mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2025-01-12 23:36:09 +01:00
a42c027b6f
- Fix Resources not being closed properly - Change versioning scheme to match Create - Add LICENSE to built jar - Fix mods.toml version sync - Move JOML code to non-src directory - Update Gradle - Organize imports
3821 lines
151 KiB
Java
3821 lines
151 KiB
Java
/*
|
|
* The MIT License
|
|
*
|
|
* Copyright (c) 2016-2021 JOML
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
package com.jozufozu.flywheel.repack.joml;
|
|
|
|
import java.nio.ByteBuffer;
|
|
import java.nio.DoubleBuffer;
|
|
import java.nio.FloatBuffer;
|
|
import java.util.*;
|
|
|
|
/**
|
|
* Interface to a read-only view of a 4x3 matrix of double-precision floats.
|
|
*
|
|
* @author Kai Burjack
|
|
*/
|
|
public interface Matrix4x3dc {
|
|
|
|
/**
|
|
* Argument to the first parameter of {@link #frustumPlane(int, Vector4d)}
|
|
* identifying the plane with equation <code>x=-1</code> when using the identity matrix.
|
|
*/
|
|
int PLANE_NX = 0;
|
|
/**
|
|
* Argument to the first parameter of {@link #frustumPlane(int, Vector4d)}
|
|
* identifying the plane with equation <code>x=1</code> when using the identity matrix.
|
|
*/
|
|
int PLANE_PX = 1;
|
|
/**
|
|
* Argument to the first parameter of {@link #frustumPlane(int, Vector4d)}
|
|
* identifying the plane with equation <code>y=-1</code> when using the identity matrix.
|
|
*/
|
|
int PLANE_NY = 2;
|
|
/**
|
|
* Argument to the first parameter of {@link #frustumPlane(int, Vector4d)}
|
|
* identifying the plane with equation <code>y=1</code> when using the identity matrix.
|
|
*/
|
|
int PLANE_PY = 3;
|
|
/**
|
|
* Argument to the first parameter of {@link #frustumPlane(int, Vector4d)}
|
|
* identifying the plane with equation <code>z=-1</code> when using the identity matrix.
|
|
*/
|
|
int PLANE_NZ = 4;
|
|
/**
|
|
* Argument to the first parameter of {@link #frustumPlane(int, Vector4d)}
|
|
* identifying the plane with equation <code>z=1</code> when using the identity matrix.
|
|
*/
|
|
int PLANE_PZ = 5;
|
|
|
|
/**
|
|
* Bit returned by {@link #properties()} to indicate that the matrix represents the identity transformation.
|
|
*/
|
|
byte PROPERTY_IDENTITY = 1<<2;
|
|
/**
|
|
* Bit returned by {@link #properties()} to indicate that the matrix represents a pure translation transformation.
|
|
*/
|
|
byte PROPERTY_TRANSLATION = 1<<3;
|
|
/**
|
|
* Bit returned by {@link #properties()} to indicate that the left 3x3 submatrix represents an orthogonal
|
|
* matrix (i.e. orthonormal basis).
|
|
*/
|
|
byte PROPERTY_ORTHONORMAL = 1<<4;
|
|
|
|
/**
|
|
* @return the properties of the matrix
|
|
*/
|
|
int properties();
|
|
|
|
/**
|
|
* Return the value of the matrix element at column 0 and row 0.
|
|
*
|
|
* @return the value of the matrix element
|
|
*/
|
|
double m00();
|
|
|
|
/**
|
|
* Return the value of the matrix element at column 0 and row 1.
|
|
*
|
|
* @return the value of the matrix element
|
|
*/
|
|
double m01();
|
|
|
|
/**
|
|
* Return the value of the matrix element at column 0 and row 2.
|
|
*
|
|
* @return the value of the matrix element
|
|
*/
|
|
double m02();
|
|
|
|
/**
|
|
* Return the value of the matrix element at column 1 and row 0.
|
|
*
|
|
* @return the value of the matrix element
|
|
*/
|
|
double m10();
|
|
|
|
/**
|
|
* Return the value of the matrix element at column 1 and row 1.
|
|
*
|
|
* @return the value of the matrix element
|
|
*/
|
|
double m11();
|
|
|
|
/**
|
|
* Return the value of the matrix element at column 1 and row 2.
|
|
*
|
|
* @return the value of the matrix element
|
|
*/
|
|
double m12();
|
|
|
|
/**
|
|
* Return the value of the matrix element at column 2 and row 0.
|
|
*
|
|
* @return the value of the matrix element
|
|
*/
|
|
double m20();
|
|
|
|
/**
|
|
* Return the value of the matrix element at column 2 and row 1.
|
|
*
|
|
* @return the value of the matrix element
|
|
*/
|
|
double m21();
|
|
|
|
/**
|
|
* Return the value of the matrix element at column 2 and row 2.
|
|
*
|
|
* @return the value of the matrix element
|
|
*/
|
|
double m22();
|
|
|
|
/**
|
|
* Return the value of the matrix element at column 3 and row 0.
|
|
*
|
|
* @return the value of the matrix element
|
|
*/
|
|
double m30();
|
|
|
|
/**
|
|
* Return the value of the matrix element at column 3 and row 1.
|
|
*
|
|
* @return the value of the matrix element
|
|
*/
|
|
double m31();
|
|
|
|
/**
|
|
* Return the value of the matrix element at column 3 and row 2.
|
|
*
|
|
* @return the value of the matrix element
|
|
*/
|
|
double m32();
|
|
|
|
/**
|
|
* Get the current values of <code>this</code> matrix and store them into the upper 4x3 submatrix of <code>dest</code>.
|
|
* <p>
|
|
* The other elements of <code>dest</code> will not be modified.
|
|
*
|
|
* @see Matrix4d#set4x3(Matrix4x3dc)
|
|
*
|
|
* @param dest
|
|
* the destination matrix
|
|
* @return dest
|
|
*/
|
|
Matrix4d get(Matrix4d dest);
|
|
|
|
/**
|
|
* Multiply this matrix by the supplied <code>right</code> matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* transformation of the right matrix will be applied first!
|
|
*
|
|
* @param right
|
|
* the right operand of the multiplication
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mul(Matrix4x3dc right, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Multiply this matrix by the supplied <code>right</code> matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* transformation of the right matrix will be applied first!
|
|
*
|
|
* @param right
|
|
* the right operand of the multiplication
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mul(Matrix4x3fc right, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Multiply this matrix, which is assumed to only contain a translation, by the supplied <code>right</code> matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method assumes that <code>this</code> matrix only contains a translation.
|
|
* <p>
|
|
* This method will not modify either the last row of <code>this</code> or the last row of <code>right</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* transformation of the right matrix will be applied first!
|
|
*
|
|
* @param right
|
|
* the right operand of the matrix multiplication
|
|
* @param dest
|
|
* the destination matrix, which will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mulTranslation(Matrix4x3dc right, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Multiply this matrix, which is assumed to only contain a translation, by the supplied <code>right</code> matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method assumes that <code>this</code> matrix only contains a translation.
|
|
* <p>
|
|
* This method will not modify either the last row of <code>this</code> or the last row of <code>right</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* transformation of the right matrix will be applied first!
|
|
*
|
|
* @param right
|
|
* the right operand of the matrix multiplication
|
|
* @param dest
|
|
* the destination matrix, which will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mulTranslation(Matrix4x3fc right, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Multiply <code>this</code> orthographic projection matrix by the supplied <code>view</code> matrix
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>V</code> the <code>view</code> matrix,
|
|
* then the new matrix will be <code>M * V</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * V * v</code>, the
|
|
* transformation of the <code>view</code> matrix will be applied first!
|
|
*
|
|
* @param view
|
|
* the matrix which to multiply <code>this</code> with
|
|
* @param dest
|
|
* the destination matrix, which will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mulOrtho(Matrix4x3dc view, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Multiply <code>this</code> by the 4x3 matrix with the column vectors <code>(rm00, rm01, rm02)</code>,
|
|
* <code>(rm10, rm11, rm12)</code>, <code>(rm20, rm21, rm22)</code> and <code>(0, 0, 0)</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the specified matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* transformation of the <code>R</code> matrix will be applied first!
|
|
*
|
|
* @param rm00
|
|
* the value of the m00 element
|
|
* @param rm01
|
|
* the value of the m01 element
|
|
* @param rm02
|
|
* the value of the m02 element
|
|
* @param rm10
|
|
* the value of the m10 element
|
|
* @param rm11
|
|
* the value of the m11 element
|
|
* @param rm12
|
|
* the value of the m12 element
|
|
* @param rm20
|
|
* the value of the m20 element
|
|
* @param rm21
|
|
* the value of the m21 element
|
|
* @param rm22
|
|
* the value of the m22 element
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mul3x3(double rm00, double rm01, double rm02, double rm10, double rm11, double rm12, double rm20, double rm21, double rm22, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Component-wise add <code>this</code> and <code>other</code>
|
|
* by first multiplying each component of <code>other</code> by <code>otherFactor</code>,
|
|
* adding that to <code>this</code> and storing the final result in <code>dest</code>.
|
|
* <p>
|
|
* The other components of <code>dest</code> will be set to the ones of <code>this</code>.
|
|
* <p>
|
|
* The matrices <code>this</code> and <code>other</code> will not be changed.
|
|
*
|
|
* @param other
|
|
* the other matrix
|
|
* @param otherFactor
|
|
* the factor to multiply each of the other matrix's components
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d fma(Matrix4x3dc other, double otherFactor, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Component-wise add <code>this</code> and <code>other</code>
|
|
* by first multiplying each component of <code>other</code> by <code>otherFactor</code>,
|
|
* adding that to <code>this</code> and storing the final result in <code>dest</code>.
|
|
* <p>
|
|
* The other components of <code>dest</code> will be set to the ones of <code>this</code>.
|
|
* <p>
|
|
* The matrices <code>this</code> and <code>other</code> will not be changed.
|
|
*
|
|
* @param other
|
|
* the other matrix
|
|
* @param otherFactor
|
|
* the factor to multiply each of the other matrix's components
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d fma(Matrix4x3fc other, double otherFactor, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Component-wise add <code>this</code> and <code>other</code> and store the result in <code>dest</code>.
|
|
*
|
|
* @param other
|
|
* the other addend
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d add(Matrix4x3dc other, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Component-wise add <code>this</code> and <code>other</code> and store the result in <code>dest</code>.
|
|
*
|
|
* @param other
|
|
* the other addend
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d add(Matrix4x3fc other, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Component-wise subtract <code>subtrahend</code> from <code>this</code> and store the result in <code>dest</code>.
|
|
*
|
|
* @param subtrahend
|
|
* the subtrahend
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d sub(Matrix4x3dc subtrahend, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Component-wise subtract <code>subtrahend</code> from <code>this</code> and store the result in <code>dest</code>.
|
|
*
|
|
* @param subtrahend
|
|
* the subtrahend
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d sub(Matrix4x3fc subtrahend, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Component-wise multiply <code>this</code> by <code>other</code> and store the result in <code>dest</code>.
|
|
*
|
|
* @param other
|
|
* the other matrix
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mulComponentWise(Matrix4x3dc other, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Return the determinant of this matrix.
|
|
*
|
|
* @return the determinant
|
|
*/
|
|
double determinant();
|
|
|
|
/**
|
|
* Invert <code>this</code> matrix and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d invert(Matrix4x3d dest);
|
|
|
|
/**
|
|
* Invert <code>this</code> orthographic projection matrix and store the result into the given <code>dest</code>.
|
|
* <p>
|
|
* This method can be used to quickly obtain the inverse of an orthographic projection matrix.
|
|
*
|
|
* @param dest
|
|
* will hold the inverse of <code>this</code>
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d invertOrtho(Matrix4x3d dest);
|
|
|
|
/**
|
|
* Transpose only the left 3x3 submatrix of this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* All other matrix elements are left unchanged.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d transpose3x3(Matrix4x3d dest);
|
|
|
|
/**
|
|
* Transpose only the left 3x3 submatrix of this matrix and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix3d transpose3x3(Matrix3d dest);
|
|
|
|
/**
|
|
* Get only the translation components <code>(m30, m31, m32)</code> of this matrix and store them in the given vector <code>xyz</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the translation components of this matrix
|
|
* @return dest
|
|
*/
|
|
Vector3d getTranslation(Vector3d dest);
|
|
|
|
/**
|
|
* Get the scaling factors of <code>this</code> matrix for the three base axes.
|
|
*
|
|
* @param dest
|
|
* will hold the scaling factors for <code>x</code>, <code>y</code> and <code>z</code>
|
|
* @return dest
|
|
*/
|
|
Vector3d getScale(Vector3d dest);
|
|
|
|
/**
|
|
* Get the current values of <code>this</code> matrix and store them into
|
|
* <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* the destination matrix
|
|
* @return the passed in destination
|
|
*/
|
|
Matrix4x3d get(Matrix4x3d dest);
|
|
|
|
/**
|
|
* Get the current values of <code>this</code> matrix and store the represented rotation
|
|
* into the given {@link Quaternionf}.
|
|
* <p>
|
|
* This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and
|
|
* thus allows to ignore any additional scaling factor that is applied to the matrix.
|
|
*
|
|
* @see Quaternionf#setFromUnnormalized(Matrix4x3dc)
|
|
*
|
|
* @param dest
|
|
* the destination {@link Quaternionf}
|
|
* @return the passed in destination
|
|
*/
|
|
Quaternionf getUnnormalizedRotation(Quaternionf dest);
|
|
|
|
/**
|
|
* Get the current values of <code>this</code> matrix and store the represented rotation
|
|
* into the given {@link Quaternionf}.
|
|
* <p>
|
|
* This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.
|
|
*
|
|
* @see Quaternionf#setFromNormalized(Matrix4x3dc)
|
|
*
|
|
* @param dest
|
|
* the destination {@link Quaternionf}
|
|
* @return the passed in destination
|
|
*/
|
|
Quaternionf getNormalizedRotation(Quaternionf dest);
|
|
|
|
/**
|
|
* Get the current values of <code>this</code> matrix and store the represented rotation
|
|
* into the given {@link Quaterniond}.
|
|
* <p>
|
|
* This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and
|
|
* thus allows to ignore any additional scaling factor that is applied to the matrix.
|
|
*
|
|
* @see Quaterniond#setFromUnnormalized(Matrix4x3dc)
|
|
*
|
|
* @param dest
|
|
* the destination {@link Quaterniond}
|
|
* @return the passed in destination
|
|
*/
|
|
Quaterniond getUnnormalizedRotation(Quaterniond dest);
|
|
|
|
/**
|
|
* Get the current values of <code>this</code> matrix and store the represented rotation
|
|
* into the given {@link Quaterniond}.
|
|
* <p>
|
|
* This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.
|
|
*
|
|
* @see Quaterniond#setFromNormalized(Matrix4x3dc)
|
|
*
|
|
* @param dest
|
|
* the destination {@link Quaterniond}
|
|
* @return the passed in destination
|
|
*/
|
|
Quaterniond getNormalizedRotation(Quaterniond dest);
|
|
|
|
/**
|
|
* Store this matrix in column-major order into the supplied {@link DoubleBuffer} at the current
|
|
* buffer {@link DoubleBuffer#position() position}.
|
|
* <p>
|
|
* This method will not increment the position of the given DoubleBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the DoubleBuffer at which
|
|
* the matrix is stored, use {@link #get(int, DoubleBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #get(int, DoubleBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
DoubleBuffer get(DoubleBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix in column-major order into the supplied {@link DoubleBuffer} starting at the specified
|
|
* absolute buffer position/index.
|
|
* <p>
|
|
* This method will not increment the position of the given {@link DoubleBuffer}.
|
|
*
|
|
* @param index
|
|
* the absolute position into the {@link DoubleBuffer}
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
DoubleBuffer get(int index, DoubleBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix in column-major order into the supplied {@link FloatBuffer} at the current
|
|
* buffer {@link FloatBuffer#position() position}.
|
|
* <p>
|
|
* This method will not increment the position of the given
|
|
* FloatBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the FloatBuffer at which
|
|
* the matrix is stored, use {@link #get(int, FloatBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
* <p>
|
|
* Please note that due to this matrix storing double values those values will potentially
|
|
* lose precision when they are converted to float values before being put into the given FloatBuffer.
|
|
*
|
|
* @see #get(int, FloatBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
FloatBuffer get(FloatBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified
|
|
* absolute buffer position/index.
|
|
* <p>
|
|
* This method will not increment the position of the given FloatBuffer.
|
|
* <p>
|
|
* Please note that due to this matrix storing double values those values will potentially
|
|
* lose precision when they are converted to float values before being put into the given FloatBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the FloatBuffer
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
FloatBuffer get(int index, FloatBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix in column-major order into the supplied {@link ByteBuffer} at the current
|
|
* buffer {@link ByteBuffer#position() position}.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the ByteBuffer at which
|
|
* the matrix is stored, use {@link #get(int, ByteBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #get(int, ByteBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
ByteBuffer get(ByteBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
|
|
* absolute buffer position/index.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the ByteBuffer
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
ByteBuffer get(int index, ByteBuffer buffer);
|
|
|
|
/**
|
|
* Store the elements of this matrix as float values in column-major order into the supplied {@link ByteBuffer} at the current
|
|
* buffer {@link ByteBuffer#position() position}.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
* <p>
|
|
* Please note that due to this matrix storing double values those values will potentially
|
|
* lose precision when they are converted to float values before being put into the given ByteBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the ByteBuffer at which
|
|
* the matrix is stored, use {@link #getFloats(int, ByteBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #getFloats(int, ByteBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the elements of this matrix as float values in column-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
ByteBuffer getFloats(ByteBuffer buffer);
|
|
|
|
/**
|
|
* Store the elements of this matrix as float values in column-major order into the supplied {@link ByteBuffer}
|
|
* starting at the specified absolute buffer position/index.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
* <p>
|
|
* Please note that due to this matrix storing double values those values will potentially
|
|
* lose precision when they are converted to float values before being put into the given ByteBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the ByteBuffer
|
|
* @param buffer
|
|
* will receive the elements of this matrix as float values in column-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
ByteBuffer getFloats(int index, ByteBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix in column-major order at the given off-heap address.
|
|
* <p>
|
|
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
|
|
* <p>
|
|
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
|
|
*
|
|
* @param address
|
|
* the off-heap address where to store this matrix
|
|
* @return this
|
|
*/
|
|
Matrix4x3dc getToAddress(long address);
|
|
|
|
/**
|
|
* Store this matrix into the supplied double array in column-major order at the given offset.
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @param offset
|
|
* the offset into the array
|
|
* @return the passed in array
|
|
*/
|
|
double[] get(double[] arr, int offset);
|
|
|
|
/**
|
|
* Store this matrix into the supplied double array in column-major order.
|
|
* <p>
|
|
* In order to specify an explicit offset into the array, use the method {@link #get(double[], int)}.
|
|
*
|
|
* @see #get(double[], int)
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @return the passed in array
|
|
*/
|
|
double[] get(double[] arr);
|
|
|
|
/**
|
|
* Store the elements of this matrix as float values in column-major order into the supplied float array at the given offset.
|
|
* <p>
|
|
* Please note that due to this matrix storing double values those values will potentially
|
|
* lose precision when they are converted to float values before being put into the given float array.
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @param offset
|
|
* the offset into the array
|
|
* @return the passed in array
|
|
*/
|
|
float[] get(float[] arr, int offset);
|
|
|
|
/**
|
|
* Store the elements of this matrix as float values in column-major order into the supplied float array.
|
|
* <p>
|
|
* Please note that due to this matrix storing double values those values will potentially
|
|
* lose precision when they are converted to float values before being put into the given float array.
|
|
* <p>
|
|
* In order to specify an explicit offset into the array, use the method {@link #get(float[], int)}.
|
|
*
|
|
* @see #get(float[], int)
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @return the passed in array
|
|
*/
|
|
float[] get(float[] arr);
|
|
|
|
/**
|
|
* Store a 4x4 matrix in column-major order into the supplied array at the given offset,
|
|
* where the upper 4x3 submatrix is <code>this</code> and the last row is <code>(0, 0, 0, 1)</code>.
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @param offset
|
|
* the offset into the array
|
|
* @return the passed in array
|
|
*/
|
|
double[] get4x4(double[] arr, int offset);
|
|
|
|
/**
|
|
* Store a 4x4 matrix in column-major order into the supplied array,
|
|
* where the upper 4x3 submatrix is <code>this</code> and the last row is <code>(0, 0, 0, 1)</code>.
|
|
* <p>
|
|
* In order to specify an explicit offset into the array, use the method {@link #get4x4(double[], int)}.
|
|
*
|
|
* @see #get4x4(double[], int)
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @return the passed in array
|
|
*/
|
|
double[] get4x4(double[] arr);
|
|
|
|
/**
|
|
* Store a 4x4 matrix in column-major order into the supplied array at the given offset,
|
|
* where the upper 4x3 submatrix is <code>this</code> and the last row is <code>(0, 0, 0, 1)</code>.
|
|
* <p>
|
|
* Please note that due to this matrix storing double values those values will potentially
|
|
* lose precision when they are converted to float values before being put into the given float array.
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @param offset
|
|
* the offset into the array
|
|
* @return the passed in array
|
|
*/
|
|
float[] get4x4(float[] arr, int offset);
|
|
|
|
/**
|
|
* Store a 4x4 matrix in column-major order into the supplied array,
|
|
* where the upper 4x3 submatrix is <code>this</code> and the last row is <code>(0, 0, 0, 1)</code>.
|
|
* <p>
|
|
* Please note that due to this matrix storing double values those values will potentially
|
|
* lose precision when they are converted to float values before being put into the given float array.
|
|
* <p>
|
|
* In order to specify an explicit offset into the array, use the method {@link #get4x4(float[], int)}.
|
|
*
|
|
* @see #get4x4(float[], int)
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @return the passed in array
|
|
*/
|
|
float[] get4x4(float[] arr);
|
|
|
|
/**
|
|
* Store a 4x4 matrix in column-major order into the supplied {@link DoubleBuffer} at the current
|
|
* buffer {@link DoubleBuffer#position() position}, where the upper 4x3 submatrix is <code>this</code> and the last row is <code>(0, 0, 0, 1)</code>.
|
|
* <p>
|
|
* This method will not increment the position of the given DoubleBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the DoubleBuffer at which
|
|
* the matrix is stored, use {@link #get4x4(int, DoubleBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #get4x4(int, DoubleBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
DoubleBuffer get4x4(DoubleBuffer buffer);
|
|
|
|
/**
|
|
* Store a 4x4 matrix in column-major order into the supplied {@link DoubleBuffer} starting at the specified
|
|
* absolute buffer position/index, where the upper 4x3 submatrix is <code>this</code> and the last row is <code>(0, 0, 0, 1)</code>.
|
|
* <p>
|
|
* This method will not increment the position of the given DoubleBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the DoubleBuffer
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
DoubleBuffer get4x4(int index, DoubleBuffer buffer);
|
|
|
|
/**
|
|
* Store a 4x4 matrix in column-major order into the supplied {@link ByteBuffer} at the current
|
|
* buffer {@link ByteBuffer#position() position}, where the upper 4x3 submatrix is <code>this</code> and the last row is <code>(0, 0, 0, 1)</code>.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the ByteBuffer at which
|
|
* the matrix is stored, use {@link #get4x4(int, ByteBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #get4x4(int, ByteBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
ByteBuffer get4x4(ByteBuffer buffer);
|
|
|
|
/**
|
|
* Store a 4x4 matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
|
|
* absolute buffer position/index, where the upper 4x3 submatrix is <code>this</code> and the last row is <code>(0, 0, 0, 1)</code>.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the ByteBuffer
|
|
* @param buffer
|
|
* will receive the values of this matrix in column-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
ByteBuffer get4x4(int index, ByteBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix in row-major order into the supplied {@link DoubleBuffer} at the current
|
|
* buffer {@link DoubleBuffer#position() position}.
|
|
* <p>
|
|
* This method will not increment the position of the given DoubleBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the DoubleBuffer at which
|
|
* the matrix is stored, use {@link #getTransposed(int, DoubleBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #getTransposed(int, DoubleBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix in row-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
DoubleBuffer getTransposed(DoubleBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix in row-major order into the supplied {@link DoubleBuffer} starting at the specified
|
|
* absolute buffer position/index.
|
|
* <p>
|
|
* This method will not increment the position of the given DoubleBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the DoubleBuffer
|
|
* @param buffer
|
|
* will receive the values of this matrix in row-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
DoubleBuffer getTransposed(int index, DoubleBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix in row-major order into the supplied {@link ByteBuffer} at the current
|
|
* buffer {@link ByteBuffer#position() position}.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the ByteBuffer at which
|
|
* the matrix is stored, use {@link #getTransposed(int, ByteBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #getTransposed(int, ByteBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix in row-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
ByteBuffer getTransposed(ByteBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix in row-major order into the supplied {@link ByteBuffer} starting at the specified
|
|
* absolute buffer position/index.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the ByteBuffer
|
|
* @param buffer
|
|
* will receive the values of this matrix in row-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
ByteBuffer getTransposed(int index, ByteBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix in row-major order into the supplied {@link FloatBuffer} at the current
|
|
* buffer {@link FloatBuffer#position() position}.
|
|
* <p>
|
|
* This method will not increment the position of the given FloatBuffer.
|
|
* <p>
|
|
* Please note that due to this matrix storing double values those values will potentially
|
|
* lose precision when they are converted to float values before being put into the given FloatBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the FloatBuffer at which
|
|
* the matrix is stored, use {@link #getTransposed(int, FloatBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #getTransposed(int, FloatBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix in row-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
FloatBuffer getTransposed(FloatBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix in row-major order into the supplied {@link FloatBuffer} starting at the specified
|
|
* absolute buffer position/index.
|
|
* <p>
|
|
* This method will not increment the position of the given FloatBuffer.
|
|
* <p>
|
|
* Please note that due to this matrix storing double values those values will potentially
|
|
* lose precision when they are converted to float values before being put into the given FloatBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the FloatBuffer
|
|
* @param buffer
|
|
* will receive the values of this matrix in row-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
FloatBuffer getTransposed(int index, FloatBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix as float values in row-major order into the supplied {@link ByteBuffer} at the current
|
|
* buffer {@link ByteBuffer#position() position}.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
* <p>
|
|
* Please note that due to this matrix storing double values those values will potentially
|
|
* lose precision when they are converted to float values before being put into the given FloatBuffer.
|
|
* <p>
|
|
* In order to specify the offset into the ByteBuffer at which
|
|
* the matrix is stored, use {@link #getTransposedFloats(int, ByteBuffer)}, taking
|
|
* the absolute position as parameter.
|
|
*
|
|
* @see #getTransposedFloats(int, ByteBuffer)
|
|
*
|
|
* @param buffer
|
|
* will receive the values of this matrix as float values in row-major order at its current position
|
|
* @return the passed in buffer
|
|
*/
|
|
ByteBuffer getTransposedFloats(ByteBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix in row-major order into the supplied {@link ByteBuffer} starting at the specified
|
|
* absolute buffer position/index.
|
|
* <p>
|
|
* This method will not increment the position of the given ByteBuffer.
|
|
* <p>
|
|
* Please note that due to this matrix storing double values those values will potentially
|
|
* lose precision when they are converted to float values before being put into the given FloatBuffer.
|
|
*
|
|
* @param index
|
|
* the absolute position into the ByteBuffer
|
|
* @param buffer
|
|
* will receive the values of this matrix as float values in row-major order
|
|
* @return the passed in buffer
|
|
*/
|
|
ByteBuffer getTransposedFloats(int index, ByteBuffer buffer);
|
|
|
|
/**
|
|
* Store this matrix into the supplied float array in row-major order at the given offset.
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @param offset
|
|
* the offset into the array
|
|
* @return the passed in array
|
|
*/
|
|
double[] getTransposed(double[] arr, int offset);
|
|
|
|
/**
|
|
* Store this matrix into the supplied float array in row-major order.
|
|
* <p>
|
|
* In order to specify an explicit offset into the array, use the method {@link #getTransposed(double[], int)}.
|
|
*
|
|
* @see #getTransposed(double[], int)
|
|
*
|
|
* @param arr
|
|
* the array to write the matrix values into
|
|
* @return the passed in array
|
|
*/
|
|
double[] getTransposed(double[] arr);
|
|
|
|
/**
|
|
* Transform/multiply the given vector by this matrix and store the result in that vector.
|
|
*
|
|
* @see Vector4d#mul(Matrix4x3dc)
|
|
*
|
|
* @param v
|
|
* the vector to transform and to hold the final result
|
|
* @return v
|
|
*/
|
|
Vector4d transform(Vector4d v);
|
|
|
|
/**
|
|
* Transform/multiply the given vector by this matrix and store the result in <code>dest</code>.
|
|
*
|
|
* @see Vector4d#mul(Matrix4x3dc, Vector4d)
|
|
*
|
|
* @param v
|
|
* the vector to transform
|
|
* @param dest
|
|
* will contain the result
|
|
* @return dest
|
|
*/
|
|
Vector4d transform(Vector4dc v, Vector4d dest);
|
|
|
|
/**
|
|
* Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by
|
|
* this matrix and store the result in that vector.
|
|
* <p>
|
|
* The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it
|
|
* will represent a position/location in 3D-space rather than a direction.
|
|
* <p>
|
|
* In order to store the result in another vector, use {@link #transformPosition(Vector3dc, Vector3d)}.
|
|
*
|
|
* @see #transformPosition(Vector3dc, Vector3d)
|
|
* @see #transform(Vector4d)
|
|
*
|
|
* @param v
|
|
* the vector to transform and to hold the final result
|
|
* @return v
|
|
*/
|
|
Vector3d transformPosition(Vector3d v);
|
|
|
|
/**
|
|
* Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by
|
|
* this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it
|
|
* will represent a position/location in 3D-space rather than a direction.
|
|
* <p>
|
|
* In order to store the result in the same vector, use {@link #transformPosition(Vector3d)}.
|
|
*
|
|
* @see #transformPosition(Vector3d)
|
|
* @see #transform(Vector4dc, Vector4d)
|
|
*
|
|
* @param v
|
|
* the vector to transform
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Vector3d transformPosition(Vector3dc v, Vector3d dest);
|
|
|
|
/**
|
|
* Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by
|
|
* this matrix and store the result in that vector.
|
|
* <p>
|
|
* The given 3D-vector is treated as a 4D-vector with its w-component being <code>0.0</code>, so it
|
|
* will represent a direction in 3D-space rather than a position. This method will therefore
|
|
* not take the translation part of the matrix into account.
|
|
* <p>
|
|
* In order to store the result in another vector, use {@link #transformDirection(Vector3dc, Vector3d)}.
|
|
*
|
|
* @param v
|
|
* the vector to transform and to hold the final result
|
|
* @return v
|
|
*/
|
|
Vector3d transformDirection(Vector3d v);
|
|
|
|
/**
|
|
* Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by
|
|
* this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* The given 3D-vector is treated as a 4D-vector with its w-component being <code>0.0</code>, so it
|
|
* will represent a direction in 3D-space rather than a position. This method will therefore
|
|
* not take the translation part of the matrix into account.
|
|
* <p>
|
|
* In order to store the result in the same vector, use {@link #transformDirection(Vector3d)}.
|
|
*
|
|
* @param v
|
|
* the vector to transform and to hold the final result
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Vector3d transformDirection(Vector3dc v, Vector3d dest);
|
|
|
|
/**
|
|
* Apply scaling to <code>this</code> matrix by scaling the base axes by the given <code>xyz.x</code>,
|
|
* <code>xyz.y</code> and <code>xyz.z</code> factors, respectively and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
|
|
* , the scaling will be applied first!
|
|
*
|
|
* @param xyz
|
|
* the factors of the x, y and z component, respectively
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d scale(Vector3dc xyz, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply scaling to <code>this</code> matrix by scaling the base axes by the given x,
|
|
* y and z factors and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
|
|
* , the scaling will be applied first!
|
|
*
|
|
* @param x
|
|
* the factor of the x component
|
|
* @param y
|
|
* the factor of the y component
|
|
* @param z
|
|
* the factor of the z component
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d scale(double x, double y, double z, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
|
|
* , the scaling will be applied first!
|
|
*
|
|
* @see #scale(double, double, double, Matrix4x3d)
|
|
*
|
|
* @param xyz
|
|
* the factor for all components
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d scale(double xyz, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply scaling to this matrix by by scaling the X axis by <code>x</code> and the Y axis by <code>y</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* scaling will be applied first!
|
|
*
|
|
* @param x
|
|
* the factor of the x component
|
|
* @param y
|
|
* the factor of the y component
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d scaleXY(double x, double y, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply scaling to <code>this</code> matrix by scaling the base axes by the given sx,
|
|
* sy and sz factors while using <code>(ox, oy, oz)</code> as the scaling origin,
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
|
|
* , the scaling will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(ox, oy, oz, dest).scale(sx, sy, sz).translate(-ox, -oy, -oz)</code>
|
|
*
|
|
* @param sx
|
|
* the scaling factor of the x component
|
|
* @param sy
|
|
* the scaling factor of the y component
|
|
* @param sz
|
|
* the scaling factor of the z component
|
|
* @param ox
|
|
* the x coordinate of the scaling origin
|
|
* @param oy
|
|
* the y coordinate of the scaling origin
|
|
* @param oz
|
|
* the z coordinate of the scaling origin
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d scaleAround(double sx, double sy, double sz, double ox, double oy, double oz, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply scaling to this matrix by scaling all three base axes by the given <code>factor</code>
|
|
* while using <code>(ox, oy, oz)</code> as the scaling origin,
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* scaling will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(ox, oy, oz, dest).scale(factor).translate(-ox, -oy, -oz)</code>
|
|
*
|
|
* @param factor
|
|
* the scaling factor for all three axes
|
|
* @param ox
|
|
* the x coordinate of the scaling origin
|
|
* @param oy
|
|
* the y coordinate of the scaling origin
|
|
* @param oz
|
|
* the z coordinate of the scaling origin
|
|
* @param dest
|
|
* will hold the result
|
|
* @return this
|
|
*/
|
|
Matrix4x3d scaleAround(double factor, double ox, double oy, double oz, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Pre-multiply scaling to <code>this</code> matrix by scaling the base axes by the given x,
|
|
* y and z factors and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>S * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>
|
|
* , the scaling will be applied last!
|
|
*
|
|
* @param x
|
|
* the factor of the x component
|
|
* @param y
|
|
* the factor of the y component
|
|
* @param z
|
|
* the factor of the z component
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d scaleLocal(double x, double y, double z, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply rotation to this matrix by rotating the given amount of radians
|
|
* about the given axis specified as x, y and z components and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>
|
|
* , the rotation will be applied first!
|
|
*
|
|
* @param ang
|
|
* the angle is in radians
|
|
* @param x
|
|
* the x component of the axis
|
|
* @param y
|
|
* the y component of the axis
|
|
* @param z
|
|
* the z component of the axis
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotate(double ang, double x, double y, double z, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians
|
|
* about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method assumes <code>this</code> to only contain a translation.
|
|
* <p>
|
|
* The axis described by the three components needs to be a unit vector.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @param x
|
|
* the x component of the axis
|
|
* @param y
|
|
* the y component of the axis
|
|
* @param z
|
|
* the z component of the axis
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateTranslation(double ang, double x, double y, double z, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix while using <code>(ox, oy, oz)</code> as the rotation origin,
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>M * Q</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
|
|
* the quaternion rotation will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)</code>
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @param quat
|
|
* the {@link Quaterniondc}
|
|
* @param ox
|
|
* the x coordinate of the rotation origin
|
|
* @param oy
|
|
* the y coordinate of the rotation origin
|
|
* @param oz
|
|
* the z coordinate of the rotation origin
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateAround(Quaterniondc quat, double ox, double oy, double oz, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Pre-multiply a rotation to this matrix by rotating the given amount of radians
|
|
* about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>.
|
|
* <p>
|
|
* The axis described by the three components needs to be a unit vector.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>R * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
|
|
* rotation will be applied last!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @param x
|
|
* the x component of the axis
|
|
* @param y
|
|
* the y component of the axis
|
|
* @param z
|
|
* the z component of the axis
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateLocal(double ang, double x, double y, double z, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>M * T</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>M * T * v</code>, the translation will be applied first!
|
|
*
|
|
* @param offset
|
|
* the number of units in x, y and z by which to translate
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d translate(Vector3dc offset, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>M * T</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>M * T * v</code>, the translation will be applied first!
|
|
*
|
|
* @param offset
|
|
* the number of units in x, y and z by which to translate
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d translate(Vector3fc offset, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>M * T</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>M * T * v</code>, the translation will be applied first!
|
|
*
|
|
* @param x
|
|
* the offset to translate in x
|
|
* @param y
|
|
* the offset to translate in y
|
|
* @param z
|
|
* the offset to translate in z
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d translate(double x, double y, double z, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Pre-multiply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>T * M</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>T * M * v</code>, the translation will be applied last!
|
|
*
|
|
* @param offset
|
|
* the number of units in x, y and z by which to translate
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d translateLocal(Vector3fc offset, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Pre-multiply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>T * M</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>T * M * v</code>, the translation will be applied last!
|
|
*
|
|
* @param offset
|
|
* the number of units in x, y and z by which to translate
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d translateLocal(Vector3dc offset, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Pre-multiply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>T * M</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>T * M * v</code>, the translation will be applied last!
|
|
*
|
|
* @param x
|
|
* the offset to translate in x
|
|
* @param y
|
|
* the offset to translate in y
|
|
* @param z
|
|
* the offset to translate in z
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d translateLocal(double x, double y, double z, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply rotation about the X axis to this matrix by rotating the given amount of radians
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateX(double ang, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply rotation about the Y axis to this matrix by rotating the given amount of radians
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateY(double ang, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply rotation about the Z axis to this matrix by rotating the given amount of radians
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateZ(double ang, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply rotation of <code>angleX</code> radians about the X axis, followed by a rotation of <code>angleY</code> radians about the Y axis and
|
|
* followed by a rotation of <code>angleZ</code> radians about the Z axis and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)</code>
|
|
*
|
|
* @param angleX
|
|
* the angle to rotate about X
|
|
* @param angleY
|
|
* the angle to rotate about Y
|
|
* @param angleZ
|
|
* the angle to rotate about Z
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateXYZ(double angleX, double angleY, double angleZ, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and
|
|
* followed by a rotation of <code>angleX</code> radians about the X axis and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)</code>
|
|
*
|
|
* @param angleZ
|
|
* the angle to rotate about Z
|
|
* @param angleY
|
|
* the angle to rotate about Y
|
|
* @param angleX
|
|
* the angle to rotate about X
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateZYX(double angleZ, double angleY, double angleX, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply rotation of <code>angleY</code> radians about the Y axis, followed by a rotation of <code>angleX</code> radians about the X axis and
|
|
* followed by a rotation of <code>angleZ</code> radians about the Z axis and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)</code>
|
|
*
|
|
* @param angleY
|
|
* the angle to rotate about Y
|
|
* @param angleX
|
|
* the angle to rotate about X
|
|
* @param angleZ
|
|
* the angle to rotate about Z
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateYXZ(double angleY, double angleX, double angleZ, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix and store
|
|
* the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>M * Q</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
|
|
* the quaternion rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @param quat
|
|
* the {@link Quaterniondc}
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotate(Quaterniondc quat, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix and store
|
|
* the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>M * Q</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
|
|
* the quaternion rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @param quat
|
|
* the {@link Quaternionfc}
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotate(Quaternionfc quat, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix, which is assumed to only contain a translation, and store
|
|
* the result in <code>dest</code>.
|
|
* <p>
|
|
* This method assumes <code>this</code> to only contain a translation.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>M * Q</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
|
|
* the quaternion rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @param quat
|
|
* the {@link Quaterniondc}
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateTranslation(Quaterniondc quat, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix, which is assumed to only contain a translation, and store
|
|
* the result in <code>dest</code>.
|
|
* <p>
|
|
* This method assumes <code>this</code> to only contain a translation.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>M * Q</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
|
|
* the quaternion rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @param quat
|
|
* the {@link Quaternionfc}
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateTranslation(Quaternionfc quat, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix and store
|
|
* the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>Q * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>Q * M * v</code>,
|
|
* the quaternion rotation will be applied last!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @param quat
|
|
* the {@link Quaterniondc}
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateLocal(Quaterniondc quat, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix and store
|
|
* the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>Q * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>Q * M * v</code>,
|
|
* the quaternion rotation will be applied last!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @param quat
|
|
* the {@link Quaternionfc}
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateLocal(Quaternionfc quat, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a rotation transformation, rotating about the given {@link AxisAngle4f} and store the result in <code>dest</code>.
|
|
* <p>
|
|
* The axis described by the <code>axis</code> vector needs to be a unit vector.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4f},
|
|
* then the new matrix will be <code>M * A</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
|
|
* the {@link AxisAngle4f} rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(double, double, double, double, Matrix4x3d)
|
|
*
|
|
* @param axisAngle
|
|
* the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized})
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotate(AxisAngle4f axisAngle, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a rotation transformation, rotating about the given {@link AxisAngle4d} and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4d},
|
|
* then the new matrix will be <code>M * A</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
|
|
* the {@link AxisAngle4d} rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(double, double, double, double, Matrix4x3d)
|
|
*
|
|
* @param axisAngle
|
|
* the {@link AxisAngle4d} (needs to be {@link AxisAngle4d#normalize() normalized})
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotate(AxisAngle4d axisAngle, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a rotation transformation, rotating the given radians about the specified axis and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given angle and axis,
|
|
* then the new matrix will be <code>M * A</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
|
|
* the axis-angle rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(double, double, double, double, Matrix4x3d)
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @param axis
|
|
* the rotation axis (needs to be {@link Vector3d#normalize() normalized})
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotate(double angle, Vector3dc axis, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a rotation transformation, rotating the given radians about the specified axis and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given angle and axis,
|
|
* then the new matrix will be <code>M * A</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
|
|
* the axis-angle rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(double, double, double, double, Matrix4x3d)
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @param axis
|
|
* the rotation axis (needs to be {@link Vector3f#normalize() normalized})
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotate(double angle, Vector3fc axis, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Get the row at the given <code>row</code> index, starting with <code>0</code>.
|
|
*
|
|
* @param row
|
|
* the row index in <code>[0..2]</code>
|
|
* @param dest
|
|
* will hold the row components
|
|
* @return the passed in destination
|
|
* @throws IndexOutOfBoundsException if <code>row</code> is not in <code>[0..2]</code>
|
|
*/
|
|
Vector4d getRow(int row, Vector4d dest) throws IndexOutOfBoundsException;
|
|
|
|
/**
|
|
* Get the column at the given <code>column</code> index, starting with <code>0</code>.
|
|
*
|
|
* @param column
|
|
* the column index in <code>[0..3]</code>
|
|
* @param dest
|
|
* will hold the column components
|
|
* @return the passed in destination
|
|
* @throws IndexOutOfBoundsException if <code>column</code> is not in <code>[0..3]</code>
|
|
*/
|
|
Vector3d getColumn(int column, Vector3d dest) throws IndexOutOfBoundsException;
|
|
|
|
/**
|
|
* Compute a normal matrix from the left 3x3 submatrix of <code>this</code>
|
|
* and store it into the left 3x3 submatrix of <code>dest</code>.
|
|
* All other values of <code>dest</code> will be set to identity.
|
|
* <p>
|
|
* The normal matrix of <code>m</code> is the transpose of the inverse of <code>m</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d normal(Matrix4x3d dest);
|
|
|
|
/**
|
|
* Compute a normal matrix from the left 3x3 submatrix of <code>this</code>
|
|
* and store it into <code>dest</code>.
|
|
* <p>
|
|
* The normal matrix of <code>m</code> is the transpose of the inverse of <code>m</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix3d normal(Matrix3d dest);
|
|
|
|
/**
|
|
* Compute the cofactor matrix of the left 3x3 submatrix of <code>this</code>
|
|
* and store it into <code>dest</code>.
|
|
* <p>
|
|
* The cofactor matrix can be used instead of {@link #normal(Matrix3d)} to transform normals
|
|
* when the orientation of the normals with respect to the surface should be preserved.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix3d cofactor3x3(Matrix3d dest);
|
|
|
|
/**
|
|
* Compute the cofactor matrix of the left 3x3 submatrix of <code>this</code>
|
|
* and store it into <code>dest</code>.
|
|
* All other values of <code>dest</code> will be set to identity.
|
|
* <p>
|
|
* The cofactor matrix can be used instead of {@link #normal(Matrix4x3d)} to transform normals
|
|
* when the orientation of the normals with respect to the surface should be preserved.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d cofactor3x3(Matrix4x3d dest);
|
|
|
|
/**
|
|
* Normalize the left 3x3 submatrix of this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit
|
|
* vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself
|
|
* (i.e. had <i>skewing</i>).
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d normalize3x3(Matrix4x3d dest);
|
|
|
|
/**
|
|
* Normalize the left 3x3 submatrix of this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit
|
|
* vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself
|
|
* (i.e. had <i>skewing</i>).
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix3d normalize3x3(Matrix3d dest);
|
|
|
|
/**
|
|
* Apply a mirror/reflection transformation to this matrix that reflects about the given plane
|
|
* specified via the equation <code>x*a + y*b + z*c + d = 0</code> and store the result in <code>dest</code>.
|
|
* <p>
|
|
* The vector <code>(a, b, c)</code> must be a unit vector.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* reflection will be applied first!
|
|
* <p>
|
|
* Reference: <a href="https://msdn.microsoft.com/en-us/library/windows/desktop/bb281733(v=vs.85).aspx">msdn.microsoft.com</a>
|
|
*
|
|
* @param a
|
|
* the x factor in the plane equation
|
|
* @param b
|
|
* the y factor in the plane equation
|
|
* @param c
|
|
* the z factor in the plane equation
|
|
* @param d
|
|
* the constant in the plane equation
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d reflect(double a, double b, double c, double d, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a mirror/reflection transformation to this matrix that reflects about the given plane
|
|
* specified via the plane normal and a point on the plane, and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* reflection will be applied first!
|
|
*
|
|
* @param nx
|
|
* the x-coordinate of the plane normal
|
|
* @param ny
|
|
* the y-coordinate of the plane normal
|
|
* @param nz
|
|
* the z-coordinate of the plane normal
|
|
* @param px
|
|
* the x-coordinate of a point on the plane
|
|
* @param py
|
|
* the y-coordinate of a point on the plane
|
|
* @param pz
|
|
* the z-coordinate of a point on the plane
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d reflect(double nx, double ny, double nz, double px, double py, double pz, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a mirror/reflection transformation to this matrix that reflects about a plane
|
|
* specified via the plane orientation and a point on the plane, and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene.
|
|
* It is assumed that the default mirror plane's normal is <code>(0, 0, 1)</code>. So, if the given {@link Quaterniondc} is
|
|
* the identity (does not apply any additional rotation), the reflection plane will be <code>z=0</code>, offset by the given <code>point</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* reflection will be applied first!
|
|
*
|
|
* @param orientation
|
|
* the plane orientation
|
|
* @param point
|
|
* a point on the plane
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d reflect(Quaterniondc orientation, Vector3dc point, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a mirror/reflection transformation to this matrix that reflects about the given plane
|
|
* specified via the plane normal and a point on the plane, and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* reflection will be applied first!
|
|
*
|
|
* @param normal
|
|
* the plane normal
|
|
* @param point
|
|
* a point on the plane
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d reflect(Vector3dc normal, Vector3dc point, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a right-handed coordinate system
|
|
* using the given NDC z range to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a right-handed coordinate system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a left-handed coordiante system
|
|
* using the given NDC z range to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a left-handed coordiante system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a symmetric orthographic projection transformation for a right-handed coordinate system
|
|
* using the given NDC z range to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, boolean, Matrix4x3d) ortho()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param dest
|
|
* will hold the result
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a symmetric orthographic projection transformation for a right-handed coordinate system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, Matrix4x3d) ortho()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a symmetric orthographic projection transformation for a left-handed coordinate system
|
|
* using the given NDC z range to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, boolean, Matrix4x3d) orthoLH()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param dest
|
|
* will hold the result
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a symmetric orthographic projection transformation for a left-handed coordinate system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, Matrix4x3d) orthoLH()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a right-handed coordinate system
|
|
* to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, Matrix4x3d) ortho()} with
|
|
* <code>zNear=-1</code> and <code>zFar=+1</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #ortho(double, double, double, double, double, double, Matrix4x3d)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d ortho2D(double left, double right, double bottom, double top, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, Matrix4x3d) orthoLH()} with
|
|
* <code>zNear=-1</code> and <code>zFar=+1</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #orthoLH(double, double, double, double, double, double, Matrix4x3d)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d ortho2DLH(double left, double right, double bottom, double top, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the
|
|
* lookalong rotation transformation will be applied first!
|
|
* <p>
|
|
* This is equivalent to calling
|
|
* {@link #lookAt(Vector3dc, Vector3dc, Vector3dc, Matrix4x3d) lookAt}
|
|
* with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>.
|
|
*
|
|
* @see #lookAlong(double, double, double, double, double, double, Matrix4x3d)
|
|
* @see #lookAt(Vector3dc, Vector3dc, Vector3dc, Matrix4x3d)
|
|
*
|
|
* @param dir
|
|
* the direction in space to look along
|
|
* @param up
|
|
* the direction of 'up'
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d lookAlong(Vector3dc dir, Vector3dc up, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the
|
|
* lookalong rotation transformation will be applied first!
|
|
* <p>
|
|
* This is equivalent to calling
|
|
* {@link #lookAt(double, double, double, double, double, double, double, double, double, Matrix4x3d) lookAt()}
|
|
* with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>.
|
|
*
|
|
* @see #lookAt(double, double, double, double, double, double, double, double, double, Matrix4x3d)
|
|
*
|
|
* @param dirX
|
|
* the x-coordinate of the direction to look along
|
|
* @param dirY
|
|
* the y-coordinate of the direction to look along
|
|
* @param dirZ
|
|
* the z-coordinate of the direction to look along
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a "lookat" transformation to this matrix for a right-handed coordinate system,
|
|
* that aligns <code>-z</code> with <code>center - eye</code> and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
*
|
|
* @see #lookAt(double, double, double, double, double, double, double, double, double, Matrix4x3d)
|
|
*
|
|
* @param eye
|
|
* the position of the camera
|
|
* @param center
|
|
* the point in space to look at
|
|
* @param up
|
|
* the direction of 'up'
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d lookAt(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a "lookat" transformation to this matrix for a right-handed coordinate system,
|
|
* that aligns <code>-z</code> with <code>center - eye</code> and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
*
|
|
* @see #lookAt(Vector3dc, Vector3dc, Vector3dc, Matrix4x3d)
|
|
*
|
|
* @param eyeX
|
|
* the x-coordinate of the eye/camera location
|
|
* @param eyeY
|
|
* the y-coordinate of the eye/camera location
|
|
* @param eyeZ
|
|
* the z-coordinate of the eye/camera location
|
|
* @param centerX
|
|
* the x-coordinate of the point to look at
|
|
* @param centerY
|
|
* the y-coordinate of the point to look at
|
|
* @param centerZ
|
|
* the z-coordinate of the point to look at
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d lookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a "lookat" transformation to this matrix for a left-handed coordinate system,
|
|
* that aligns <code>+z</code> with <code>center - eye</code> and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
*
|
|
* @see #lookAtLH(double, double, double, double, double, double, double, double, double, Matrix4x3d)
|
|
*
|
|
* @param eye
|
|
* the position of the camera
|
|
* @param center
|
|
* the point in space to look at
|
|
* @param up
|
|
* the direction of 'up'
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d lookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a "lookat" transformation to this matrix for a left-handed coordinate system,
|
|
* that aligns <code>+z</code> with <code>center - eye</code> and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
*
|
|
* @see #lookAtLH(Vector3dc, Vector3dc, Vector3dc, Matrix4x3d)
|
|
*
|
|
* @param eyeX
|
|
* the x-coordinate of the eye/camera location
|
|
* @param eyeY
|
|
* the y-coordinate of the eye/camera location
|
|
* @param eyeZ
|
|
* the z-coordinate of the eye/camera location
|
|
* @param centerX
|
|
* the x-coordinate of the point to look at
|
|
* @param centerY
|
|
* the y-coordinate of the point to look at
|
|
* @param centerZ
|
|
* the z-coordinate of the point to look at
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d lookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Calculate a frustum plane of <code>this</code> matrix, which
|
|
* can be a projection matrix or a combined modelview-projection matrix, and store the result
|
|
* in the given <code>dest</code>.
|
|
* <p>
|
|
* Generally, this method computes the frustum plane in the local frame of
|
|
* any coordinate system that existed before <code>this</code>
|
|
* transformation was applied to it in order to yield homogeneous clipping space.
|
|
* <p>
|
|
* The plane normal, which is <code>(a, b, c)</code>, is directed "inwards" of the frustum.
|
|
* Any plane/point test using <code>a*x + b*y + c*z + d</code> therefore will yield a result greater than zero
|
|
* if the point is within the frustum (i.e. at the <i>positive</i> side of the frustum plane).
|
|
* <p>
|
|
* Reference: <a href="http://gamedevs.org/uploads/fast-extraction-viewing-frustum-planes-from-world-view-projection-matrix.pdf">
|
|
* Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix</a>
|
|
*
|
|
* @param which
|
|
* one of the six possible planes, given as numeric constants
|
|
* {@link #PLANE_NX}, {@link #PLANE_PX},
|
|
* {@link #PLANE_NY}, {@link #PLANE_PY},
|
|
* {@link #PLANE_NZ} and {@link #PLANE_PZ}
|
|
* @param dest
|
|
* will hold the computed plane equation.
|
|
* The plane equation will be normalized, meaning that <code>(a, b, c)</code> will be a unit vector
|
|
* @return dest
|
|
*/
|
|
Vector4d frustumPlane(int which, Vector4d dest);
|
|
|
|
/**
|
|
* Obtain the direction of <code>+Z</code> before the transformation represented by <code>this</code> matrix is applied.
|
|
* <p>
|
|
* This method uses the rotation component of the left 3x3 submatrix to obtain the direction
|
|
* that is transformed to <code>+Z</code> by <code>this</code> matrix.
|
|
* <p>
|
|
* This method is equivalent to the following code:
|
|
* <pre>
|
|
* Matrix4x3d inv = new Matrix4x3d(this).invert();
|
|
* inv.transformDirection(dir.set(0, 0, 1)).normalize();
|
|
* </pre>
|
|
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveZ(Vector3d)} instead.
|
|
* <p>
|
|
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
|
|
*
|
|
* @param dir
|
|
* will hold the direction of <code>+Z</code>
|
|
* @return dir
|
|
*/
|
|
Vector3d positiveZ(Vector3d dir);
|
|
|
|
/**
|
|
* Obtain the direction of <code>+Z</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
|
|
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
|
|
* <p>
|
|
* This method uses the rotation component of the left 3x3 submatrix to obtain the direction
|
|
* that is transformed to <code>+Z</code> by <code>this</code> matrix.
|
|
* <p>
|
|
* This method is equivalent to the following code:
|
|
* <pre>
|
|
* Matrix4x3d inv = new Matrix4x3d(this).transpose();
|
|
* inv.transformDirection(dir.set(0, 0, 1)).normalize();
|
|
* </pre>
|
|
* <p>
|
|
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
|
|
*
|
|
* @param dir
|
|
* will hold the direction of <code>+Z</code>
|
|
* @return dir
|
|
*/
|
|
Vector3d normalizedPositiveZ(Vector3d dir);
|
|
|
|
/**
|
|
* Obtain the direction of <code>+X</code> before the transformation represented by <code>this</code> matrix is applied.
|
|
* <p>
|
|
* This method uses the rotation component of the left 3x3 submatrix to obtain the direction
|
|
* that is transformed to <code>+X</code> by <code>this</code> matrix.
|
|
* <p>
|
|
* This method is equivalent to the following code:
|
|
* <pre>
|
|
* Matrix4x3d inv = new Matrix4x3d(this).invert();
|
|
* inv.transformDirection(dir.set(1, 0, 0)).normalize();
|
|
* </pre>
|
|
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveX(Vector3d)} instead.
|
|
* <p>
|
|
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
|
|
*
|
|
* @param dir
|
|
* will hold the direction of <code>+X</code>
|
|
* @return dir
|
|
*/
|
|
Vector3d positiveX(Vector3d dir);
|
|
|
|
/**
|
|
* Obtain the direction of <code>+X</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
|
|
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
|
|
* <p>
|
|
* This method uses the rotation component of the left 3x3 submatrix to obtain the direction
|
|
* that is transformed to <code>+X</code> by <code>this</code> matrix.
|
|
* <p>
|
|
* This method is equivalent to the following code:
|
|
* <pre>
|
|
* Matrix4x3d inv = new Matrix4x3d(this).transpose();
|
|
* inv.transformDirection(dir.set(1, 0, 0)).normalize();
|
|
* </pre>
|
|
* <p>
|
|
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
|
|
*
|
|
* @param dir
|
|
* will hold the direction of <code>+X</code>
|
|
* @return dir
|
|
*/
|
|
Vector3d normalizedPositiveX(Vector3d dir);
|
|
|
|
/**
|
|
* Obtain the direction of <code>+Y</code> before the transformation represented by <code>this</code> matrix is applied.
|
|
* <p>
|
|
* This method uses the rotation component of the left 3x3 submatrix to obtain the direction
|
|
* that is transformed to <code>+Y</code> by <code>this</code> matrix.
|
|
* <p>
|
|
* This method is equivalent to the following code:
|
|
* <pre>
|
|
* Matrix4x3d inv = new Matrix4x3d(this).invert();
|
|
* inv.transformDirection(dir.set(0, 1, 0)).normalize();
|
|
* </pre>
|
|
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveY(Vector3d)} instead.
|
|
* <p>
|
|
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
|
|
*
|
|
* @param dir
|
|
* will hold the direction of <code>+Y</code>
|
|
* @return dir
|
|
*/
|
|
Vector3d positiveY(Vector3d dir);
|
|
|
|
/**
|
|
* Obtain the direction of <code>+Y</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
|
|
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
|
|
* <p>
|
|
* This method uses the rotation component of the left 3x3 submatrix to obtain the direction
|
|
* that is transformed to <code>+Y</code> by <code>this</code> matrix.
|
|
* <p>
|
|
* This method is equivalent to the following code:
|
|
* <pre>
|
|
* Matrix4x3d inv = new Matrix4x3d(this).transpose();
|
|
* inv.transformDirection(dir.set(0, 1, 0)).normalize();
|
|
* </pre>
|
|
* <p>
|
|
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
|
|
*
|
|
* @param dir
|
|
* will hold the direction of <code>+Y</code>
|
|
* @return dir
|
|
*/
|
|
Vector3d normalizedPositiveY(Vector3d dir);
|
|
|
|
/**
|
|
* Obtain the position that gets transformed to the origin by <code>this</code> matrix.
|
|
* This can be used to get the position of the "camera" from a given <i>view</i> transformation matrix.
|
|
* <p>
|
|
* This method is equivalent to the following code:
|
|
* <pre>
|
|
* Matrix4x3f inv = new Matrix4x3f(this).invert();
|
|
* inv.transformPosition(origin.set(0, 0, 0));
|
|
* </pre>
|
|
*
|
|
* @param origin
|
|
* will hold the position transformed to the origin
|
|
* @return origin
|
|
*/
|
|
Vector3d origin(Vector3d origin);
|
|
|
|
/**
|
|
* Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation
|
|
* <code>x*a + y*b + z*c + d = 0</code> as if casting a shadow from a given light position/direction <code>light</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>light.w</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* shadow projection will be applied first!
|
|
* <p>
|
|
* Reference: <a href="ftp://ftp.sgi.com/opengl/contrib/blythe/advanced99/notes/node192.html">ftp.sgi.com</a>
|
|
*
|
|
* @param light
|
|
* the light's vector
|
|
* @param a
|
|
* the x factor in the plane equation
|
|
* @param b
|
|
* the y factor in the plane equation
|
|
* @param c
|
|
* the z factor in the plane equation
|
|
* @param d
|
|
* the constant in the plane equation
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d shadow(Vector4dc light, double a, double b, double c, double d, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation
|
|
* <code>x*a + y*b + z*c + d = 0</code> as if casting a shadow from a given light position/direction <code>(lightX, lightY, lightZ, lightW)</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>lightW</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* shadow projection will be applied first!
|
|
* <p>
|
|
* Reference: <a href="ftp://ftp.sgi.com/opengl/contrib/blythe/advanced99/notes/node192.html">ftp.sgi.com</a>
|
|
*
|
|
* @param lightX
|
|
* the x-component of the light's vector
|
|
* @param lightY
|
|
* the y-component of the light's vector
|
|
* @param lightZ
|
|
* the z-component of the light's vector
|
|
* @param lightW
|
|
* the w-component of the light's vector
|
|
* @param a
|
|
* the x factor in the plane equation
|
|
* @param b
|
|
* the y factor in the plane equation
|
|
* @param c
|
|
* the z factor in the plane equation
|
|
* @param d
|
|
* the constant in the plane equation
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a projection transformation to this matrix that projects onto the plane with the general plane equation
|
|
* <code>y = 0</code> as if casting a shadow from a given light position/direction <code>light</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* Before the shadow projection is applied, the plane is transformed via the specified <code>planeTransformation</code>.
|
|
* <p>
|
|
* If <code>light.w</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* shadow projection will be applied first!
|
|
*
|
|
* @param light
|
|
* the light's vector
|
|
* @param planeTransform
|
|
* the transformation to transform the implied plane <code>y = 0</code> before applying the projection
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d shadow(Vector4dc light, Matrix4x3dc planeTransform, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a projection transformation to this matrix that projects onto the plane with the general plane equation
|
|
* <code>y = 0</code> as if casting a shadow from a given light position/direction <code>(lightX, lightY, lightZ, lightW)</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* Before the shadow projection is applied, the plane is transformed via the specified <code>planeTransformation</code>.
|
|
* <p>
|
|
* If <code>lightW</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* shadow projection will be applied first!
|
|
*
|
|
* @param lightX
|
|
* the x-component of the light vector
|
|
* @param lightY
|
|
* the y-component of the light vector
|
|
* @param lightZ
|
|
* the z-component of the light vector
|
|
* @param lightW
|
|
* the w-component of the light vector
|
|
* @param planeTransform
|
|
* the transformation to transform the implied plane <code>y = 0</code> before applying the projection
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, Matrix4x3dc planeTransform, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a picking transformation to this matrix using the given window coordinates <code>(x, y)</code> as the pick center
|
|
* and the given <code>(width, height)</code> as the size of the picking region in window coordinates, and store the result
|
|
* in <code>dest</code>.
|
|
*
|
|
* @param x
|
|
* the x coordinate of the picking region center in window coordinates
|
|
* @param y
|
|
* the y coordinate of the picking region center in window coordinates
|
|
* @param width
|
|
* the width of the picking region in window coordinates
|
|
* @param height
|
|
* the height of the picking region in window coordinates
|
|
* @param viewport
|
|
* the viewport described by <code>[x, y, width, height]</code>
|
|
* @param dest
|
|
* the destination matrix, which will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d pick(double x, double y, double width, double height, int[] viewport, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply an arcball view transformation to this matrix with the given <code>radius</code> and center <code>(centerX, centerY, centerZ)</code>
|
|
* position of the arcball and the specified X and Y rotation angles, and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(0, 0, -radius, dest).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)</code>
|
|
*
|
|
* @param radius
|
|
* the arcball radius
|
|
* @param centerX
|
|
* the x coordinate of the center position of the arcball
|
|
* @param centerY
|
|
* the y coordinate of the center position of the arcball
|
|
* @param centerZ
|
|
* the z coordinate of the center position of the arcball
|
|
* @param angleX
|
|
* the rotation angle around the X axis in radians
|
|
* @param angleY
|
|
* the rotation angle around the Y axis in radians
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d arcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply an arcball view transformation to this matrix with the given <code>radius</code> and <code>center</code>
|
|
* position of the arcball and the specified X and Y rotation angles, and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)</code>
|
|
*
|
|
* @param radius
|
|
* the arcball radius
|
|
* @param center
|
|
* the center position of the arcball
|
|
* @param angleX
|
|
* the rotation angle around the X axis in radians
|
|
* @param angleY
|
|
* the rotation angle around the Y axis in radians
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d arcball(double radius, Vector3dc center, double angleX, double angleY, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Transform the axis-aligned box given as the minimum corner <code>(minX, minY, minZ)</code> and maximum corner <code>(maxX, maxY, maxZ)</code>
|
|
* by <code>this</code> matrix and compute the axis-aligned box of the result whose minimum corner is stored in <code>outMin</code>
|
|
* and maximum corner stored in <code>outMax</code>.
|
|
* <p>
|
|
* Reference: <a href="http://dev.theomader.com/transform-bounding-boxes/">http://dev.theomader.com</a>
|
|
*
|
|
* @param minX
|
|
* the x coordinate of the minimum corner of the axis-aligned box
|
|
* @param minY
|
|
* the y coordinate of the minimum corner of the axis-aligned box
|
|
* @param minZ
|
|
* the z coordinate of the minimum corner of the axis-aligned box
|
|
* @param maxX
|
|
* the x coordinate of the maximum corner of the axis-aligned box
|
|
* @param maxY
|
|
* the y coordinate of the maximum corner of the axis-aligned box
|
|
* @param maxZ
|
|
* the y coordinate of the maximum corner of the axis-aligned box
|
|
* @param outMin
|
|
* will hold the minimum corner of the resulting axis-aligned box
|
|
* @param outMax
|
|
* will hold the maximum corner of the resulting axis-aligned box
|
|
* @return this
|
|
*/
|
|
Matrix4x3d transformAab(double minX, double minY, double minZ, double maxX, double maxY, double maxZ, Vector3d outMin, Vector3d outMax);
|
|
|
|
/**
|
|
* Transform the axis-aligned box given as the minimum corner <code>min</code> and maximum corner <code>max</code>
|
|
* by <code>this</code> matrix and compute the axis-aligned box of the result whose minimum corner is stored in <code>outMin</code>
|
|
* and maximum corner stored in <code>outMax</code>.
|
|
*
|
|
* @param min
|
|
* the minimum corner of the axis-aligned box
|
|
* @param max
|
|
* the maximum corner of the axis-aligned box
|
|
* @param outMin
|
|
* will hold the minimum corner of the resulting axis-aligned box
|
|
* @param outMax
|
|
* will hold the maximum corner of the resulting axis-aligned box
|
|
* @return this
|
|
*/
|
|
Matrix4x3d transformAab(Vector3dc min, Vector3dc max, Vector3d outMin, Vector3d outMax);
|
|
|
|
/**
|
|
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
|
|
* then the result is <code>other</code>.
|
|
*
|
|
* @param other
|
|
* the other matrix
|
|
* @param t
|
|
* the interpolation factor between 0.0 and 1.0
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d lerp(Matrix4x3dc other, double t, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a model transformation to this matrix for a right-handed coordinate system,
|
|
* that aligns the <code>-z</code> axis with <code>dir</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>mul(new Matrix4x3d().lookAt(new Vector3d(), new Vector3d(dir).negate(), up).invert(), dest)</code>
|
|
*
|
|
* @see #rotateTowards(double, double, double, double, double, double, Matrix4x3d)
|
|
*
|
|
* @param dir
|
|
* the direction to rotate towards
|
|
* @param up
|
|
* the up vector
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateTowards(Vector3dc dir, Vector3dc up, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Apply a model transformation to this matrix for a right-handed coordinate system,
|
|
* that aligns the <code>-z</code> axis with <code>(dirX, dirY, dirZ)</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>mul(new Matrix4x3d().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)</code>
|
|
*
|
|
* @see #rotateTowards(Vector3dc, Vector3dc, Matrix4x3d)
|
|
*
|
|
* @param dirX
|
|
* the x-coordinate of the direction to rotate towards
|
|
* @param dirY
|
|
* the y-coordinate of the direction to rotate towards
|
|
* @param dirZ
|
|
* the z-coordinate of the direction to rotate towards
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Extract the Euler angles from the rotation represented by the left 3x3 submatrix of <code>this</code>
|
|
* and store the extracted Euler angles in <code>dest</code>.
|
|
* <p>
|
|
* This method assumes that the left 3x3 submatrix of <code>this</code> only represents a rotation without scaling.
|
|
* <p>
|
|
* The Euler angles are always returned as the angle around X in the {@link Vector3d#x} field, the angle around Y in the {@link Vector3d#y}
|
|
* field and the angle around Z in the {@link Vector3d#z} field of the supplied {@link Vector3d} instance.
|
|
* <p>
|
|
* Note that the returned Euler angles must be applied in the order <code>X * Y * Z</code> to obtain the identical matrix.
|
|
* This means that calling {@link Matrix4x3d#rotateXYZ(double, double, double)} using the obtained Euler angles will yield
|
|
* the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrix
|
|
* <code>m2</code> should be identical to <code>m</code> (disregarding possible floating-point inaccuracies).
|
|
* <pre>
|
|
* Matrix4x3d m = ...; // <- matrix only representing rotation
|
|
* Matrix4x3d n = new Matrix4x3d();
|
|
* n.rotateXYZ(m.getEulerAnglesXYZ(new Vector3d()));
|
|
* </pre>
|
|
* <p>
|
|
* Reference: <a href="https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix">http://en.wikipedia.org/</a>
|
|
*
|
|
* @param dest
|
|
* will hold the extracted Euler angles
|
|
* @return dest
|
|
*/
|
|
Vector3d getEulerAnglesXYZ(Vector3d dest);
|
|
|
|
/**
|
|
* Extract the Euler angles from the rotation represented by the left 3x3 submatrix of <code>this</code>
|
|
* and store the extracted Euler angles in <code>dest</code>.
|
|
* <p>
|
|
* This method assumes that the left 3x3 submatrix of <code>this</code> only represents a rotation without scaling.
|
|
* <p>
|
|
* The Euler angles are always returned as the angle around X in the {@link Vector3d#x} field, the angle around Y in the {@link Vector3d#y}
|
|
* field and the angle around Z in the {@link Vector3d#z} field of the supplied {@link Vector3d} instance.
|
|
* <p>
|
|
* Note that the returned Euler angles must be applied in the order <code>Z * Y * X</code> to obtain the identical matrix.
|
|
* This means that calling {@link Matrix4x3d#rotateZYX(double, double, double)} using the obtained Euler angles will yield
|
|
* the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrix
|
|
* <code>m2</code> should be identical to <code>m</code> (disregarding possible floating-point inaccuracies).
|
|
* <pre>
|
|
* Matrix4x3d m = ...; // <- matrix only representing rotation
|
|
* Matrix4x3d n = new Matrix4x3d();
|
|
* n.rotateZYX(m.getEulerAnglesZYX(new Vector3d()));
|
|
* </pre>
|
|
* <p>
|
|
* Reference: <a href="https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix">http://en.wikipedia.org/</a>
|
|
*
|
|
* @param dest
|
|
* will hold the extracted Euler angles
|
|
* @return dest
|
|
*/
|
|
Vector3d getEulerAnglesZYX(Vector3d dest);
|
|
|
|
/**
|
|
* Apply an oblique projection transformation to this matrix with the given values for <code>a</code> and
|
|
* <code>b</code> and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the oblique transformation matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* oblique transformation will be applied first!
|
|
* <p>
|
|
* The oblique transformation is defined as:
|
|
* <pre>
|
|
* x' = x + a*z
|
|
* y' = y + a*z
|
|
* z' = z
|
|
* </pre>
|
|
* or in matrix form:
|
|
* <pre>
|
|
* 1 0 a 0
|
|
* 0 1 b 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
*
|
|
* @param a
|
|
* the value for the z factor that applies to x
|
|
* @param b
|
|
* the value for the z factor that applies to y
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d obliqueZ(double a, double b, Matrix4x3d dest);
|
|
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 1 0 0 0
|
|
* 0 0 1 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapXZY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 1 0 0 0
|
|
* 0 0 -1 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapXZnY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 1 0 0 0
|
|
* 0 -1 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapXnYnZ(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 1 0 0 0
|
|
* 0 0 1 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapXnZY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 1 0 0 0
|
|
* 0 0 -1 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapXnZnY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* 1 0 0 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapYXZ(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* 1 0 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapYXnZ(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* 1 0 0 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapYZX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* 1 0 0 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapYZnX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* 1 0 0 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapYnXZ(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* 1 0 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapYnXnZ(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* 1 0 0 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapYnZX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* 1 0 0 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapYnZnX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* 0 0 1 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapZXY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* 0 0 -1 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapZXnY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* 0 1 0 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapZYX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* 0 1 0 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapZYnX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* 0 0 1 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapZnXY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* 0 0 -1 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapZnXnY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* 0 -1 0 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapZnYX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* 0 -1 0 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapZnYnX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 1 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnXYnZ(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 0 1 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnXZY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 0 -1 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnXZnY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 -1 0 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnXnYZ(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 -1 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnXnYnZ(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 0 1 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnXnZY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 0 -1 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnXnZnY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* -1 0 0 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnYXZ(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* -1 0 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnYXnZ(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* -1 0 0 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnYZX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* -1 0 0 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnYZnX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* -1 0 0 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnYnXZ(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* -1 0 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnYnXnZ(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* -1 0 0 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnYnZX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* -1 0 0 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnYnZnX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* 0 0 1 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnZXY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* 0 0 -1 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnZXnY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* 0 1 0 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnZYX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* 0 1 0 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnZYnX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* 0 0 1 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnZnXY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* 0 0 -1 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnZnXnY(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* 0 -1 0 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnZnYX(Matrix4x3d dest);
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* 0 -1 0 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d mapnZnYnX(Matrix4x3d dest);
|
|
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 1 0 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d negateX(Matrix4x3d dest);
|
|
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 1 0 0 0
|
|
* 0 -1 0 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d negateY(Matrix4x3d dest);
|
|
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 1 0 0 0
|
|
* 0 1 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
* and store the result in <code>dest</code>.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
Matrix4x3d negateZ(Matrix4x3d dest);
|
|
|
|
/**
|
|
* Compare the matrix elements of <code>this</code> matrix with the given matrix using the given <code>delta</code>
|
|
* and return whether all of them are equal within a maximum difference of <code>delta</code>.
|
|
* <p>
|
|
* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap}
|
|
* and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those
|
|
* data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods.
|
|
*
|
|
* @param m
|
|
* the other matrix
|
|
* @param delta
|
|
* the allowed maximum difference
|
|
* @return <code>true</code> whether all of the matrix elements are equal; <code>false</code> otherwise
|
|
*/
|
|
boolean equals(Matrix4x3dc m, double delta);
|
|
|
|
/**
|
|
* Determine whether all matrix elements are finite floating-point values, that
|
|
* is, they are not {@link Double#isNaN() NaN} and not
|
|
* {@link Double#isInfinite() infinity}.
|
|
*
|
|
* @return {@code true} if all components are finite floating-point values;
|
|
* {@code false} otherwise
|
|
*/
|
|
boolean isFinite();
|
|
|
|
}
|