(Vector2fc xy, Matrix3x2f dest) {
|
|
return scale(xy.x(), xy.y(), dest);
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by uniformly scaling the two base axes by the given <code>xy</code> factor
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first!
|
|
*
|
|
* @see #scale(float, float, Matrix3x2f)
|
|
*
|
|
* @param xy
|
|
* the factor for the two components
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f scale(float xy, Matrix3x2f dest) {
|
|
return scale(xy, xy, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by uniformly scaling the two base axes by the given <code>xyz</code> factor.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first!
|
|
*
|
|
* @see #scale(float, float)
|
|
*
|
|
* @param xy
|
|
* the factor for the two components
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f scale(float xy) {
|
|
return scale(xy, xy);
|
|
}
|
|
|
|
public Matrix3x2f scaleLocal(float x, float y, Matrix3x2f dest) {
|
|
dest.m00 = x * m00;
|
|
dest.m01 = y * m01;
|
|
dest.m10 = x * m10;
|
|
dest.m11 = y * m11;
|
|
dest.m20 = x * m20;
|
|
dest.m21 = y * m21;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply scaling to this matrix by scaling the base axes by the given x and y factors.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>S * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>, the
|
|
* scaling will be applied last!
|
|
*
|
|
* @param x
|
|
* the factor of the x component
|
|
* @param y
|
|
* the factor of the y component
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f scaleLocal(float x, float y) {
|
|
return scaleLocal(x, y, this);
|
|
}
|
|
|
|
public Matrix3x2f scaleLocal(float xy, Matrix3x2f dest) {
|
|
return scaleLocal(xy, xy, dest);
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply scaling to this matrix by scaling the base axes by the given xy factor.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>S * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>, the
|
|
* scaling will be applied last!
|
|
*
|
|
* @param xy
|
|
* the factor of the x and y component
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f scaleLocal(float xy) {
|
|
return scaleLocal(xy, xy, this);
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to <code>this</code> matrix by scaling the base axes by the given sx and
|
|
* sy factors while using <code>(ox, oy)</code> as the scaling origin, and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
|
|
* , the scaling will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(ox, oy, dest).scale(sx, sy).translate(-ox, -oy)</code>
|
|
*
|
|
* @param sx
|
|
* the scaling factor of the x component
|
|
* @param sy
|
|
* the scaling factor of the y component
|
|
* @param ox
|
|
* the x coordinate of the scaling origin
|
|
* @param oy
|
|
* the y coordinate of the scaling origin
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f scaleAround(float sx, float sy, float ox, float oy, Matrix3x2f dest) {
|
|
float nm20 = m00 * ox + m10 * oy + m20;
|
|
float nm21 = m01 * ox + m11 * oy + m21;
|
|
dest.m00 = m00 * sx;
|
|
dest.m01 = m01 * sx;
|
|
dest.m10 = m10 * sy;
|
|
dest.m11 = m11 * sy;
|
|
dest.m20 = dest.m00 * -ox + dest.m10 * -oy + nm20;
|
|
dest.m21 = dest.m01 * -ox + dest.m11 * -oy + nm21;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by scaling the base axes by the given sx and
|
|
* sy factors while using <code>(ox, oy)</code> as the scaling origin.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* scaling will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(ox, oy).scale(sx, sy).translate(-ox, -oy)</code>
|
|
*
|
|
* @param sx
|
|
* the scaling factor of the x component
|
|
* @param sy
|
|
* the scaling factor of the y component
|
|
* @param ox
|
|
* the x coordinate of the scaling origin
|
|
* @param oy
|
|
* the y coordinate of the scaling origin
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f scaleAround(float sx, float sy, float ox, float oy) {
|
|
return scaleAround(sx, sy, ox, oy, this);
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by scaling the base axes by the given <code>factor</code>
|
|
* while using <code>(ox, oy)</code> as the scaling origin,
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* scaling will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(ox, oy, dest).scale(factor).translate(-ox, -oy)</code>
|
|
*
|
|
* @param factor
|
|
* the scaling factor for all three axes
|
|
* @param ox
|
|
* the x coordinate of the scaling origin
|
|
* @param oy
|
|
* the y coordinate of the scaling origin
|
|
* @param dest
|
|
* will hold the result
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f scaleAround(float factor, float ox, float oy, Matrix3x2f dest) {
|
|
return scaleAround(factor, factor, ox, oy, this);
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by scaling the base axes by the given <code>factor</code>
|
|
* while using <code>(ox, oy)</code> as the scaling origin.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* scaling will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(ox, oy).scale(factor).translate(-ox, -oy)</code>
|
|
*
|
|
* @param factor
|
|
* the scaling factor for all axes
|
|
* @param ox
|
|
* the x coordinate of the scaling origin
|
|
* @param oy
|
|
* the y coordinate of the scaling origin
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f scaleAround(float factor, float ox, float oy) {
|
|
return scaleAround(factor, factor, ox, oy, this);
|
|
}
|
|
|
|
public Matrix3x2f scaleAroundLocal(float sx, float sy, float ox, float oy, Matrix3x2f dest) {
|
|
dest.m00 = sx * m00;
|
|
dest.m01 = sy * m01;
|
|
dest.m10 = sx * m10;
|
|
dest.m11 = sy * m11;
|
|
dest.m20 = sx * m20 - sx * ox + ox;
|
|
dest.m21 = sy * m21 - sy * oy + oy;
|
|
return dest;
|
|
}
|
|
|
|
public Matrix3x2f scaleAroundLocal(float factor, float ox, float oy, Matrix3x2f dest) {
|
|
return scaleAroundLocal(factor, factor, ox, oy, dest);
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply scaling to this matrix by scaling the base axes by the given sx and
|
|
* sy factors while using <code>(ox, oy)</code> as the scaling origin.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>S * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>, the
|
|
* scaling will be applied last!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>new Matrix3x2f().translate(ox, oy).scale(sx, sy).translate(-ox, -oy).mul(this, this)</code>
|
|
*
|
|
* @param sx
|
|
* the scaling factor of the x component
|
|
* @param sy
|
|
* the scaling factor of the y component
|
|
* @param sz
|
|
* the scaling factor of the z component
|
|
* @param ox
|
|
* the x coordinate of the scaling origin
|
|
* @param oy
|
|
* the y coordinate of the scaling origin
|
|
* @param oz
|
|
* the z coordinate of the scaling origin
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f scaleAroundLocal(float sx, float sy, float sz, float ox, float oy, float oz) {
|
|
return scaleAroundLocal(sx, sy, ox, oy, this);
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply scaling to this matrix by scaling the base axes by the given <code>factor</code>
|
|
* while using <code>(ox, oy)</code> as the scaling origin.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>S * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>, the
|
|
* scaling will be applied last!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>new Matrix3x2f().translate(ox, oy).scale(factor).translate(-ox, -oy).mul(this, this)</code>
|
|
*
|
|
* @param factor
|
|
* the scaling factor for all three axes
|
|
* @param ox
|
|
* the x coordinate of the scaling origin
|
|
* @param oy
|
|
* the y coordinate of the scaling origin
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f scaleAroundLocal(float factor, float ox, float oy) {
|
|
return scaleAroundLocal(factor, factor, ox, oy, this);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a simple scale matrix, which scales the two base axes uniformly by the given factor.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional scaling.
|
|
* <p>
|
|
* In order to post-multiply a scaling transformation directly to a matrix, use {@link #scale(float) scale()} instead.
|
|
*
|
|
* @see #scale(float)
|
|
*
|
|
* @param factor
|
|
* the scale factor in x and y
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f scaling(float factor) {
|
|
return scaling(factor, factor);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a simple scale matrix.
|
|
*
|
|
* @param x
|
|
* the scale in x
|
|
* @param y
|
|
* the scale in y
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f scaling(float x, float y) {
|
|
m00 = x;
|
|
m01 = 0.0f;
|
|
m10 = 0.0f;
|
|
m11 = y;
|
|
m20 = 0.0f;
|
|
m21 = 0.0f;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation matrix which rotates the given radians.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional rotation.
|
|
* <p>
|
|
* In order to apply the rotation transformation to an existing transformation,
|
|
* use {@link #rotate(float) rotate()} instead.
|
|
*
|
|
* @see #rotate(float)
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f rotation(float angle) {
|
|
float cos = Math.cos(angle);
|
|
float sin = Math.sin(angle);
|
|
m00 = cos;
|
|
m10 = -sin;
|
|
m20 = 0.0f;
|
|
m01 = sin;
|
|
m11 = cos;
|
|
m21 = 0.0f;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Transform/multiply the given vector by this matrix by assuming a third row in this matrix of <code>(0, 0, 1)</code>
|
|
* and store the result in that vector.
|
|
*
|
|
* @see Vector3f#mul(Matrix3x2fc)
|
|
*
|
|
* @param v
|
|
* the vector to transform and to hold the final result
|
|
* @return v
|
|
*/
|
|
public Vector3f transform(Vector3f v) {
|
|
return v.mul(this);
|
|
}
|
|
|
|
/**
|
|
* Transform/multiply the given vector by this matrix by assuming a third row in this matrix of <code>(0, 0, 1)</code>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @see Vector3f#mul(Matrix3x2fc, Vector3f)
|
|
*
|
|
* @param v
|
|
* the vector to transform
|
|
* @param dest
|
|
* will contain the result
|
|
* @return dest
|
|
*/
|
|
public Vector3f transform(Vector3f v, Vector3f dest) {
|
|
return v.mul(this, dest);
|
|
}
|
|
|
|
/**
|
|
* Transform/multiply the given vector <code>(x, y, z)</code> by this matrix and store the result in <code>dest</code>.
|
|
*
|
|
* @param x
|
|
* the x component of the vector to transform
|
|
* @param y
|
|
* the y component of the vector to transform
|
|
* @param z
|
|
* the z component of the vector to transform
|
|
* @param dest
|
|
* will contain the result
|
|
* @return dest
|
|
*/
|
|
public Vector3f transform(float x, float y, float z, Vector3f dest) {
|
|
return dest.set(m00 * x + m10 * y + m20 * z, m01 * x + m11 * y + m21 * z, z);
|
|
}
|
|
|
|
/**
|
|
* Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=1, by
|
|
* this matrix and store the result in that vector.
|
|
* <p>
|
|
* The given 2D-vector is treated as a 3D-vector with its z-component being 1.0, so it
|
|
* will represent a position/location in 2D-space rather than a direction.
|
|
* <p>
|
|
* In order to store the result in another vector, use {@link #transformPosition(Vector2fc, Vector2f)}.
|
|
*
|
|
* @see #transformPosition(Vector2fc, Vector2f)
|
|
* @see #transform(Vector3f)
|
|
*
|
|
* @param v
|
|
* the vector to transform and to hold the final result
|
|
* @return v
|
|
*/
|
|
public Vector2f transformPosition(Vector2f v) {
|
|
v.set(m00 * v.x + m10 * v.y + m20,
|
|
m01 * v.x + m11 * v.y + m21);
|
|
return v;
|
|
}
|
|
|
|
/**
|
|
* Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=1, by
|
|
* this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* The given 2D-vector is treated as a 3D-vector with its z-component being 1.0, so it
|
|
* will represent a position/location in 2D-space rather than a direction.
|
|
* <p>
|
|
* In order to store the result in the same vector, use {@link #transformPosition(Vector2f)}.
|
|
*
|
|
* @see #transformPosition(Vector2f)
|
|
* @see #transform(Vector3f, Vector3f)
|
|
*
|
|
* @param v
|
|
* the vector to transform
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Vector2f transformPosition(Vector2fc v, Vector2f dest) {
|
|
dest.set(m00 * v.x() + m10 * v.y() + m20,
|
|
m01 * v.x() + m11 * v.y() + m21);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Transform/multiply the given 2D-vector <code>(x, y)</code>, as if it was a 3D-vector with z=1, by
|
|
* this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* The given 2D-vector is treated as a 3D-vector with its z-component being 1.0, so it
|
|
* will represent a position/location in 2D-space rather than a direction.
|
|
* <p>
|
|
* In order to store the result in the same vector, use {@link #transformPosition(Vector2f)}.
|
|
*
|
|
* @see #transformPosition(Vector2f)
|
|
* @see #transform(Vector3f, Vector3f)
|
|
*
|
|
* @param x
|
|
* the x component of the vector to transform
|
|
* @param y
|
|
* the y component of the vector to transform
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Vector2f transformPosition(float x, float y, Vector2f dest) {
|
|
return dest.set(m00 * x + m10 * y + m20, m01 * x + m11 * y + m21);
|
|
}
|
|
|
|
/**
|
|
* Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=0, by
|
|
* this matrix and store the result in that vector.
|
|
* <p>
|
|
* The given 2D-vector is treated as a 3D-vector with its z-component being <code>0.0</code>, so it
|
|
* will represent a direction in 2D-space rather than a position. This method will therefore
|
|
* not take the translation part of the matrix into account.
|
|
* <p>
|
|
* In order to store the result in another vector, use {@link #transformDirection(Vector2fc, Vector2f)}.
|
|
*
|
|
* @see #transformDirection(Vector2fc, Vector2f)
|
|
*
|
|
* @param v
|
|
* the vector to transform and to hold the final result
|
|
* @return v
|
|
*/
|
|
public Vector2f transformDirection(Vector2f v) {
|
|
v.set(m00 * v.x + m10 * v.y,
|
|
m01 * v.x + m11 * v.y);
|
|
return v;
|
|
}
|
|
|
|
/**
|
|
* Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=0, by
|
|
* this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* The given 2D-vector is treated as a 3D-vector with its z-component being <code>0.0</code>, so it
|
|
* will represent a direction in 2D-space rather than a position. This method will therefore
|
|
* not take the translation part of the matrix into account.
|
|
* <p>
|
|
* In order to store the result in the same vector, use {@link #transformDirection(Vector2f)}.
|
|
*
|
|
* @see #transformDirection(Vector2f)
|
|
*
|
|
* @param v
|
|
* the vector to transform
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Vector2f transformDirection(Vector2fc v, Vector2f dest) {
|
|
dest.set(m00 * v.x() + m10 * v.y(),
|
|
m01 * v.x() + m11 * v.y());
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Transform/multiply the given 2D-vector <code>(x, y)</code>, as if it was a 3D-vector with z=0, by
|
|
* this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* The given 2D-vector is treated as a 3D-vector with its z-component being <code>0.0</code>, so it
|
|
* will represent a direction in 2D-space rather than a position. This method will therefore
|
|
* not take the translation part of the matrix into account.
|
|
* <p>
|
|
* In order to store the result in the same vector, use {@link #transformDirection(Vector2f)}.
|
|
*
|
|
* @see #transformDirection(Vector2f)
|
|
*
|
|
* @param x
|
|
* the x component of the vector to transform
|
|
* @param y
|
|
* the y component of the vector to transform
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Vector2f transformDirection(float x, float y, Vector2f dest) {
|
|
return dest.set(m00 * x + m10 * y, m01 * x + m11 * y);
|
|
}
|
|
|
|
public void writeExternal(ObjectOutput out) throws IOException {
|
|
out.writeFloat(m00);
|
|
out.writeFloat(m01);
|
|
out.writeFloat(m10);
|
|
out.writeFloat(m11);
|
|
out.writeFloat(m20);
|
|
out.writeFloat(m21);
|
|
}
|
|
|
|
public void readExternal(ObjectInput in) throws IOException {
|
|
m00 = in.readFloat();
|
|
m01 = in.readFloat();
|
|
m10 = in.readFloat();
|
|
m11 = in.readFloat();
|
|
m20 = in.readFloat();
|
|
m21 = in.readFloat();
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation to this matrix by rotating the given amount of radians.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>
|
|
* , the rotation will be applied first!
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f rotate(float ang) {
|
|
return rotate(ang, this);
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation to this matrix by rotating the given amount of radians and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first!
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f rotate(float ang, Matrix3x2f dest) {
|
|
float cos = Math.cos(ang);
|
|
float sin = Math.sin(ang);
|
|
float rm00 = cos;
|
|
float rm01 = sin;
|
|
float rm10 = -sin;
|
|
float rm11 = cos;
|
|
float nm00 = m00 * rm00 + m10 * rm01;
|
|
float nm01 = m01 * rm00 + m11 * rm01;
|
|
dest.m10 = m00 * rm10 + m10 * rm11;
|
|
dest.m11 = m01 * rm10 + m11 * rm11;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m20 = m20;
|
|
dest.m21 = m21;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a rotation to this matrix by rotating the given amount of radians and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>R * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
|
|
* rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
|
|
* transformation, use {@link #rotation(float) rotation()}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(float)
|
|
*
|
|
* @param ang
|
|
* the angle in radians to rotate
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f rotateLocal(float ang, Matrix3x2f dest) {
|
|
float sin = Math.sin(ang);
|
|
float cos = Math.cosFromSin(sin, ang);
|
|
float nm00 = cos * m00 - sin * m01;
|
|
float nm01 = sin * m00 + cos * m01;
|
|
float nm10 = cos * m10 - sin * m11;
|
|
float nm11 = sin * m10 + cos * m11;
|
|
float nm20 = cos * m20 - sin * m21;
|
|
float nm21 = sin * m20 + cos * m21;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a rotation to this matrix by rotating the given amount of radians.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>R * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
|
|
* rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
|
|
* transformation, use {@link #rotation(float) rotation()}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(float)
|
|
*
|
|
* @param ang
|
|
* the angle in radians to rotate
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f rotateLocal(float ang) {
|
|
return rotateLocal(ang, this);
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation to this matrix by rotating the given amount of radians about
|
|
* the specified rotation center <code>(x, y)</code>.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(x, y).rotate(ang).translate(-x, -y)</code>
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first!
|
|
*
|
|
* @see #translate(float, float)
|
|
* @see #rotate(float)
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @param x
|
|
* the x component of the rotation center
|
|
* @param y
|
|
* the y component of the rotation center
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f rotateAbout(float ang, float x, float y) {
|
|
return rotateAbout(ang, x, y, this);
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation to this matrix by rotating the given amount of radians about
|
|
* the specified rotation center <code>(x, y)</code> and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(x, y, dest).rotate(ang).translate(-x, -y)</code>
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first!
|
|
*
|
|
* @see #translate(float, float, Matrix3x2f)
|
|
* @see #rotate(float, Matrix3x2f)
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @param x
|
|
* the x component of the rotation center
|
|
* @param y
|
|
* the y component of the rotation center
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f rotateAbout(float ang, float x, float y, Matrix3x2f dest) {
|
|
float tm20 = m00 * x + m10 * y + m20;
|
|
float tm21 = m01 * x + m11 * y + m21;
|
|
float cos = Math.cos(ang);
|
|
float sin = Math.sin(ang);
|
|
float nm00 = m00 * cos + m10 * sin;
|
|
float nm01 = m01 * cos + m11 * sin;
|
|
dest.m10 = m00 * -sin + m10 * cos;
|
|
dest.m11 = m01 * -sin + m11 * cos;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m20 = dest.m00 * -x + dest.m10 * -y + tm20;
|
|
dest.m21 = dest.m01 * -x + dest.m11 * -y + tm21;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation to this matrix that rotates the given normalized <code>fromDir</code> direction vector
|
|
* to point along the normalized <code>toDir</code>, and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first!
|
|
*
|
|
* @param fromDir
|
|
* the normalized direction which should be rotate to point along <code>toDir</code>
|
|
* @param toDir
|
|
* the normalized destination direction
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f rotateTo(Vector2fc fromDir, Vector2fc toDir, Matrix3x2f dest) {
|
|
float dot = fromDir.x() * toDir.x() + fromDir.y() * toDir.y();
|
|
float det = fromDir.x() * toDir.y() - fromDir.y() * toDir.x();
|
|
float rm00 = dot;
|
|
float rm01 = det;
|
|
float rm10 = -det;
|
|
float rm11 = dot;
|
|
float nm00 = m00 * rm00 + m10 * rm01;
|
|
float nm01 = m01 * rm00 + m11 * rm01;
|
|
dest.m10 = m00 * rm10 + m10 * rm11;
|
|
dest.m11 = m01 * rm10 + m11 * rm11;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m20 = m20;
|
|
dest.m21 = m21;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation to this matrix that rotates the given normalized <code>fromDir</code> direction vector
|
|
* to point along the normalized <code>toDir</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first!
|
|
*
|
|
* @param fromDir
|
|
* the normalized direction which should be rotate to point along <code>toDir</code>
|
|
* @param toDir
|
|
* the normalized destination direction
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f rotateTo(Vector2fc fromDir, Vector2fc toDir) {
|
|
return rotateTo(fromDir, toDir, this);
|
|
}
|
|
|
|
/**
|
|
* Apply a "view" transformation to this matrix that maps the given <code>(left, bottom)</code> and
|
|
* <code>(right, top)</code> corners to <code>(-1, -1)</code> and <code>(1, 1)</code> respectively and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
*
|
|
* @see #setView(float, float, float, float)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left view edge
|
|
* @param right
|
|
* the distance from the center to the right view edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom view edge
|
|
* @param top
|
|
* the distance from the center to the top view edge
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f view(float left, float right, float bottom, float top, Matrix3x2f dest) {
|
|
float rm00 = 2.0f / (right - left);
|
|
float rm11 = 2.0f / (top - bottom);
|
|
float rm20 = (left + right) / (left - right);
|
|
float rm21 = (bottom + top) / (bottom - top);
|
|
dest.m20 = m00 * rm20 + m10 * rm21 + m20;
|
|
dest.m21 = m01 * rm20 + m11 * rm21 + m21;
|
|
dest.m00 = m00 * rm00;
|
|
dest.m01 = m01 * rm00;
|
|
dest.m10 = m10 * rm11;
|
|
dest.m11 = m11 * rm11;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply a "view" transformation to this matrix that maps the given <code>(left, bottom)</code> and
|
|
* <code>(right, top)</code> corners to <code>(-1, -1)</code> and <code>(1, 1)</code> respectively.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
*
|
|
* @see #setView(float, float, float, float)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left view edge
|
|
* @param right
|
|
* the distance from the center to the right view edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom view edge
|
|
* @param top
|
|
* the distance from the center to the top view edge
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f view(float left, float right, float bottom, float top) {
|
|
return view(left, right, bottom, top, this);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to define a "view" transformation that maps the given <code>(left, bottom)</code> and
|
|
* <code>(right, top)</code> corners to <code>(-1, -1)</code> and <code>(1, 1)</code> respectively.
|
|
*
|
|
* @see #view(float, float, float, float)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left view edge
|
|
* @param right
|
|
* the distance from the center to the right view edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom view edge
|
|
* @param top
|
|
* the distance from the center to the top view edge
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f setView(float left, float right, float bottom, float top) {
|
|
m00 = 2.0f / (right - left);
|
|
m01 = 0.0f;
|
|
m10 = 0.0f;
|
|
m11 = 2.0f / (top - bottom);
|
|
m20 = (left + right) / (left - right);
|
|
m21 = (bottom + top) / (bottom - top);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Obtain the position that gets transformed to the origin by <code>this</code> matrix.
|
|
* This can be used to get the position of the "camera" from a given <i>view</i> transformation matrix.
|
|
* <p>
|
|
* This method is equivalent to the following code:
|
|
* <pre>
|
|
* Matrix3x2f inv = new Matrix3x2f(this).invert();
|
|
* inv.transform(origin.set(0, 0));
|
|
* </pre>
|
|
*
|
|
* @param origin
|
|
* will hold the position transformed to the origin
|
|
* @return origin
|
|
*/
|
|
public Vector2f origin(Vector2f origin) {
|
|
float s = 1.0f / (m00 * m11 - m01 * m10);
|
|
origin.x = (m10 * m21 - m20 * m11) * s;
|
|
origin.y = (m20 * m01 - m00 * m21) * s;
|
|
return origin;
|
|
}
|
|
|
|
/**
|
|
* Obtain the extents of the view transformation of <code>this</code> matrix and store it in <code>area</code>.
|
|
* This can be used to determine which region of the screen (i.e. the NDC space) is covered by the view.
|
|
*
|
|
* @param area
|
|
* will hold the view area as <code>[minX, minY, maxX, maxY]</code>
|
|
* @return area
|
|
*/
|
|
public float[] viewArea(float[] area) {
|
|
float s = 1.0f / (m00 * m11 - m01 * m10);
|
|
float rm00 = m11 * s;
|
|
float rm01 = -m01 * s;
|
|
float rm10 = -m10 * s;
|
|
float rm11 = m00 * s;
|
|
float rm20 = (m10 * m21 - m20 * m11) * s;
|
|
float rm21 = (m20 * m01 - m00 * m21) * s;
|
|
float nxnyX = -rm00 - rm10;
|
|
float nxnyY = -rm01 - rm11;
|
|
float pxnyX = rm00 - rm10;
|
|
float pxnyY = rm01 - rm11;
|
|
float nxpyX = -rm00 + rm10;
|
|
float nxpyY = -rm01 + rm11;
|
|
float pxpyX = rm00 + rm10;
|
|
float pxpyY = rm01 + rm11;
|
|
float minX = nxnyX;
|
|
minX = minX < nxpyX ? minX : nxpyX;
|
|
minX = minX < pxnyX ? minX : pxnyX;
|
|
minX = minX < pxpyX ? minX : pxpyX;
|
|
float minY = nxnyY;
|
|
minY = minY < nxpyY ? minY : nxpyY;
|
|
minY = minY < pxnyY ? minY : pxnyY;
|
|
minY = minY < pxpyY ? minY : pxpyY;
|
|
float maxX = nxnyX;
|
|
maxX = maxX > nxpyX ? maxX : nxpyX;
|
|
maxX = maxX > pxnyX ? maxX : pxnyX;
|
|
maxX = maxX > pxpyX ? maxX : pxpyX;
|
|
float maxY = nxnyY;
|
|
maxY = maxY > nxpyY ? maxY : nxpyY;
|
|
maxY = maxY > pxnyY ? maxY : pxnyY;
|
|
maxY = maxY > pxpyY ? maxY : pxpyY;
|
|
area[0] = minX + rm20;
|
|
area[1] = minY + rm21;
|
|
area[2] = maxX + rm20;
|
|
area[3] = maxY + rm21;
|
|
return area;
|
|
}
|
|
|
|
public Vector2f positiveX(Vector2f dir) {
|
|
float s = m00 * m11 - m01 * m10;
|
|
s = 1.0f / s;
|
|
dir.x = m11 * s;
|
|
dir.y = -m01 * s;
|
|
return dir.normalize(dir);
|
|
}
|
|
|
|
public Vector2f normalizedPositiveX(Vector2f dir) {
|
|
dir.x = m11;
|
|
dir.y = -m01;
|
|
return dir;
|
|
}
|
|
|
|
public Vector2f positiveY(Vector2f dir) {
|
|
float s = m00 * m11 - m01 * m10;
|
|
s = 1.0f / s;
|
|
dir.x = -m10 * s;
|
|
dir.y = m00 * s;
|
|
return dir.normalize(dir);
|
|
}
|
|
|
|
public Vector2f normalizedPositiveY(Vector2f dir) {
|
|
dir.x = -m10;
|
|
dir.y = m00;
|
|
return dir;
|
|
}
|
|
|
|
/**
|
|
* Unproject the given window coordinates <code>(winX, winY)</code> by <code>this</code> matrix using the specified viewport.
|
|
* <p>
|
|
* This method first converts the given window coordinates to normalized device coordinates in the range <code>[-1..1]</code>
|
|
* and then transforms those NDC coordinates by the inverse of <code>this</code> matrix.
|
|
* <p>
|
|
* As a necessary computation step for unprojecting, this method computes the inverse of <code>this</code> matrix.
|
|
* In order to avoid computing the matrix inverse with every invocation, the inverse of <code>this</code> matrix can be built
|
|
* once outside using {@link #invert(Matrix3x2f)} and then the method {@link #unprojectInv(float, float, int[], Vector2f) unprojectInv()} can be invoked on it.
|
|
*
|
|
* @see #unprojectInv(float, float, int[], Vector2f)
|
|
* @see #invert(Matrix3x2f)
|
|
*
|
|
* @param winX
|
|
* the x-coordinate in window coordinates (pixels)
|
|
* @param winY
|
|
* the y-coordinate in window coordinates (pixels)
|
|
* @param viewport
|
|
* the viewport described by <code>[x, y, width, height]</code>
|
|
* @param dest
|
|
* will hold the unprojected position
|
|
* @return dest
|
|
*/
|
|
public Vector2f unproject(float winX, float winY, int[] viewport, Vector2f dest) {
|
|
float s = 1.0f / (m00 * m11 - m01 * m10);
|
|
float im00 = m11 * s;
|
|
float im01 = -m01 * s;
|
|
float im10 = -m10 * s;
|
|
float im11 = m00 * s;
|
|
float im20 = (m10 * m21 - m20 * m11) * s;
|
|
float im21 = (m20 * m01 - m00 * m21) * s;
|
|
float ndcX = (winX-viewport[0])/viewport[2]*2.0f-1.0f;
|
|
float ndcY = (winY-viewport[1])/viewport[3]*2.0f-1.0f;
|
|
dest.x = im00 * ndcX + im10 * ndcY + im20;
|
|
dest.y = im01 * ndcX + im11 * ndcY + im21;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Unproject the given window coordinates <code>(winX, winY)</code> by <code>this</code> matrix using the specified viewport.
|
|
* <p>
|
|
* This method differs from {@link #unproject(float, float, int[], Vector2f) unproject()}
|
|
* in that it assumes that <code>this</code> is already the inverse matrix of the original projection matrix.
|
|
* It exists to avoid recomputing the matrix inverse with every invocation.
|
|
*
|
|
* @see #unproject(float, float, int[], Vector2f)
|
|
*
|
|
* @param winX
|
|
* the x-coordinate in window coordinates (pixels)
|
|
* @param winY
|
|
* the y-coordinate in window coordinates (pixels)
|
|
* @param viewport
|
|
* the viewport described by <code>[x, y, width, height]</code>
|
|
* @param dest
|
|
* will hold the unprojected position
|
|
* @return dest
|
|
*/
|
|
public Vector2f unprojectInv(float winX, float winY, int[] viewport, Vector2f dest) {
|
|
float ndcX = (winX-viewport[0])/viewport[2]*2.0f-1.0f;
|
|
float ndcY = (winY-viewport[1])/viewport[3]*2.0f-1.0f;
|
|
dest.x = m00 * ndcX + m10 * ndcY + m20;
|
|
dest.y = m01 * ndcX + m11 * ndcY + m21;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply shearing to this matrix by shearing along the X axis using the Y axis factor <code>yFactor</code>.
|
|
*
|
|
* @param yFactor
|
|
* the factor for the Y component to shear along the X axis
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f shearX(float yFactor) {
|
|
return shearX(yFactor, this);
|
|
}
|
|
|
|
/**
|
|
* Apply shearing to this matrix by shearing along the X axis using the Y axis factor <code>yFactor</code>,
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param yFactor
|
|
* the factor for the Y component to shear along the X axis
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f shearX(float yFactor, Matrix3x2f dest) {
|
|
float nm10 = m00 * yFactor + m10;
|
|
float nm11 = m01 * yFactor + m11;
|
|
dest.m00 = m00;
|
|
dest.m01 = m01;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m20 = m20;
|
|
dest.m21 = m21;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply shearing to this matrix by shearing along the Y axis using the X axis factor <code>xFactor</code>.
|
|
*
|
|
* @param xFactor
|
|
* the factor for the X component to shear along the Y axis
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f shearY(float xFactor) {
|
|
return shearY(xFactor, this);
|
|
}
|
|
|
|
/**
|
|
* Apply shearing to this matrix by shearing along the Y axis using the X axis factor <code>xFactor</code>,
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param xFactor
|
|
* the factor for the X component to shear along the Y axis
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3x2f shearY(float xFactor, Matrix3x2f dest) {
|
|
float nm00 = m00 + m10 * xFactor;
|
|
float nm01 = m01 + m11 * xFactor;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m10 = m10;
|
|
dest.m11 = m11;
|
|
dest.m20 = m20;
|
|
dest.m21 = m21;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Compute the extents of the coordinate system before this transformation was applied and store the resulting
|
|
* corner coordinates in <code>corner</code> and the span vectors in <code>xDir</code> and <code>yDir</code>.
|
|
* <p>
|
|
* That means, given the maximum extents of the coordinate system between <code>[-1..+1]</code> in all dimensions,
|
|
* this method returns one corner and the length and direction of the two base axis vectors in the coordinate
|
|
* system before this transformation is applied, which transforms into the corner coordinates <code>[-1, +1]</code>.
|
|
*
|
|
* @param corner
|
|
* will hold one corner of the span
|
|
* @param xDir
|
|
* will hold the direction and length of the span along the positive X axis
|
|
* @param yDir
|
|
* will hold the direction and length of the span along the positive Y axis
|
|
* @return this
|
|
*/
|
|
public Matrix3x2f span(Vector2f corner, Vector2f xDir, Vector2f yDir) {
|
|
float s = 1.0f / (m00 * m11 - m01 * m10);
|
|
float nm00 = m11 * s, nm01 = -m01 * s, nm10 = -m10 * s, nm11 = m00 * s;
|
|
corner.x = -nm00 - nm10 + (m10 * m21 - m20 * m11) * s;
|
|
corner.y = -nm01 - nm11 + (m20 * m01 - m00 * m21) * s;
|
|
xDir.x = 2.0f * nm00; xDir.y = 2.0f * nm01;
|
|
yDir.x = 2.0f * nm10; yDir.y = 2.0f * nm11;
|
|
return this;
|
|
}
|
|
|
|
public boolean testPoint(float x, float y) {
|
|
float nxX = +m00, nxY = +m10, nxW = 1.0f + m20;
|
|
float pxX = -m00, pxY = -m10, pxW = 1.0f - m20;
|
|
float nyX = +m01, nyY = +m11, nyW = 1.0f + m21;
|
|
float pyX = -m01, pyY = -m11, pyW = 1.0f - m21;
|
|
return nxX * x + nxY * y + nxW >= 0 && pxX * x + pxY * y + pxW >= 0 &&
|
|
nyX * x + nyY * y + nyW >= 0 && pyX * x + pyY * y + pyW >= 0;
|
|
}
|
|
|
|
public boolean testCircle(float x, float y, float r) {
|
|
float invl;
|
|
float nxX = +m00, nxY = +m10, nxW = 1.0f + m20;
|
|
invl = Math.invsqrt(nxX * nxX + nxY * nxY);
|
|
nxX *= invl; nxY *= invl; nxW *= invl;
|
|
float pxX = -m00, pxY = -m10, pxW = 1.0f - m20;
|
|
invl = Math.invsqrt(pxX * pxX + pxY * pxY);
|
|
pxX *= invl; pxY *= invl; pxW *= invl;
|
|
float nyX = +m01, nyY = +m11, nyW = 1.0f + m21;
|
|
invl = Math.invsqrt(nyX * nyX + nyY * nyY);
|
|
nyX *= invl; nyY *= invl; nyW *= invl;
|
|
float pyX = -m01, pyY = -m11, pyW = 1.0f - m21;
|
|
invl = Math.invsqrt(pyX * pyX + pyY * pyY);
|
|
pyX *= invl; pyY *= invl; pyW *= invl;
|
|
return nxX * x + nxY * y + nxW >= -r && pxX * x + pxY * y + pxW >= -r &&
|
|
nyX * x + nyY * y + nyW >= -r && pyX * x + pyY * y + pyW >= -r;
|
|
}
|
|
|
|
public boolean testAar(float minX, float minY, float maxX, float maxY) {
|
|
float nxX = +m00, nxY = +m10, nxW = 1.0f + m20;
|
|
float pxX = -m00, pxY = -m10, pxW = 1.0f - m20;
|
|
float nyX = +m01, nyY = +m11, nyW = 1.0f + m21;
|
|
float pyX = -m01, pyY = -m11, pyW = 1.0f - m21;
|
|
/*
|
|
* This is an implementation of the "2.4 Basic intersection test" of the mentioned site.
|
|
* It does not distinguish between partially inside and fully inside, though, so the test with the 'p' vertex is omitted.
|
|
*/
|
|
return nxX * (nxX < 0 ? minX : maxX) + nxY * (nxY < 0 ? minY : maxY) >= -nxW &&
|
|
pxX * (pxX < 0 ? minX : maxX) + pxY * (pxY < 0 ? minY : maxY) >= -pxW &&
|
|
nyX * (nyX < 0 ? minX : maxX) + nyY * (nyY < 0 ? minY : maxY) >= -nyW &&
|
|
pyX * (pyX < 0 ? minX : maxX) + pyY * (pyY < 0 ? minY : maxY) >= -pyW;
|
|
}
|
|
|
|
public int hashCode() {
|
|
final int prime = 31;
|
|
int result = 1;
|
|
result = prime * result + Float.floatToIntBits(m00);
|
|
result = prime * result + Float.floatToIntBits(m01);
|
|
result = prime * result + Float.floatToIntBits(m10);
|
|
result = prime * result + Float.floatToIntBits(m11);
|
|
result = prime * result + Float.floatToIntBits(m20);
|
|
result = prime * result + Float.floatToIntBits(m21);
|
|
return result;
|
|
}
|
|
|
|
public boolean equals(Object obj) {
|
|
if (this == obj)
|
|
return true;
|
|
if (obj == null)
|
|
return false;
|
|
if (getClass() != obj.getClass())
|
|
return false;
|
|
Matrix3x2f other = (Matrix3x2f) obj;
|
|
if (Float.floatToIntBits(m00) != Float.floatToIntBits(other.m00))
|
|
return false;
|
|
if (Float.floatToIntBits(m01) != Float.floatToIntBits(other.m01))
|
|
return false;
|
|
if (Float.floatToIntBits(m10) != Float.floatToIntBits(other.m10))
|
|
return false;
|
|
if (Float.floatToIntBits(m11) != Float.floatToIntBits(other.m11))
|
|
return false;
|
|
if (Float.floatToIntBits(m20) != Float.floatToIntBits(other.m20))
|
|
return false;
|
|
if (Float.floatToIntBits(m21) != Float.floatToIntBits(other.m21))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
public boolean equals(Matrix3x2fc m, float delta) {
|
|
if (this == m)
|
|
return true;
|
|
if (m == null)
|
|
return false;
|
|
if (!(m instanceof Matrix3x2f))
|
|
return false;
|
|
if (!Runtime.equals(m00, m.m00(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m01, m.m01(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m10, m.m10(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m11, m.m11(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m20, m.m20(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m21, m.m21(), delta))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
public boolean isFinite() {
|
|
return Math.isFinite(m00) && Math.isFinite(m01) &&
|
|
Math.isFinite(m10) && Math.isFinite(m11) &&
|
|
Math.isFinite(m20) && Math.isFinite(m21);
|
|
}
|
|
|
|
public Object clone() throws CloneNotSupportedException {
|
|
return super.clone();
|
|
}
|
|
|
|
}
|