mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2024-11-13 05:54:01 +01:00
a42c027b6f
- Fix Resources not being closed properly - Change versioning scheme to match Create - Add LICENSE to built jar - Fix mods.toml version sync - Move JOML code to non-src directory - Update Gradle - Organize imports
10699 lines
418 KiB
Java
10699 lines
418 KiB
Java
/*
|
|
* The MIT License
|
|
*
|
|
* Copyright (c) 2015-2021 Richard Greenlees
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
package com.jozufozu.flywheel.repack.joml;
|
|
|
|
import java.io.Externalizable;
|
|
import java.io.IOException;
|
|
import java.io.ObjectInput;
|
|
import java.io.ObjectOutput;
|
|
import java.nio.ByteBuffer;
|
|
import java.nio.DoubleBuffer;
|
|
import java.nio.FloatBuffer;
|
|
import java.text.DecimalFormat;
|
|
import java.text.NumberFormat;
|
|
|
|
/**
|
|
* Contains the definition of an affine 4x3 matrix (4 columns, 3 rows) of doubles, and associated functions to transform
|
|
* it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:
|
|
* <p>
|
|
* m00 m10 m20 m30<br>
|
|
* m01 m11 m21 m31<br>
|
|
* m02 m12 m22 m32<br>
|
|
*
|
|
* @author Richard Greenlees
|
|
* @author Kai Burjack
|
|
*/
|
|
public class Matrix4x3d implements Externalizable, Cloneable, Matrix4x3dc {
|
|
|
|
private static final long serialVersionUID = 1L;
|
|
|
|
double m00, m01, m02;
|
|
double m10, m11, m12;
|
|
double m20, m21, m22;
|
|
double m30, m31, m32;
|
|
|
|
int properties;
|
|
|
|
/**
|
|
* Create a new {@link Matrix4x3d} and set it to {@link #identity() identity}.
|
|
*/
|
|
public Matrix4x3d() {
|
|
m00 = 1.0;
|
|
m11 = 1.0;
|
|
m22 = 1.0;
|
|
properties = PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL;
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link Matrix4x3d} and make it a copy of the given matrix.
|
|
*
|
|
* @param mat
|
|
* the {@link Matrix4x3dc} to copy the values from
|
|
*/
|
|
public Matrix4x3d(Matrix4x3dc mat) {
|
|
set(mat);
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link Matrix4x3d} and make it a copy of the given matrix.
|
|
*
|
|
* @param mat
|
|
* the {@link Matrix4x3fc} to copy the values from
|
|
*/
|
|
public Matrix4x3d(Matrix4x3fc mat) {
|
|
set(mat);
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link Matrix4x3d} by setting its left 3x3 submatrix to the values of the given {@link Matrix3dc}
|
|
* and the rest to identity.
|
|
*
|
|
* @param mat
|
|
* the {@link Matrix3dc}
|
|
*/
|
|
public Matrix4x3d(Matrix3dc mat) {
|
|
set(mat);
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link Matrix4x3d} by setting its left 3x3 submatrix to the values of the given {@link Matrix3fc}
|
|
* and the rest to identity.
|
|
*
|
|
* @param mat
|
|
* the {@link Matrix3dc}
|
|
*/
|
|
public Matrix4x3d(Matrix3fc mat) {
|
|
set(mat);
|
|
}
|
|
|
|
/**
|
|
* Create a new 4x4 matrix using the supplied double values.
|
|
*
|
|
* @param m00
|
|
* the value of m00
|
|
* @param m01
|
|
* the value of m01
|
|
* @param m02
|
|
* the value of m02
|
|
* @param m10
|
|
* the value of m10
|
|
* @param m11
|
|
* the value of m11
|
|
* @param m12
|
|
* the value of m12
|
|
* @param m20
|
|
* the value of m20
|
|
* @param m21
|
|
* the value of m21
|
|
* @param m22
|
|
* the value of m22
|
|
* @param m30
|
|
* the value of m30
|
|
* @param m31
|
|
* the value of m31
|
|
* @param m32
|
|
* the value of m32
|
|
*/
|
|
public Matrix4x3d(double m00, double m01, double m02,
|
|
double m10, double m11, double m12,
|
|
double m20, double m21, double m22,
|
|
double m30, double m31, double m32) {
|
|
this.m00 = m00;
|
|
this.m01 = m01;
|
|
this.m02 = m02;
|
|
this.m10 = m10;
|
|
this.m11 = m11;
|
|
this.m12 = m12;
|
|
this.m20 = m20;
|
|
this.m21 = m21;
|
|
this.m22 = m22;
|
|
this.m30 = m30;
|
|
this.m31 = m31;
|
|
this.m32 = m32;
|
|
determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Create a new {@link Matrix4x3d} by reading its 12 double components from the given {@link DoubleBuffer}
|
|
* at the buffer's current position.
|
|
* <p>
|
|
* That DoubleBuffer is expected to hold the values in column-major order.
|
|
* <p>
|
|
* The buffer's position will not be changed by this method.
|
|
*
|
|
* @param buffer
|
|
* the {@link DoubleBuffer} to read the matrix values from
|
|
*/
|
|
public Matrix4x3d(DoubleBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
|
|
determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Assume the given properties about this matrix.
|
|
* <p>
|
|
* Use one or multiple of 0, {@link Matrix4x3dc#PROPERTY_IDENTITY},
|
|
* {@link Matrix4x3dc#PROPERTY_TRANSLATION}, {@link Matrix4x3dc#PROPERTY_ORTHONORMAL}.
|
|
*
|
|
* @param properties
|
|
* bitset of the properties to assume about this matrix
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d assume(int properties) {
|
|
this.properties = properties;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Compute and set the matrix properties returned by {@link #properties()} based
|
|
* on the current matrix element values.
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d determineProperties() {
|
|
int properties = 0;
|
|
if (m00 == 1.0 && m01 == 0.0 && m02 == 0.0 && m10 == 0.0 && m11 == 1.0 && m12 == 0.0
|
|
&& m20 == 0.0 && m21 == 0.0 && m22 == 1.0) {
|
|
properties |= PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL;
|
|
if (m30 == 0.0 && m31 == 0.0 && m32 == 0.0)
|
|
properties |= PROPERTY_IDENTITY;
|
|
}
|
|
/*
|
|
* We do not determine orthogonality, since it would require arbitrary epsilons
|
|
* and is rather expensive (6 dot products) in the worst case.
|
|
*/
|
|
this.properties = properties;
|
|
return this;
|
|
}
|
|
|
|
public int properties() {
|
|
return properties;
|
|
}
|
|
|
|
public double m00() {
|
|
return m00;
|
|
}
|
|
public double m01() {
|
|
return m01;
|
|
}
|
|
public double m02() {
|
|
return m02;
|
|
}
|
|
public double m10() {
|
|
return m10;
|
|
}
|
|
public double m11() {
|
|
return m11;
|
|
}
|
|
public double m12() {
|
|
return m12;
|
|
}
|
|
public double m20() {
|
|
return m20;
|
|
}
|
|
public double m21() {
|
|
return m21;
|
|
}
|
|
public double m22() {
|
|
return m22;
|
|
}
|
|
public double m30() {
|
|
return m30;
|
|
}
|
|
public double m31() {
|
|
return m31;
|
|
}
|
|
public double m32() {
|
|
return m32;
|
|
}
|
|
|
|
Matrix4x3d _properties(int properties) {
|
|
this.properties = properties;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the value of the matrix element at column 0 and row 0 without updating the properties of the matrix.
|
|
*
|
|
* @param m00
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix4x3d _m00(double m00) {
|
|
this.m00 = m00;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 0 and row 1 without updating the properties of the matrix.
|
|
*
|
|
* @param m01
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix4x3d _m01(double m01) {
|
|
this.m01 = m01;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 0 and row 2 without updating the properties of the matrix.
|
|
*
|
|
* @param m02
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix4x3d _m02(double m02) {
|
|
this.m02 = m02;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 1 and row 0 without updating the properties of the matrix.
|
|
*
|
|
* @param m10
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix4x3d _m10(double m10) {
|
|
this.m10 = m10;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 1 and row 1 without updating the properties of the matrix.
|
|
*
|
|
* @param m11
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix4x3d _m11(double m11) {
|
|
this.m11 = m11;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 1 and row 2 without updating the properties of the matrix.
|
|
*
|
|
* @param m12
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix4x3d _m12(double m12) {
|
|
this.m12 = m12;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 2 and row 0 without updating the properties of the matrix.
|
|
*
|
|
* @param m20
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix4x3d _m20(double m20) {
|
|
this.m20 = m20;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 2 and row 1 without updating the properties of the matrix.
|
|
*
|
|
* @param m21
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix4x3d _m21(double m21) {
|
|
this.m21 = m21;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 2 and row 2 without updating the properties of the matrix.
|
|
*
|
|
* @param m22
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix4x3d _m22(double m22) {
|
|
this.m22 = m22;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 3 and row 0 without updating the properties of the matrix.
|
|
*
|
|
* @param m30
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix4x3d _m30(double m30) {
|
|
this.m30 = m30;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 3 and row 1 without updating the properties of the matrix.
|
|
*
|
|
* @param m31
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix4x3d _m31(double m31) {
|
|
this.m31 = m31;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 3 and row 2 without updating the properties of the matrix.
|
|
*
|
|
* @param m32
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
Matrix4x3d _m32(double m32) {
|
|
this.m32 = m32;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the value of the matrix element at column 0 and row 0.
|
|
*
|
|
* @param m00
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d m00(double m00) {
|
|
this.m00 = m00;
|
|
properties &= ~PROPERTY_ORTHONORMAL;
|
|
if (m00 != 1.0)
|
|
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 0 and row 1.
|
|
*
|
|
* @param m01
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d m01(double m01) {
|
|
this.m01 = m01;
|
|
properties &= ~PROPERTY_ORTHONORMAL;
|
|
if (m01 != 0.0)
|
|
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 0 and row 2.
|
|
*
|
|
* @param m02
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d m02(double m02) {
|
|
this.m02 = m02;
|
|
properties &= ~PROPERTY_ORTHONORMAL;
|
|
if (m02 != 0.0)
|
|
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 1 and row 0.
|
|
*
|
|
* @param m10
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d m10(double m10) {
|
|
this.m10 = m10;
|
|
properties &= ~PROPERTY_ORTHONORMAL;
|
|
if (m10 != 0.0)
|
|
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 1 and row 1.
|
|
*
|
|
* @param m11
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d m11(double m11) {
|
|
this.m11 = m11;
|
|
properties &= ~PROPERTY_ORTHONORMAL;
|
|
if (m11 != 1.0)
|
|
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 1 and row 2.
|
|
*
|
|
* @param m12
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d m12(double m12) {
|
|
this.m12 = m12;
|
|
properties &= ~PROPERTY_ORTHONORMAL;
|
|
if (m12 != 0.0)
|
|
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 2 and row 0.
|
|
*
|
|
* @param m20
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d m20(double m20) {
|
|
this.m20 = m20;
|
|
properties &= ~PROPERTY_ORTHONORMAL;
|
|
if (m20 != 0.0)
|
|
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 2 and row 1.
|
|
*
|
|
* @param m21
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d m21(double m21) {
|
|
this.m21 = m21;
|
|
properties &= ~PROPERTY_ORTHONORMAL;
|
|
if (m21 != 0.0)
|
|
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 2 and row 2.
|
|
*
|
|
* @param m22
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d m22(double m22) {
|
|
this.m22 = m22;
|
|
properties &= ~PROPERTY_ORTHONORMAL;
|
|
if (m22 != 1.0)
|
|
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 3 and row 0.
|
|
*
|
|
* @param m30
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d m30(double m30) {
|
|
this.m30 = m30;
|
|
if (m30 != 0.0)
|
|
properties &= ~PROPERTY_IDENTITY;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 3 and row 1.
|
|
*
|
|
* @param m31
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d m31(double m31) {
|
|
this.m31 = m31;
|
|
if (m31 != 0.0)
|
|
properties &= ~PROPERTY_IDENTITY;
|
|
return this;
|
|
}
|
|
/**
|
|
* Set the value of the matrix element at column 3 and row 2.
|
|
*
|
|
* @param m32
|
|
* the new value
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d m32(double m32) {
|
|
this.m32 = m32;
|
|
if (m32 != 0.0)
|
|
properties &= ~PROPERTY_IDENTITY;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Reset this matrix to the identity.
|
|
* <p>
|
|
* Please note that if a call to {@link #identity()} is immediately followed by a call to:
|
|
* {@link #translate(double, double, double) translate},
|
|
* {@link #rotate(double, double, double, double) rotate},
|
|
* {@link #scale(double, double, double) scale},
|
|
* {@link #ortho(double, double, double, double, double, double) ortho},
|
|
* {@link #ortho2D(double, double, double, double) ortho2D},
|
|
* {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt},
|
|
* {@link #lookAlong(double, double, double, double, double, double) lookAlong},
|
|
* or any of their overloads, then the call to {@link #identity()} can be omitted and the subsequent call replaced with:
|
|
* {@link #translation(double, double, double) translation},
|
|
* {@link #rotation(double, double, double, double) rotation},
|
|
* {@link #scaling(double, double, double) scaling},
|
|
* {@link #setOrtho(double, double, double, double, double, double) setOrtho},
|
|
* {@link #setOrtho2D(double, double, double, double) setOrtho2D},
|
|
* {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt},
|
|
* {@link #setLookAlong(double, double, double, double, double, double) setLookAlong},
|
|
* or any of their overloads.
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d identity() {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return this;
|
|
m00 = 1.0;
|
|
m01 = 0.0;
|
|
m02 = 0.0;
|
|
m10 = 0.0;
|
|
m11 = 1.0;
|
|
m12 = 0.0;
|
|
m20 = 0.0;
|
|
m21 = 0.0;
|
|
m22 = 1.0;
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = 0.0;
|
|
properties = PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Store the values of the given matrix <code>m</code> into <code>this</code> matrix.
|
|
*
|
|
* @param m
|
|
* the matrix to copy the values from
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(Matrix4x3dc m) {
|
|
m00 = m.m00();
|
|
m01 = m.m01();
|
|
m02 = m.m02();
|
|
m10 = m.m10();
|
|
m11 = m.m11();
|
|
m12 = m.m12();
|
|
m20 = m.m20();
|
|
m21 = m.m21();
|
|
m22 = m.m22();
|
|
m30 = m.m30();
|
|
m31 = m.m31();
|
|
m32 = m.m32();
|
|
properties = m.properties();
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Store the values of the given matrix <code>m</code> into <code>this</code> matrix.
|
|
*
|
|
* @param m
|
|
* the matrix to copy the values from
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(Matrix4x3fc m) {
|
|
m00 = m.m00();
|
|
m01 = m.m01();
|
|
m02 = m.m02();
|
|
m10 = m.m10();
|
|
m11 = m.m11();
|
|
m12 = m.m12();
|
|
m20 = m.m20();
|
|
m21 = m.m21();
|
|
m22 = m.m22();
|
|
m30 = m.m30();
|
|
m31 = m.m31();
|
|
m32 = m.m32();
|
|
properties = m.properties();
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Store the values of the upper 4x3 submatrix of <code>m</code> into <code>this</code> matrix.
|
|
*
|
|
* @see Matrix4dc#get4x3(Matrix4x3d)
|
|
*
|
|
* @param m
|
|
* the matrix to copy the values from
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(Matrix4dc m) {
|
|
m00 = m.m00();
|
|
m01 = m.m01();
|
|
m02 = m.m02();
|
|
m10 = m.m10();
|
|
m11 = m.m11();
|
|
m12 = m.m12();
|
|
m20 = m.m20();
|
|
m21 = m.m21();
|
|
m22 = m.m22();
|
|
m30 = m.m30();
|
|
m31 = m.m31();
|
|
m32 = m.m32();
|
|
properties = m.properties() & (PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
|
|
return this;
|
|
}
|
|
|
|
public Matrix4d get(Matrix4d dest) {
|
|
return dest.set4x3(this);
|
|
}
|
|
|
|
/**
|
|
* Set the left 3x3 submatrix of this {@link Matrix4x3d} to the given {@link Matrix3dc}
|
|
* and the rest to identity.
|
|
*
|
|
* @see #Matrix4x3d(Matrix3dc)
|
|
*
|
|
* @param mat
|
|
* the {@link Matrix3dc}
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(Matrix3dc mat) {
|
|
m00 = mat.m00();
|
|
m01 = mat.m01();
|
|
m02 = mat.m02();
|
|
m10 = mat.m10();
|
|
m11 = mat.m11();
|
|
m12 = mat.m12();
|
|
m20 = mat.m20();
|
|
m21 = mat.m21();
|
|
m22 = mat.m22();
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = 0.0;
|
|
return determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Set the left 3x3 submatrix of this {@link Matrix4x3d} to the given {@link Matrix3fc}
|
|
* and the rest to identity.
|
|
*
|
|
* @see #Matrix4x3d(Matrix3fc)
|
|
*
|
|
* @param mat
|
|
* the {@link Matrix3fc}
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(Matrix3fc mat) {
|
|
m00 = mat.m00();
|
|
m01 = mat.m01();
|
|
m02 = mat.m02();
|
|
m10 = mat.m10();
|
|
m11 = mat.m11();
|
|
m12 = mat.m12();
|
|
m20 = mat.m20();
|
|
m21 = mat.m21();
|
|
m22 = mat.m22();
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = 0.0;
|
|
return determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Set the four columns of this matrix to the supplied vectors, respectively.
|
|
*
|
|
* @param col0
|
|
* the first column
|
|
* @param col1
|
|
* the second column
|
|
* @param col2
|
|
* the third column
|
|
* @param col3
|
|
* the fourth column
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(Vector3dc col0,
|
|
Vector3dc col1,
|
|
Vector3dc col2,
|
|
Vector3dc col3) {
|
|
this.m00 = col0.x();
|
|
this.m01 = col0.y();
|
|
this.m02 = col0.z();
|
|
this.m10 = col1.x();
|
|
this.m11 = col1.y();
|
|
this.m12 = col1.z();
|
|
this.m20 = col2.x();
|
|
this.m21 = col2.y();
|
|
this.m22 = col2.z();
|
|
this.m30 = col3.x();
|
|
this.m31 = col3.y();
|
|
this.m32 = col3.z();
|
|
return determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Set the left 3x3 submatrix of this {@link Matrix4x3d} to that of the given {@link Matrix4x3dc}
|
|
* and don't change the other elements.
|
|
*
|
|
* @param mat
|
|
* the {@link Matrix4x3dc}
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set3x3(Matrix4x3dc mat) {
|
|
m00 = mat.m00();
|
|
m01 = mat.m01();
|
|
m02 = mat.m02();
|
|
m10 = mat.m10();
|
|
m11 = mat.m11();
|
|
m12 = mat.m12();
|
|
m20 = mat.m20();
|
|
m21 = mat.m21();
|
|
m22 = mat.m22();
|
|
properties &= mat.properties();
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be equivalent to the rotation specified by the given {@link AxisAngle4f}.
|
|
*
|
|
* @param axisAngle
|
|
* the {@link AxisAngle4f}
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(AxisAngle4f axisAngle) {
|
|
double x = axisAngle.x;
|
|
double y = axisAngle.y;
|
|
double z = axisAngle.z;
|
|
double angle = axisAngle.angle;
|
|
double invLength = Math.invsqrt(x*x + y*y + z*z);
|
|
x *= invLength;
|
|
y *= invLength;
|
|
z *= invLength;
|
|
double s = Math.sin(angle);
|
|
double c = Math.cosFromSin(s, angle);
|
|
double omc = 1.0 - c;
|
|
m00 = c + x*x*omc;
|
|
m11 = c + y*y*omc;
|
|
m22 = c + z*z*omc;
|
|
double tmp1 = x*y*omc;
|
|
double tmp2 = z*s;
|
|
m10 = tmp1 - tmp2;
|
|
m01 = tmp1 + tmp2;
|
|
tmp1 = x*z*omc;
|
|
tmp2 = y*s;
|
|
m20 = tmp1 + tmp2;
|
|
m02 = tmp1 - tmp2;
|
|
tmp1 = y*z*omc;
|
|
tmp2 = x*s;
|
|
m21 = tmp1 - tmp2;
|
|
m12 = tmp1 + tmp2;
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = 0.0;
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be equivalent to the rotation specified by the given {@link AxisAngle4d}.
|
|
*
|
|
* @param axisAngle
|
|
* the {@link AxisAngle4d}
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(AxisAngle4d axisAngle) {
|
|
double x = axisAngle.x;
|
|
double y = axisAngle.y;
|
|
double z = axisAngle.z;
|
|
double angle = axisAngle.angle;
|
|
double invLength = Math.invsqrt(x*x + y*y + z*z);
|
|
x *= invLength;
|
|
y *= invLength;
|
|
z *= invLength;
|
|
double s = Math.sin(angle);
|
|
double c = Math.cosFromSin(s, angle);
|
|
double omc = 1.0 - c;
|
|
m00 = c + x*x*omc;
|
|
m11 = c + y*y*omc;
|
|
m22 = c + z*z*omc;
|
|
double tmp1 = x*y*omc;
|
|
double tmp2 = z*s;
|
|
m10 = tmp1 - tmp2;
|
|
m01 = tmp1 + tmp2;
|
|
tmp1 = x*z*omc;
|
|
tmp2 = y*s;
|
|
m20 = tmp1 + tmp2;
|
|
m02 = tmp1 - tmp2;
|
|
tmp1 = y*z*omc;
|
|
tmp2 = x*s;
|
|
m21 = tmp1 - tmp2;
|
|
m12 = tmp1 + tmp2;
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = 0.0;
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given {@link Quaternionfc}.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>rotation(q)</code>
|
|
*
|
|
* @see #rotation(Quaternionfc)
|
|
*
|
|
* @param q
|
|
* the {@link Quaternionfc}
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(Quaternionfc q) {
|
|
return rotation(q);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the given {@link Quaterniondc}.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>rotation(q)</code>
|
|
*
|
|
* @param q
|
|
* the {@link Quaterniondc}
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(Quaterniondc q) {
|
|
return rotation(q);
|
|
}
|
|
|
|
/**
|
|
* Multiply this matrix by the supplied <code>right</code> matrix.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* transformation of the right matrix will be applied first!
|
|
*
|
|
* @param right
|
|
* the right operand of the multiplication
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mul(Matrix4x3dc right) {
|
|
return mul(right, this);
|
|
}
|
|
|
|
public Matrix4x3d mul(Matrix4x3dc right, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.set(right);
|
|
else if ((right.properties() & PROPERTY_IDENTITY) != 0)
|
|
return dest.set(this);
|
|
else if ((properties & PROPERTY_TRANSLATION) != 0)
|
|
return mulTranslation(right, dest);
|
|
return mulGeneric(right, dest);
|
|
}
|
|
private Matrix4x3d mulGeneric(Matrix4x3dc right, Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
double m20 = this.m20, m21 = this.m21, m22 = this.m22;
|
|
double rm00 = right.m00(), rm01 = right.m01(), rm02 = right.m02();
|
|
double rm10 = right.m10(), rm11 = right.m11(), rm12 = right.m12();
|
|
double rm20 = right.m20(), rm21 = right.m21(), rm22 = right.m22();
|
|
double rm30 = right.m30(), rm31 = right.m31(), rm32 = right.m32();
|
|
return dest
|
|
._m00(Math.fma(m00, rm00, Math.fma(m10, rm01, m20 * rm02)))
|
|
._m01(Math.fma(m01, rm00, Math.fma(m11, rm01, m21 * rm02)))
|
|
._m02(Math.fma(m02, rm00, Math.fma(m12, rm01, m22 * rm02)))
|
|
._m10(Math.fma(m00, rm10, Math.fma(m10, rm11, m20 * rm12)))
|
|
._m11(Math.fma(m01, rm10, Math.fma(m11, rm11, m21 * rm12)))
|
|
._m12(Math.fma(m02, rm10, Math.fma(m12, rm11, m22 * rm12)))
|
|
._m20(Math.fma(m00, rm20, Math.fma(m10, rm21, m20 * rm22)))
|
|
._m21(Math.fma(m01, rm20, Math.fma(m11, rm21, m21 * rm22)))
|
|
._m22(Math.fma(m02, rm20, Math.fma(m12, rm21, m22 * rm22)))
|
|
._m30(Math.fma(m00, rm30, Math.fma(m10, rm31, Math.fma(m20, rm32, m30))))
|
|
._m31(Math.fma(m01, rm30, Math.fma(m11, rm31, Math.fma(m21, rm32, m31))))
|
|
._m32(Math.fma(m02, rm30, Math.fma(m12, rm31, Math.fma(m22, rm32, m32))))
|
|
._properties(properties & right.properties() & PROPERTY_ORTHONORMAL);
|
|
}
|
|
|
|
/**
|
|
* Multiply this matrix by the supplied <code>right</code> matrix.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* transformation of the right matrix will be applied first!
|
|
*
|
|
* @param right
|
|
* the right operand of the multiplication
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mul(Matrix4x3fc right) {
|
|
return mul(right, this);
|
|
}
|
|
|
|
public Matrix4x3d mul(Matrix4x3fc right, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.set(right);
|
|
else if ((right.properties() & PROPERTY_IDENTITY) != 0)
|
|
return dest.set(this);
|
|
else if ((properties & PROPERTY_TRANSLATION) != 0)
|
|
return mulTranslation(right, dest);
|
|
return mulGeneric(right, dest);
|
|
}
|
|
private Matrix4x3d mulGeneric(Matrix4x3fc right, Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
double m20 = this.m20, m21 = this.m21, m22 = this.m22;
|
|
double rm00 = right.m00(), rm01 = right.m01(), rm02 = right.m02();
|
|
double rm10 = right.m10(), rm11 = right.m11(), rm12 = right.m12();
|
|
double rm20 = right.m20(), rm21 = right.m21(), rm22 = right.m22();
|
|
double rm30 = right.m30(), rm31 = right.m31(), rm32 = right.m32();
|
|
return dest
|
|
._m00(Math.fma(m00, rm00, Math.fma(m10, rm01, m20 * rm02)))
|
|
._m01(Math.fma(m01, rm00, Math.fma(m11, rm01, m21 * rm02)))
|
|
._m02(Math.fma(m02, rm00, Math.fma(m12, rm01, m22 * rm02)))
|
|
._m10(Math.fma(m00, rm10, Math.fma(m10, rm11, m20 * rm12)))
|
|
._m11(Math.fma(m01, rm10, Math.fma(m11, rm11, m21 * rm12)))
|
|
._m12(Math.fma(m02, rm10, Math.fma(m12, rm11, m22 * rm12)))
|
|
._m20(Math.fma(m00, rm20, Math.fma(m10, rm21, m20 * rm22)))
|
|
._m21(Math.fma(m01, rm20, Math.fma(m11, rm21, m21 * rm22)))
|
|
._m22(Math.fma(m02, rm20, Math.fma(m12, rm21, m22 * rm22)))
|
|
._m30(Math.fma(m00, rm30, Math.fma(m10, rm31, Math.fma(m20, rm32, m30))))
|
|
._m31(Math.fma(m01, rm30, Math.fma(m11, rm31, Math.fma(m21, rm32, m31))))
|
|
._m32(Math.fma(m02, rm30, Math.fma(m12, rm31, Math.fma(m22, rm32, m32))))
|
|
._properties(properties & right.properties() & PROPERTY_ORTHONORMAL);
|
|
}
|
|
|
|
public Matrix4x3d mulTranslation(Matrix4x3dc right, Matrix4x3d dest) {
|
|
return dest
|
|
._m00(right.m00())
|
|
._m01(right.m01())
|
|
._m02(right.m02())
|
|
._m10(right.m10())
|
|
._m11(right.m11())
|
|
._m12(right.m12())
|
|
._m20(right.m20())
|
|
._m21(right.m21())
|
|
._m22(right.m22())
|
|
._m30(right.m30() + m30)
|
|
._m31(right.m31() + m31)
|
|
._m32(right.m32() + m32)
|
|
._properties(right.properties() & PROPERTY_ORTHONORMAL);
|
|
}
|
|
|
|
public Matrix4x3d mulTranslation(Matrix4x3fc right, Matrix4x3d dest) {
|
|
return dest
|
|
._m00(right.m00())
|
|
._m01(right.m01())
|
|
._m02(right.m02())
|
|
._m10(right.m10())
|
|
._m11(right.m11())
|
|
._m12(right.m12())
|
|
._m20(right.m20())
|
|
._m21(right.m21())
|
|
._m22(right.m22())
|
|
._m30(right.m30() + m30)
|
|
._m31(right.m31() + m31)
|
|
._m32(right.m32() + m32)
|
|
._properties(right.properties() & PROPERTY_ORTHONORMAL);
|
|
}
|
|
|
|
/**
|
|
* Multiply <code>this</code> orthographic projection matrix by the supplied <code>view</code> matrix.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>V</code> the <code>view</code> matrix,
|
|
* then the new matrix will be <code>M * V</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * V * v</code>, the
|
|
* transformation of the <code>view</code> matrix will be applied first!
|
|
*
|
|
* @param view
|
|
* the matrix which to multiply <code>this</code> with
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mulOrtho(Matrix4x3dc view) {
|
|
return mulOrtho(view, this);
|
|
}
|
|
|
|
public Matrix4x3d mulOrtho(Matrix4x3dc view, Matrix4x3d dest) {
|
|
double nm00 = m00 * view.m00();
|
|
double nm01 = m11 * view.m01();
|
|
double nm02 = m22 * view.m02();
|
|
double nm10 = m00 * view.m10();
|
|
double nm11 = m11 * view.m11();
|
|
double nm12 = m22 * view.m12();
|
|
double nm20 = m00 * view.m20();
|
|
double nm21 = m11 * view.m21();
|
|
double nm22 = m22 * view.m22();
|
|
double nm30 = m00 * view.m30() + m30;
|
|
double nm31 = m11 * view.m31() + m31;
|
|
double nm32 = m22 * view.m32() + m32;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
dest.m22 = nm22;
|
|
dest.m30 = nm30;
|
|
dest.m31 = nm31;
|
|
dest.m32 = nm32;
|
|
dest.properties = (this.properties & view.properties() & PROPERTY_ORTHONORMAL);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Multiply <code>this</code> by the 4x3 matrix with the column vectors <code>(rm00, rm01, rm02)</code>,
|
|
* <code>(rm10, rm11, rm12)</code>, <code>(rm20, rm21, rm22)</code> and <code>(0, 0, 0)</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the specified matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* transformation of the <code>R</code> matrix will be applied first!
|
|
*
|
|
* @param rm00
|
|
* the value of the m00 element
|
|
* @param rm01
|
|
* the value of the m01 element
|
|
* @param rm02
|
|
* the value of the m02 element
|
|
* @param rm10
|
|
* the value of the m10 element
|
|
* @param rm11
|
|
* the value of the m11 element
|
|
* @param rm12
|
|
* the value of the m12 element
|
|
* @param rm20
|
|
* the value of the m20 element
|
|
* @param rm21
|
|
* the value of the m21 element
|
|
* @param rm22
|
|
* the value of the m22 element
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mul3x3(
|
|
double rm00, double rm01, double rm02,
|
|
double rm10, double rm11, double rm12,
|
|
double rm20, double rm21, double rm22) {
|
|
return mul3x3(rm00, rm01, rm02, rm10, rm11, rm12, rm20, rm21, rm22, this);
|
|
}
|
|
public Matrix4x3d mul3x3(
|
|
double rm00, double rm01, double rm02,
|
|
double rm10, double rm11, double rm12,
|
|
double rm20, double rm21, double rm22,
|
|
Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
double m20 = this.m20, m21 = this.m21, m22 = this.m22;
|
|
return dest
|
|
._m00(Math.fma(m00, rm00, Math.fma(m10, rm01, m20 * rm02)))
|
|
._m01(Math.fma(m01, rm00, Math.fma(m11, rm01, m21 * rm02)))
|
|
._m02(Math.fma(m02, rm00, Math.fma(m12, rm01, m22 * rm02)))
|
|
._m10(Math.fma(m00, rm10, Math.fma(m10, rm11, m20 * rm12)))
|
|
._m11(Math.fma(m01, rm10, Math.fma(m11, rm11, m21 * rm12)))
|
|
._m12(Math.fma(m02, rm10, Math.fma(m12, rm11, m22 * rm12)))
|
|
._m20(Math.fma(m00, rm20, Math.fma(m10, rm21, m20 * rm22)))
|
|
._m21(Math.fma(m01, rm20, Math.fma(m11, rm21, m21 * rm22)))
|
|
._m22(Math.fma(m02, rm20, Math.fma(m12, rm21, m22 * rm22)))
|
|
._m30(m30)
|
|
._m31(m31)
|
|
._m32(m32)
|
|
._properties(0);
|
|
}
|
|
|
|
/**
|
|
* Component-wise add <code>this</code> and <code>other</code>
|
|
* by first multiplying each component of <code>other</code> by <code>otherFactor</code> and
|
|
* adding that result to <code>this</code>.
|
|
* <p>
|
|
* The matrix <code>other</code> will not be changed.
|
|
*
|
|
* @param other
|
|
* the other matrix
|
|
* @param otherFactor
|
|
* the factor to multiply each of the other matrix's components
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d fma(Matrix4x3dc other, double otherFactor) {
|
|
return fma(other, otherFactor, this);
|
|
}
|
|
|
|
public Matrix4x3d fma(Matrix4x3dc other, double otherFactor, Matrix4x3d dest) {
|
|
dest
|
|
._m00(Math.fma(other.m00(), otherFactor, m00))
|
|
._m01(Math.fma(other.m01(), otherFactor, m01))
|
|
._m02(Math.fma(other.m02(), otherFactor, m02))
|
|
._m10(Math.fma(other.m10(), otherFactor, m10))
|
|
._m11(Math.fma(other.m11(), otherFactor, m11))
|
|
._m12(Math.fma(other.m12(), otherFactor, m12))
|
|
._m20(Math.fma(other.m20(), otherFactor, m20))
|
|
._m21(Math.fma(other.m21(), otherFactor, m21))
|
|
._m22(Math.fma(other.m22(), otherFactor, m22))
|
|
._m30(Math.fma(other.m30(), otherFactor, m30))
|
|
._m31(Math.fma(other.m31(), otherFactor, m31))
|
|
._m32(Math.fma(other.m32(), otherFactor, m32))
|
|
._properties(0);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Component-wise add <code>this</code> and <code>other</code>
|
|
* by first multiplying each component of <code>other</code> by <code>otherFactor</code> and
|
|
* adding that result to <code>this</code>.
|
|
* <p>
|
|
* The matrix <code>other</code> will not be changed.
|
|
*
|
|
* @param other
|
|
* the other matrix
|
|
* @param otherFactor
|
|
* the factor to multiply each of the other matrix's components
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d fma(Matrix4x3fc other, double otherFactor) {
|
|
return fma(other, otherFactor, this);
|
|
}
|
|
|
|
public Matrix4x3d fma(Matrix4x3fc other, double otherFactor, Matrix4x3d dest) {
|
|
dest
|
|
._m00(Math.fma(other.m00(), otherFactor, m00))
|
|
._m01(Math.fma(other.m01(), otherFactor, m01))
|
|
._m02(Math.fma(other.m02(), otherFactor, m02))
|
|
._m10(Math.fma(other.m10(), otherFactor, m10))
|
|
._m11(Math.fma(other.m11(), otherFactor, m11))
|
|
._m12(Math.fma(other.m12(), otherFactor, m12))
|
|
._m20(Math.fma(other.m20(), otherFactor, m20))
|
|
._m21(Math.fma(other.m21(), otherFactor, m21))
|
|
._m22(Math.fma(other.m22(), otherFactor, m22))
|
|
._m30(Math.fma(other.m30(), otherFactor, m30))
|
|
._m31(Math.fma(other.m31(), otherFactor, m31))
|
|
._m32(Math.fma(other.m32(), otherFactor, m32))
|
|
._properties(0);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Component-wise add <code>this</code> and <code>other</code>.
|
|
*
|
|
* @param other
|
|
* the other addend
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d add(Matrix4x3dc other) {
|
|
return add(other, this);
|
|
}
|
|
|
|
public Matrix4x3d add(Matrix4x3dc other, Matrix4x3d dest) {
|
|
dest.m00 = m00 + other.m00();
|
|
dest.m01 = m01 + other.m01();
|
|
dest.m02 = m02 + other.m02();
|
|
dest.m10 = m10 + other.m10();
|
|
dest.m11 = m11 + other.m11();
|
|
dest.m12 = m12 + other.m12();
|
|
dest.m20 = m20 + other.m20();
|
|
dest.m21 = m21 + other.m21();
|
|
dest.m22 = m22 + other.m22();
|
|
dest.m30 = m30 + other.m30();
|
|
dest.m31 = m31 + other.m31();
|
|
dest.m32 = m32 + other.m32();
|
|
dest.properties = 0;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Component-wise add <code>this</code> and <code>other</code>.
|
|
*
|
|
* @param other
|
|
* the other addend
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d add(Matrix4x3fc other) {
|
|
return add(other, this);
|
|
}
|
|
|
|
public Matrix4x3d add(Matrix4x3fc other, Matrix4x3d dest) {
|
|
dest.m00 = m00 + other.m00();
|
|
dest.m01 = m01 + other.m01();
|
|
dest.m02 = m02 + other.m02();
|
|
dest.m10 = m10 + other.m10();
|
|
dest.m11 = m11 + other.m11();
|
|
dest.m12 = m12 + other.m12();
|
|
dest.m20 = m20 + other.m20();
|
|
dest.m21 = m21 + other.m21();
|
|
dest.m22 = m22 + other.m22();
|
|
dest.m30 = m30 + other.m30();
|
|
dest.m31 = m31 + other.m31();
|
|
dest.m32 = m32 + other.m32();
|
|
dest.properties = 0;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Component-wise subtract <code>subtrahend</code> from <code>this</code>.
|
|
*
|
|
* @param subtrahend
|
|
* the subtrahend
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d sub(Matrix4x3dc subtrahend) {
|
|
return sub(subtrahend, this);
|
|
}
|
|
|
|
public Matrix4x3d sub(Matrix4x3dc subtrahend, Matrix4x3d dest) {
|
|
dest.m00 = m00 - subtrahend.m00();
|
|
dest.m01 = m01 - subtrahend.m01();
|
|
dest.m02 = m02 - subtrahend.m02();
|
|
dest.m10 = m10 - subtrahend.m10();
|
|
dest.m11 = m11 - subtrahend.m11();
|
|
dest.m12 = m12 - subtrahend.m12();
|
|
dest.m20 = m20 - subtrahend.m20();
|
|
dest.m21 = m21 - subtrahend.m21();
|
|
dest.m22 = m22 - subtrahend.m22();
|
|
dest.m30 = m30 - subtrahend.m30();
|
|
dest.m31 = m31 - subtrahend.m31();
|
|
dest.m32 = m32 - subtrahend.m32();
|
|
dest.properties = 0;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Component-wise subtract <code>subtrahend</code> from <code>this</code>.
|
|
*
|
|
* @param subtrahend
|
|
* the subtrahend
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d sub(Matrix4x3fc subtrahend) {
|
|
return sub(subtrahend, this);
|
|
}
|
|
|
|
public Matrix4x3d sub(Matrix4x3fc subtrahend, Matrix4x3d dest) {
|
|
dest.m00 = m00 - subtrahend.m00();
|
|
dest.m01 = m01 - subtrahend.m01();
|
|
dest.m02 = m02 - subtrahend.m02();
|
|
dest.m10 = m10 - subtrahend.m10();
|
|
dest.m11 = m11 - subtrahend.m11();
|
|
dest.m12 = m12 - subtrahend.m12();
|
|
dest.m20 = m20 - subtrahend.m20();
|
|
dest.m21 = m21 - subtrahend.m21();
|
|
dest.m22 = m22 - subtrahend.m22();
|
|
dest.m30 = m30 - subtrahend.m30();
|
|
dest.m31 = m31 - subtrahend.m31();
|
|
dest.m32 = m32 - subtrahend.m32();
|
|
dest.properties = 0;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Component-wise multiply <code>this</code> by <code>other</code>.
|
|
*
|
|
* @param other
|
|
* the other matrix
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mulComponentWise(Matrix4x3dc other) {
|
|
return mulComponentWise(other, this);
|
|
}
|
|
|
|
public Matrix4x3d mulComponentWise(Matrix4x3dc other, Matrix4x3d dest) {
|
|
dest.m00 = m00 * other.m00();
|
|
dest.m01 = m01 * other.m01();
|
|
dest.m02 = m02 * other.m02();
|
|
dest.m10 = m10 * other.m10();
|
|
dest.m11 = m11 * other.m11();
|
|
dest.m12 = m12 * other.m12();
|
|
dest.m20 = m20 * other.m20();
|
|
dest.m21 = m21 * other.m21();
|
|
dest.m22 = m22 * other.m22();
|
|
dest.m30 = m30 * other.m30();
|
|
dest.m31 = m31 * other.m31();
|
|
dest.m32 = m32 * other.m32();
|
|
dest.properties = 0;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Set the values within this matrix to the supplied double values. The matrix will look like this:<br><br>
|
|
*
|
|
* m00, m10, m20, m30<br>
|
|
* m01, m11, m21, m31<br>
|
|
* m02, m12, m22, m32<br>
|
|
*
|
|
* @param m00
|
|
* the new value of m00
|
|
* @param m01
|
|
* the new value of m01
|
|
* @param m02
|
|
* the new value of m02
|
|
* @param m10
|
|
* the new value of m10
|
|
* @param m11
|
|
* the new value of m11
|
|
* @param m12
|
|
* the new value of m12
|
|
* @param m20
|
|
* the new value of m20
|
|
* @param m21
|
|
* the new value of m21
|
|
* @param m22
|
|
* the new value of m22
|
|
* @param m30
|
|
* the new value of m30
|
|
* @param m31
|
|
* the new value of m31
|
|
* @param m32
|
|
* the new value of m32
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(double m00, double m01, double m02,
|
|
double m10, double m11, double m12,
|
|
double m20, double m21, double m22,
|
|
double m30, double m31, double m32) {
|
|
this.m00 = m00;
|
|
this.m10 = m10;
|
|
this.m20 = m20;
|
|
this.m30 = m30;
|
|
this.m01 = m01;
|
|
this.m11 = m11;
|
|
this.m21 = m21;
|
|
this.m31 = m31;
|
|
this.m02 = m02;
|
|
this.m12 = m12;
|
|
this.m22 = m22;
|
|
this.m32 = m32;
|
|
return determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Set the values in the matrix using a double array that contains the matrix elements in column-major order.
|
|
* <p>
|
|
* The results will look like this:<br><br>
|
|
*
|
|
* 0, 3, 6, 9<br>
|
|
* 1, 4, 7, 10<br>
|
|
* 2, 5, 8, 11<br>
|
|
*
|
|
* @see #set(double[])
|
|
*
|
|
* @param m
|
|
* the array to read the matrix values from
|
|
* @param off
|
|
* the offset into the array
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(double m[], int off) {
|
|
m00 = m[off+0];
|
|
m01 = m[off+1];
|
|
m02 = m[off+2];
|
|
m10 = m[off+3];
|
|
m11 = m[off+4];
|
|
m12 = m[off+5];
|
|
m20 = m[off+6];
|
|
m21 = m[off+7];
|
|
m22 = m[off+8];
|
|
m30 = m[off+9];
|
|
m31 = m[off+10];
|
|
m32 = m[off+11];
|
|
return determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Set the values in the matrix using a double array that contains the matrix elements in column-major order.
|
|
* <p>
|
|
* The results will look like this:<br><br>
|
|
*
|
|
* 0, 3, 6, 9<br>
|
|
* 1, 4, 7, 10<br>
|
|
* 2, 5, 8, 11<br>
|
|
*
|
|
* @see #set(double[], int)
|
|
*
|
|
* @param m
|
|
* the array to read the matrix values from
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(double m[]) {
|
|
return set(m, 0);
|
|
}
|
|
|
|
/**
|
|
* Set the values in the matrix using a float array that contains the matrix elements in column-major order.
|
|
* <p>
|
|
* The results will look like this:<br><br>
|
|
*
|
|
* 0, 3, 6, 9<br>
|
|
* 1, 4, 7, 10<br>
|
|
* 2, 5, 8, 11<br>
|
|
*
|
|
* @see #set(float[])
|
|
*
|
|
* @param m
|
|
* the array to read the matrix values from
|
|
* @param off
|
|
* the offset into the array
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(float m[], int off) {
|
|
m00 = m[off+0];
|
|
m01 = m[off+1];
|
|
m02 = m[off+2];
|
|
m10 = m[off+3];
|
|
m11 = m[off+4];
|
|
m12 = m[off+5];
|
|
m20 = m[off+6];
|
|
m21 = m[off+7];
|
|
m22 = m[off+8];
|
|
m30 = m[off+9];
|
|
m31 = m[off+10];
|
|
m32 = m[off+11];
|
|
return determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Set the values in the matrix using a float array that contains the matrix elements in column-major order.
|
|
* <p>
|
|
* The results will look like this:<br><br>
|
|
*
|
|
* 0, 3, 6, 9<br>
|
|
* 1, 4, 7, 10<br>
|
|
* 2, 5, 8, 11<br>
|
|
*
|
|
* @see #set(float[], int)
|
|
*
|
|
* @param m
|
|
* the array to read the matrix values from
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(float m[]) {
|
|
return set(m, 0);
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 12 double values from the given {@link DoubleBuffer} in column-major order,
|
|
* starting at its current position.
|
|
* <p>
|
|
* The DoubleBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the DoubleBuffer will not be changed by this method.
|
|
*
|
|
* @param buffer
|
|
* the DoubleBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(DoubleBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
|
|
return determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 12 float values from the given {@link FloatBuffer} in column-major order,
|
|
* starting at its current position.
|
|
* <p>
|
|
* The FloatBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the FloatBuffer will not be changed by this method.
|
|
*
|
|
* @param buffer
|
|
* the FloatBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(FloatBuffer buffer) {
|
|
MemUtil.INSTANCE.getf(this, buffer.position(), buffer);
|
|
return determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 12 double values from the given {@link ByteBuffer} in column-major order,
|
|
* starting at its current position.
|
|
* <p>
|
|
* The ByteBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the ByteBuffer will not be changed by this method.
|
|
*
|
|
* @param buffer
|
|
* the ByteBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
|
|
return determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 12 double values from the given {@link DoubleBuffer} in column-major order,
|
|
* starting at the specified absolute buffer position/index.
|
|
* <p>
|
|
* The DoubleBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the DoubleBuffer will not be changed by this method.
|
|
*
|
|
* @param index
|
|
* the absolute position into the DoubleBuffer
|
|
* @param buffer
|
|
* the DoubleBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(int index, DoubleBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, index, buffer);
|
|
return determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 12 float values from the given {@link FloatBuffer} in column-major order,
|
|
* starting at the specified absolute buffer position/index.
|
|
* <p>
|
|
* The FloatBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the FloatBuffer will not be changed by this method.
|
|
*
|
|
* @param index
|
|
* the absolute position into the FloatBuffer
|
|
* @param buffer
|
|
* the FloatBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(int index, FloatBuffer buffer) {
|
|
MemUtil.INSTANCE.getf(this, index, buffer);
|
|
return determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 12 double values from the given {@link ByteBuffer} in column-major order,
|
|
* starting at the specified absolute buffer position/index.
|
|
* <p>
|
|
* The ByteBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the ByteBuffer will not be changed by this method.
|
|
*
|
|
* @param index
|
|
* the absolute position into the ByteBuffer
|
|
* @param buffer
|
|
* the ByteBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set(int index, ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.get(this, index, buffer);
|
|
return determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 12 float values from the given {@link ByteBuffer} in column-major order,
|
|
* starting at its current position.
|
|
* <p>
|
|
* The ByteBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the ByteBuffer will not be changed by this method.
|
|
*
|
|
* @param buffer
|
|
* the ByteBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setFloats(ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.getf(this, buffer.position(), buffer);
|
|
return determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 12 float values from the given {@link ByteBuffer} in column-major order,
|
|
* starting at the specified absolute buffer position/index.
|
|
* <p>
|
|
* The ByteBuffer is expected to contain the values in column-major order.
|
|
* <p>
|
|
* The position of the ByteBuffer will not be changed by this method.
|
|
*
|
|
* @param index
|
|
* the absolute position into the ByteBuffer
|
|
* @param buffer
|
|
* the ByteBuffer to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setFloats(int index, ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.getf(this, index, buffer);
|
|
return determineProperties();
|
|
}
|
|
|
|
/**
|
|
* Set the values of this matrix by reading 12 double values from off-heap memory in column-major order,
|
|
* starting at the given address.
|
|
* <p>
|
|
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
|
|
* <p>
|
|
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
|
|
*
|
|
* @param address
|
|
* the off-heap memory address to read the matrix values from in column-major order
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setFromAddress(long address) {
|
|
if (Options.NO_UNSAFE)
|
|
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
|
|
MemUtil.MemUtilUnsafe.get(this, address);
|
|
return determineProperties();
|
|
}
|
|
|
|
public double determinant() {
|
|
return (m00 * m11 - m01 * m10) * m22
|
|
+ (m02 * m10 - m00 * m12) * m21
|
|
+ (m01 * m12 - m02 * m11) * m20;
|
|
}
|
|
|
|
/**
|
|
* Invert this matrix.
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d invert() {
|
|
return invert(this);
|
|
}
|
|
|
|
public Matrix4x3d invert(Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.identity();
|
|
else if ((properties & PROPERTY_ORTHONORMAL) != 0)
|
|
return invertOrthonormal(dest);
|
|
return invertGeneric(dest);
|
|
}
|
|
private Matrix4x3d invertGeneric(Matrix4x3d dest) {
|
|
double m11m00 = m00 * m11, m10m01 = m01 * m10, m10m02 = m02 * m10;
|
|
double m12m00 = m00 * m12, m12m01 = m01 * m12, m11m02 = m02 * m11;
|
|
double s = 1.0 / ((m11m00 - m10m01) * m22 + (m10m02 - m12m00) * m21 + (m12m01 - m11m02) * m20);
|
|
double m10m22 = m10 * m22, m10m21 = m10 * m21, m11m22 = m11 * m22;
|
|
double m11m20 = m11 * m20, m12m21 = m12 * m21, m12m20 = m12 * m20;
|
|
double m20m02 = m20 * m02, m20m01 = m20 * m01, m21m02 = m21 * m02;
|
|
double m21m00 = m21 * m00, m22m01 = m22 * m01, m22m00 = m22 * m00;
|
|
double nm00 = (m11m22 - m12m21) * s;
|
|
double nm01 = (m21m02 - m22m01) * s;
|
|
double nm02 = (m12m01 - m11m02) * s;
|
|
double nm10 = (m12m20 - m10m22) * s;
|
|
double nm11 = (m22m00 - m20m02) * s;
|
|
double nm12 = (m10m02 - m12m00) * s;
|
|
double nm20 = (m10m21 - m11m20) * s;
|
|
double nm21 = (m20m01 - m21m00) * s;
|
|
double nm22 = (m11m00 - m10m01) * s;
|
|
double nm30 = (m10m22 * m31 - m10m21 * m32 + m11m20 * m32 - m11m22 * m30 + m12m21 * m30 - m12m20 * m31) * s;
|
|
double nm31 = (m20m02 * m31 - m20m01 * m32 + m21m00 * m32 - m21m02 * m30 + m22m01 * m30 - m22m00 * m31) * s;
|
|
double nm32 = (m11m02 * m30 - m12m01 * m30 + m12m00 * m31 - m10m02 * m31 + m10m01 * m32 - m11m00 * m32) * s;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
dest.m22 = nm22;
|
|
dest.m30 = nm30;
|
|
dest.m31 = nm31;
|
|
dest.m32 = nm32;
|
|
dest.properties = 0;
|
|
return dest;
|
|
}
|
|
private Matrix4x3d invertOrthonormal(Matrix4x3d dest) {
|
|
double nm30 = -(m00 * m30 + m01 * m31 + m02 * m32);
|
|
double nm31 = -(m10 * m30 + m11 * m31 + m12 * m32);
|
|
double nm32 = -(m20 * m30 + m21 * m31 + m22 * m32);
|
|
double m01 = this.m01;
|
|
double m02 = this.m02;
|
|
double m12 = this.m12;
|
|
dest.m00 = m00;
|
|
dest.m01 = m10;
|
|
dest.m02 = m20;
|
|
dest.m10 = m01;
|
|
dest.m11 = m11;
|
|
dest.m12 = m21;
|
|
dest.m20 = m02;
|
|
dest.m21 = m12;
|
|
dest.m22 = m22;
|
|
dest.m30 = nm30;
|
|
dest.m31 = nm31;
|
|
dest.m32 = nm32;
|
|
dest.properties = PROPERTY_ORTHONORMAL;
|
|
return dest;
|
|
}
|
|
|
|
public Matrix4x3d invertOrtho(Matrix4x3d dest) {
|
|
double invM00 = 1.0 / m00;
|
|
double invM11 = 1.0 / m11;
|
|
double invM22 = 1.0 / m22;
|
|
dest.set(invM00, 0, 0,
|
|
0, invM11, 0,
|
|
0, 0, invM22,
|
|
-m30 * invM00, -m31 * invM11, -m32 * invM22);
|
|
dest.properties = 0;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Invert <code>this</code> orthographic projection matrix.
|
|
* <p>
|
|
* This method can be used to quickly obtain the inverse of an orthographic projection matrix.
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d invertOrtho() {
|
|
return invertOrtho(this);
|
|
}
|
|
|
|
/**
|
|
* Transpose only the left 3x3 submatrix of this matrix and set the rest of the matrix elements to identity.
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d transpose3x3() {
|
|
return transpose3x3(this);
|
|
}
|
|
|
|
public Matrix4x3d transpose3x3(Matrix4x3d dest) {
|
|
double nm00 = m00;
|
|
double nm01 = m10;
|
|
double nm02 = m20;
|
|
double nm10 = m01;
|
|
double nm11 = m11;
|
|
double nm12 = m21;
|
|
double nm20 = m02;
|
|
double nm21 = m12;
|
|
double nm22 = m22;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
dest.m22 = nm22;
|
|
dest.properties = properties;
|
|
return dest;
|
|
}
|
|
|
|
public Matrix3d transpose3x3(Matrix3d dest) {
|
|
dest.m00(m00);
|
|
dest.m01(m10);
|
|
dest.m02(m20);
|
|
dest.m10(m01);
|
|
dest.m11(m11);
|
|
dest.m12(m21);
|
|
dest.m20(m02);
|
|
dest.m21(m12);
|
|
dest.m22(m22);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a simple translation matrix.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional translation.
|
|
*
|
|
* @param x
|
|
* the offset to translate in x
|
|
* @param y
|
|
* the offset to translate in y
|
|
* @param z
|
|
* the offset to translate in z
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translation(double x, double y, double z) {
|
|
if ((properties & PROPERTY_IDENTITY) == 0)
|
|
this.identity();
|
|
m30 = x;
|
|
m31 = y;
|
|
m32 = z;
|
|
properties = PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a simple translation matrix.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional translation.
|
|
*
|
|
* @param offset
|
|
* the offsets in x, y and z to translate
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translation(Vector3fc offset) {
|
|
return translation(offset.x(), offset.y(), offset.z());
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a simple translation matrix.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional translation.
|
|
*
|
|
* @param offset
|
|
* the offsets in x, y and z to translate
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translation(Vector3dc offset) {
|
|
return translation(offset.x(), offset.y(), offset.z());
|
|
}
|
|
|
|
/**
|
|
* Set only the translation components <code>(m30, m31, m32)</code> of this matrix to the given values <code>(x, y, z)</code>.
|
|
* <p>
|
|
* To build a translation matrix instead, use {@link #translation(double, double, double)}.
|
|
* To apply a translation, use {@link #translate(double, double, double)}.
|
|
*
|
|
* @see #translation(double, double, double)
|
|
* @see #translate(double, double, double)
|
|
*
|
|
* @param x
|
|
* the units to translate in x
|
|
* @param y
|
|
* the units to translate in y
|
|
* @param z
|
|
* the units to translate in z
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setTranslation(double x, double y, double z) {
|
|
m30 = x;
|
|
m31 = y;
|
|
m32 = z;
|
|
properties &= ~(PROPERTY_IDENTITY);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set only the translation components <code>(m30, m31, m32)</code> of this matrix to the given values <code>(xyz.x, xyz.y, xyz.z)</code>.
|
|
* <p>
|
|
* To build a translation matrix instead, use {@link #translation(Vector3dc)}.
|
|
* To apply a translation, use {@link #translate(Vector3dc)}.
|
|
*
|
|
* @see #translation(Vector3dc)
|
|
* @see #translate(Vector3dc)
|
|
*
|
|
* @param xyz
|
|
* the units to translate in <code>(x, y, z)</code>
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setTranslation(Vector3dc xyz) {
|
|
return setTranslation(xyz.x(), xyz.y(), xyz.z());
|
|
}
|
|
|
|
public Vector3d getTranslation(Vector3d dest) {
|
|
dest.x = m30;
|
|
dest.y = m31;
|
|
dest.z = m32;
|
|
return dest;
|
|
}
|
|
|
|
public Vector3d getScale(Vector3d dest) {
|
|
dest.x = Math.sqrt(m00 * m00 + m01 * m01 + m02 * m02);
|
|
dest.y = Math.sqrt(m10 * m10 + m11 * m11 + m12 * m12);
|
|
dest.z = Math.sqrt(m20 * m20 + m21 * m21 + m22 * m22);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Return a string representation of this matrix.
|
|
* <p>
|
|
* This method creates a new {@link DecimalFormat} on every invocation with the format string "<code>0.000E0;-</code>".
|
|
*
|
|
* @return the string representation
|
|
*/
|
|
public String toString() {
|
|
String str = toString(Options.NUMBER_FORMAT);
|
|
StringBuffer res = new StringBuffer();
|
|
int eIndex = Integer.MIN_VALUE;
|
|
for (int i = 0; i < str.length(); i++) {
|
|
char c = str.charAt(i);
|
|
if (c == 'E') {
|
|
eIndex = i;
|
|
} else if (c == ' ' && eIndex == i - 1) {
|
|
// workaround Java 1.4 DecimalFormat bug
|
|
res.append('+');
|
|
continue;
|
|
} else if (Character.isDigit(c) && eIndex == i - 1) {
|
|
res.append('+');
|
|
}
|
|
res.append(c);
|
|
}
|
|
return res.toString();
|
|
}
|
|
|
|
/**
|
|
* Return a string representation of this matrix by formatting the matrix elements with the given {@link NumberFormat}.
|
|
*
|
|
* @param formatter
|
|
* the {@link NumberFormat} used to format the matrix values with
|
|
* @return the string representation
|
|
*/
|
|
public String toString(NumberFormat formatter) {
|
|
return Runtime.format(m00, formatter) + " " + Runtime.format(m10, formatter) + " " + Runtime.format(m20, formatter) + " " + Runtime.format(m30, formatter) + "\n"
|
|
+ Runtime.format(m01, formatter) + " " + Runtime.format(m11, formatter) + " " + Runtime.format(m21, formatter) + " " + Runtime.format(m31, formatter) + "\n"
|
|
+ Runtime.format(m02, formatter) + " " + Runtime.format(m12, formatter) + " " + Runtime.format(m22, formatter) + " " + Runtime.format(m32, formatter) + "\n";
|
|
}
|
|
|
|
/**
|
|
* Get the current values of <code>this</code> matrix and store them into
|
|
* <code>dest</code>.
|
|
* <p>
|
|
* This is the reverse method of {@link #set(Matrix4x3dc)} and allows to obtain
|
|
* intermediate calculation results when chaining multiple transformations.
|
|
*
|
|
* @see #set(Matrix4x3dc)
|
|
*
|
|
* @param dest
|
|
* the destination matrix
|
|
* @return the passed in destination
|
|
*/
|
|
public Matrix4x3d get(Matrix4x3d dest) {
|
|
return dest.set(this);
|
|
}
|
|
|
|
public Quaternionf getUnnormalizedRotation(Quaternionf dest) {
|
|
return dest.setFromUnnormalized(this);
|
|
}
|
|
|
|
public Quaternionf getNormalizedRotation(Quaternionf dest) {
|
|
return dest.setFromNormalized(this);
|
|
}
|
|
|
|
public Quaterniond getUnnormalizedRotation(Quaterniond dest) {
|
|
return dest.setFromUnnormalized(this);
|
|
}
|
|
|
|
public Quaterniond getNormalizedRotation(Quaterniond dest) {
|
|
return dest.setFromNormalized(this);
|
|
}
|
|
|
|
public DoubleBuffer get(DoubleBuffer buffer) {
|
|
return get(buffer.position(), buffer);
|
|
}
|
|
|
|
public DoubleBuffer get(int index, DoubleBuffer buffer) {
|
|
MemUtil.INSTANCE.put(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
public FloatBuffer get(FloatBuffer buffer) {
|
|
return get(buffer.position(), buffer);
|
|
}
|
|
|
|
public FloatBuffer get(int index, FloatBuffer buffer) {
|
|
MemUtil.INSTANCE.putf(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
public ByteBuffer get(ByteBuffer buffer) {
|
|
return get(buffer.position(), buffer);
|
|
}
|
|
|
|
public ByteBuffer get(int index, ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.put(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
public ByteBuffer getFloats(ByteBuffer buffer) {
|
|
return getFloats(buffer.position(), buffer);
|
|
}
|
|
|
|
public ByteBuffer getFloats(int index, ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.putf(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
public Matrix4x3dc getToAddress(long address) {
|
|
if (Options.NO_UNSAFE)
|
|
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
|
|
MemUtil.MemUtilUnsafe.put(this, address);
|
|
return this;
|
|
}
|
|
|
|
public double[] get(double[] arr, int offset) {
|
|
arr[offset+0] = m00;
|
|
arr[offset+1] = m01;
|
|
arr[offset+2] = m02;
|
|
arr[offset+3] = m10;
|
|
arr[offset+4] = m11;
|
|
arr[offset+5] = m12;
|
|
arr[offset+6] = m20;
|
|
arr[offset+7] = m21;
|
|
arr[offset+8] = m22;
|
|
arr[offset+9] = m30;
|
|
arr[offset+10] = m31;
|
|
arr[offset+11] = m32;
|
|
return arr;
|
|
}
|
|
|
|
public double[] get(double[] arr) {
|
|
return get(arr, 0);
|
|
}
|
|
|
|
public float[] get(float[] arr, int offset) {
|
|
arr[offset+0] = (float)m00;
|
|
arr[offset+1] = (float)m01;
|
|
arr[offset+2] = (float)m02;
|
|
arr[offset+3] = (float)m10;
|
|
arr[offset+4] = (float)m11;
|
|
arr[offset+5] = (float)m12;
|
|
arr[offset+6] = (float)m20;
|
|
arr[offset+7] = (float)m21;
|
|
arr[offset+8] = (float)m22;
|
|
arr[offset+9] = (float)m30;
|
|
arr[offset+10] = (float)m31;
|
|
arr[offset+11] = (float)m32;
|
|
return arr;
|
|
}
|
|
|
|
public float[] get(float[] arr) {
|
|
return get(arr, 0);
|
|
}
|
|
|
|
public float[] get4x4(float[] arr, int offset) {
|
|
MemUtil.INSTANCE.copy4x4(this, arr, offset);
|
|
return arr;
|
|
}
|
|
|
|
public float[] get4x4(float[] arr) {
|
|
return get4x4(arr, 0);
|
|
}
|
|
|
|
public double[] get4x4(double[] arr, int offset) {
|
|
MemUtil.INSTANCE.copy4x4(this, arr, offset);
|
|
return arr;
|
|
}
|
|
|
|
public double[] get4x4(double[] arr) {
|
|
return get4x4(arr, 0);
|
|
}
|
|
|
|
public DoubleBuffer get4x4(DoubleBuffer buffer) {
|
|
return get4x4(buffer.position(), buffer);
|
|
}
|
|
|
|
public DoubleBuffer get4x4(int index, DoubleBuffer buffer) {
|
|
MemUtil.INSTANCE.put4x4(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
public ByteBuffer get4x4(ByteBuffer buffer) {
|
|
return get4x4(buffer.position(), buffer);
|
|
}
|
|
|
|
public ByteBuffer get4x4(int index, ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.put4x4(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
public DoubleBuffer getTransposed(DoubleBuffer buffer) {
|
|
return getTransposed(buffer.position(), buffer);
|
|
}
|
|
|
|
public DoubleBuffer getTransposed(int index, DoubleBuffer buffer) {
|
|
MemUtil.INSTANCE.putTransposed(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
public ByteBuffer getTransposed(ByteBuffer buffer) {
|
|
return getTransposed(buffer.position(), buffer);
|
|
}
|
|
|
|
public ByteBuffer getTransposed(int index, ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.putTransposed(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
public FloatBuffer getTransposed(FloatBuffer buffer) {
|
|
return getTransposed(buffer.position(), buffer);
|
|
}
|
|
|
|
public FloatBuffer getTransposed(int index, FloatBuffer buffer) {
|
|
MemUtil.INSTANCE.putfTransposed(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
public ByteBuffer getTransposedFloats(ByteBuffer buffer) {
|
|
return getTransposed(buffer.position(), buffer);
|
|
}
|
|
|
|
public ByteBuffer getTransposedFloats(int index, ByteBuffer buffer) {
|
|
MemUtil.INSTANCE.putfTransposed(this, index, buffer);
|
|
return buffer;
|
|
}
|
|
|
|
public double[] getTransposed(double[] arr, int offset) {
|
|
arr[offset+0] = m00;
|
|
arr[offset+1] = m10;
|
|
arr[offset+2] = m20;
|
|
arr[offset+3] = m30;
|
|
arr[offset+4] = m01;
|
|
arr[offset+5] = m11;
|
|
arr[offset+6] = m21;
|
|
arr[offset+7] = m31;
|
|
arr[offset+8] = m02;
|
|
arr[offset+9] = m12;
|
|
arr[offset+10] = m22;
|
|
arr[offset+11] = m32;
|
|
return arr;
|
|
}
|
|
|
|
public double[] getTransposed(double[] arr) {
|
|
return getTransposed(arr, 0);
|
|
}
|
|
|
|
/**
|
|
* Set all the values within this matrix to 0.
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d zero() {
|
|
m00 = 0.0;
|
|
m01 = 0.0;
|
|
m02 = 0.0;
|
|
m10 = 0.0;
|
|
m11 = 0.0;
|
|
m12 = 0.0;
|
|
m20 = 0.0;
|
|
m21 = 0.0;
|
|
m22 = 0.0;
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = 0.0;
|
|
properties = 0;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional scaling.
|
|
* <p>
|
|
* In order to post-multiply a scaling transformation directly to a
|
|
* matrix, use {@link #scale(double) scale()} instead.
|
|
*
|
|
* @see #scale(double)
|
|
*
|
|
* @param factor
|
|
* the scale factor in x, y and z
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d scaling(double factor) {
|
|
return scaling(factor, factor, factor);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a simple scale matrix.
|
|
*
|
|
* @param x
|
|
* the scale in x
|
|
* @param y
|
|
* the scale in y
|
|
* @param z
|
|
* the scale in z
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d scaling(double x, double y, double z) {
|
|
if ((properties & PROPERTY_IDENTITY) == 0)
|
|
this.identity();
|
|
m00 = x;
|
|
m11 = y;
|
|
m22 = z;
|
|
boolean one = Math.absEqualsOne(x) && Math.absEqualsOne(y) && Math.absEqualsOne(z);
|
|
properties = one ? PROPERTY_ORTHONORMAL : 0;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a simple scale matrix which scales the base axes by
|
|
* <code>xyz.x</code>, <code>xyz.y</code> and <code>xyz.z</code>, respectively.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional scaling.
|
|
* <p>
|
|
* In order to post-multiply a scaling transformation directly to a
|
|
* matrix use {@link #scale(Vector3dc) scale()} instead.
|
|
*
|
|
* @see #scale(Vector3dc)
|
|
*
|
|
* @param xyz
|
|
* the scale in x, y and z, respectively
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d scaling(Vector3dc xyz) {
|
|
return scaling(xyz.x(), xyz.y(), xyz.z());
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation matrix which rotates the given radians about a given axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* From <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">Wikipedia</a>
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @param x
|
|
* the x-coordinate of the axis to rotate about
|
|
* @param y
|
|
* the y-coordinate of the axis to rotate about
|
|
* @param z
|
|
* the z-coordinate of the axis to rotate about
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotation(double angle, double x, double y, double z) {
|
|
if (y == 0.0 && z == 0.0 && Math.absEqualsOne(x))
|
|
return rotationX(x * angle);
|
|
else if (x == 0.0 && z == 0.0 && Math.absEqualsOne(y))
|
|
return rotationY(y * angle);
|
|
else if (x == 0.0 && y == 0.0 && Math.absEqualsOne(z))
|
|
return rotationZ(z * angle);
|
|
return rotationInternal(angle, x, y, z);
|
|
}
|
|
private Matrix4x3d rotationInternal(double angle, double x, double y, double z) {
|
|
double sin = Math.sin(angle);
|
|
double cos = Math.cosFromSin(sin, angle);
|
|
double C = 1.0 - cos;
|
|
double xy = x * y, xz = x * z, yz = y * z;
|
|
m00 = cos + x * x * C;
|
|
m01 = xy * C + z * sin;
|
|
m02 = xz * C - y * sin;
|
|
m10 = xy * C - z * sin;
|
|
m11 = cos + y * y * C;
|
|
m12 = yz * C + x * sin;
|
|
m20 = xz * C + y * sin;
|
|
m21 = yz * C - x * sin;
|
|
m22 = cos + z * z * C;
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = 0.0;
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation transformation about the X axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotationX(double ang) {
|
|
double sin, cos;
|
|
sin = Math.sin(ang);
|
|
cos = Math.cosFromSin(sin, ang);
|
|
m00 = 1.0;
|
|
m01 = 0.0;
|
|
m02 = 0.0;
|
|
m10 = 0.0;
|
|
m11 = cos;
|
|
m12 = sin;
|
|
m20 = 0.0;
|
|
m21 = -sin;
|
|
m22 = cos;
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = 0.0;
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation transformation about the Y axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotationY(double ang) {
|
|
double sin, cos;
|
|
sin = Math.sin(ang);
|
|
cos = Math.cosFromSin(sin, ang);
|
|
m00 = cos;
|
|
m01 = 0.0;
|
|
m02 = -sin;
|
|
m10 = 0.0;
|
|
m11 = 1.0;
|
|
m12 = 0.0;
|
|
m20 = sin;
|
|
m21 = 0.0;
|
|
m22 = cos;
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = 0.0;
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation transformation about the Z axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotationZ(double ang) {
|
|
double sin, cos;
|
|
sin = Math.sin(ang);
|
|
cos = Math.cosFromSin(sin, ang);
|
|
m00 = cos;
|
|
m01 = sin;
|
|
m02 = 0.0;
|
|
m10 = -sin;
|
|
m11 = cos;
|
|
m12 = 0.0;
|
|
m20 = 0.0;
|
|
m21 = 0.0;
|
|
m22 = 1.0;
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = 0.0;
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation of <code>angleX</code> radians about the X axis, followed by a rotation
|
|
* of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleZ</code> radians about the Z axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>rotationX(angleX).rotateY(angleY).rotateZ(angleZ)</code>
|
|
*
|
|
* @param angleX
|
|
* the angle to rotate about X
|
|
* @param angleY
|
|
* the angle to rotate about Y
|
|
* @param angleZ
|
|
* the angle to rotate about Z
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotationXYZ(double angleX, double angleY, double angleZ) {
|
|
double sinX = Math.sin(angleX);
|
|
double cosX = Math.cosFromSin(sinX, angleX);
|
|
double sinY = Math.sin(angleY);
|
|
double cosY = Math.cosFromSin(sinY, angleY);
|
|
double sinZ = Math.sin(angleZ);
|
|
double cosZ = Math.cosFromSin(sinZ, angleZ);
|
|
double m_sinX = -sinX;
|
|
double m_sinY = -sinY;
|
|
double m_sinZ = -sinZ;
|
|
|
|
// rotateX
|
|
double nm11 = cosX;
|
|
double nm12 = sinX;
|
|
double nm21 = m_sinX;
|
|
double nm22 = cosX;
|
|
// rotateY
|
|
double nm00 = cosY;
|
|
double nm01 = nm21 * m_sinY;
|
|
double nm02 = nm22 * m_sinY;
|
|
m20 = sinY;
|
|
m21 = nm21 * cosY;
|
|
m22 = nm22 * cosY;
|
|
// rotateZ
|
|
m00 = nm00 * cosZ;
|
|
m01 = nm01 * cosZ + nm11 * sinZ;
|
|
m02 = nm02 * cosZ + nm12 * sinZ;
|
|
m10 = nm00 * m_sinZ;
|
|
m11 = nm01 * m_sinZ + nm11 * cosZ;
|
|
m12 = nm02 * m_sinZ + nm12 * cosZ;
|
|
// set last column to identity
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = 0.0;
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation
|
|
* of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleX</code> radians about the X axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>rotationZ(angleZ).rotateY(angleY).rotateX(angleX)</code>
|
|
*
|
|
* @param angleZ
|
|
* the angle to rotate about Z
|
|
* @param angleY
|
|
* the angle to rotate about Y
|
|
* @param angleX
|
|
* the angle to rotate about X
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotationZYX(double angleZ, double angleY, double angleX) {
|
|
double sinX = Math.sin(angleX);
|
|
double cosX = Math.cosFromSin(sinX, angleX);
|
|
double sinY = Math.sin(angleY);
|
|
double cosY = Math.cosFromSin(sinY, angleY);
|
|
double sinZ = Math.sin(angleZ);
|
|
double cosZ = Math.cosFromSin(sinZ, angleZ);
|
|
double m_sinZ = -sinZ;
|
|
double m_sinY = -sinY;
|
|
double m_sinX = -sinX;
|
|
|
|
// rotateZ
|
|
double nm00 = cosZ;
|
|
double nm01 = sinZ;
|
|
double nm10 = m_sinZ;
|
|
double nm11 = cosZ;
|
|
// rotateY
|
|
double nm20 = nm00 * sinY;
|
|
double nm21 = nm01 * sinY;
|
|
double nm22 = cosY;
|
|
m00 = nm00 * cosY;
|
|
m01 = nm01 * cosY;
|
|
m02 = m_sinY;
|
|
// rotateX
|
|
m10 = nm10 * cosX + nm20 * sinX;
|
|
m11 = nm11 * cosX + nm21 * sinX;
|
|
m12 = nm22 * sinX;
|
|
m20 = nm10 * m_sinX + nm20 * cosX;
|
|
m21 = nm11 * m_sinX + nm21 * cosX;
|
|
m22 = nm22 * cosX;
|
|
// set last column to identity
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = 0.0;
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation of <code>angleY</code> radians about the Y axis, followed by a rotation
|
|
* of <code>angleX</code> radians about the X axis and followed by a rotation of <code>angleZ</code> radians about the Z axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>rotationY(angleY).rotateX(angleX).rotateZ(angleZ)</code>
|
|
*
|
|
* @param angleY
|
|
* the angle to rotate about Y
|
|
* @param angleX
|
|
* the angle to rotate about X
|
|
* @param angleZ
|
|
* the angle to rotate about Z
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotationYXZ(double angleY, double angleX, double angleZ) {
|
|
double sinX = Math.sin(angleX);
|
|
double cosX = Math.cosFromSin(sinX, angleX);
|
|
double sinY = Math.sin(angleY);
|
|
double cosY = Math.cosFromSin(sinY, angleY);
|
|
double sinZ = Math.sin(angleZ);
|
|
double cosZ = Math.cosFromSin(sinZ, angleZ);
|
|
double m_sinY = -sinY;
|
|
double m_sinX = -sinX;
|
|
double m_sinZ = -sinZ;
|
|
|
|
// rotateY
|
|
double nm00 = cosY;
|
|
double nm02 = m_sinY;
|
|
double nm20 = sinY;
|
|
double nm22 = cosY;
|
|
// rotateX
|
|
double nm10 = nm20 * sinX;
|
|
double nm11 = cosX;
|
|
double nm12 = nm22 * sinX;
|
|
m20 = nm20 * cosX;
|
|
m21 = m_sinX;
|
|
m22 = nm22 * cosX;
|
|
// rotateZ
|
|
m00 = nm00 * cosZ + nm10 * sinZ;
|
|
m01 = nm11 * sinZ;
|
|
m02 = nm02 * cosZ + nm12 * sinZ;
|
|
m10 = nm00 * m_sinZ + nm10 * cosZ;
|
|
m11 = nm11 * cosZ;
|
|
m12 = nm02 * m_sinZ + nm12 * cosZ;
|
|
// set last column to identity
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = 0.0;
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set only the left 3x3 submatrix of this matrix to a rotation of <code>angleX</code> radians about the X axis, followed by a rotation
|
|
* of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleZ</code> radians about the Z axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
*
|
|
* @param angleX
|
|
* the angle to rotate about X
|
|
* @param angleY
|
|
* the angle to rotate about Y
|
|
* @param angleZ
|
|
* the angle to rotate about Z
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setRotationXYZ(double angleX, double angleY, double angleZ) {
|
|
double sinX = Math.sin(angleX);
|
|
double cosX = Math.cosFromSin(sinX, angleX);
|
|
double sinY = Math.sin(angleY);
|
|
double cosY = Math.cosFromSin(sinY, angleY);
|
|
double sinZ = Math.sin(angleZ);
|
|
double cosZ = Math.cosFromSin(sinZ, angleZ);
|
|
double m_sinX = -sinX;
|
|
double m_sinY = -sinY;
|
|
double m_sinZ = -sinZ;
|
|
|
|
// rotateX
|
|
double nm11 = cosX;
|
|
double nm12 = sinX;
|
|
double nm21 = m_sinX;
|
|
double nm22 = cosX;
|
|
// rotateY
|
|
double nm00 = cosY;
|
|
double nm01 = nm21 * m_sinY;
|
|
double nm02 = nm22 * m_sinY;
|
|
m20 = sinY;
|
|
m21 = nm21 * cosY;
|
|
m22 = nm22 * cosY;
|
|
// rotateZ
|
|
m00 = nm00 * cosZ;
|
|
m01 = nm01 * cosZ + nm11 * sinZ;
|
|
m02 = nm02 * cosZ + nm12 * sinZ;
|
|
m10 = nm00 * m_sinZ;
|
|
m11 = nm01 * m_sinZ + nm11 * cosZ;
|
|
m12 = nm02 * m_sinZ + nm12 * cosZ;
|
|
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set only the left 3x3 submatrix of this matrix to a rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation
|
|
* of <code>angleY</code> radians about the Y axis and followed by a rotation of <code>angleX</code> radians about the X axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
*
|
|
* @param angleZ
|
|
* the angle to rotate about Z
|
|
* @param angleY
|
|
* the angle to rotate about Y
|
|
* @param angleX
|
|
* the angle to rotate about X
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setRotationZYX(double angleZ, double angleY, double angleX) {
|
|
double sinX = Math.sin(angleX);
|
|
double cosX = Math.cosFromSin(sinX, angleX);
|
|
double sinY = Math.sin(angleY);
|
|
double cosY = Math.cosFromSin(sinY, angleY);
|
|
double sinZ = Math.sin(angleZ);
|
|
double cosZ = Math.cosFromSin(sinZ, angleZ);
|
|
double m_sinZ = -sinZ;
|
|
double m_sinY = -sinY;
|
|
double m_sinX = -sinX;
|
|
|
|
// rotateZ
|
|
double nm00 = cosZ;
|
|
double nm01 = sinZ;
|
|
double nm10 = m_sinZ;
|
|
double nm11 = cosZ;
|
|
// rotateY
|
|
double nm20 = nm00 * sinY;
|
|
double nm21 = nm01 * sinY;
|
|
double nm22 = cosY;
|
|
m00 = nm00 * cosY;
|
|
m01 = nm01 * cosY;
|
|
m02 = m_sinY;
|
|
// rotateX
|
|
m10 = nm10 * cosX + nm20 * sinX;
|
|
m11 = nm11 * cosX + nm21 * sinX;
|
|
m12 = nm22 * sinX;
|
|
m20 = nm10 * m_sinX + nm20 * cosX;
|
|
m21 = nm11 * m_sinX + nm21 * cosX;
|
|
m22 = nm22 * cosX;
|
|
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set only the left 3x3 submatrix of this matrix to a rotation of <code>angleY</code> radians about the Y axis, followed by a rotation
|
|
* of <code>angleX</code> radians about the X axis and followed by a rotation of <code>angleZ</code> radians about the Z axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
*
|
|
* @param angleY
|
|
* the angle to rotate about Y
|
|
* @param angleX
|
|
* the angle to rotate about X
|
|
* @param angleZ
|
|
* the angle to rotate about Z
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setRotationYXZ(double angleY, double angleX, double angleZ) {
|
|
double sinX = Math.sin(angleX);
|
|
double cosX = Math.cosFromSin(sinX, angleX);
|
|
double sinY = Math.sin(angleY);
|
|
double cosY = Math.cosFromSin(sinY, angleY);
|
|
double sinZ = Math.sin(angleZ);
|
|
double cosZ = Math.cosFromSin(sinZ, angleZ);
|
|
double m_sinY = -sinY;
|
|
double m_sinX = -sinX;
|
|
double m_sinZ = -sinZ;
|
|
|
|
// rotateY
|
|
double nm00 = cosY;
|
|
double nm02 = m_sinY;
|
|
double nm20 = sinY;
|
|
double nm22 = cosY;
|
|
// rotateX
|
|
double nm10 = nm20 * sinX;
|
|
double nm11 = cosX;
|
|
double nm12 = nm22 * sinX;
|
|
m20 = nm20 * cosX;
|
|
m21 = m_sinX;
|
|
m22 = nm22 * cosX;
|
|
// rotateZ
|
|
m00 = nm00 * cosZ + nm10 * sinZ;
|
|
m01 = nm11 * sinZ;
|
|
m02 = nm02 * cosZ + nm12 * sinZ;
|
|
m10 = nm00 * m_sinZ + nm10 * cosZ;
|
|
m11 = nm11 * cosZ;
|
|
m12 = nm02 * m_sinZ + nm12 * cosZ;
|
|
properties &= ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation matrix which rotates the given radians about a given axis.
|
|
* <p>
|
|
* The axis described by the <code>axis</code> vector needs to be a unit vector.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @param axis
|
|
* the axis to rotate about
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotation(double angle, Vector3dc axis) {
|
|
return rotation(angle, axis.x(), axis.y(), axis.z());
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation matrix which rotates the given radians about a given axis.
|
|
* <p>
|
|
* The axis described by the <code>axis</code> vector needs to be a unit vector.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @param axis
|
|
* the axis to rotate about
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotation(double angle, Vector3fc axis) {
|
|
return rotation(angle, axis.x(), axis.y(), axis.z());
|
|
}
|
|
|
|
public Vector4d transform(Vector4d v) {
|
|
return v.mul(this);
|
|
}
|
|
|
|
public Vector4d transform(Vector4dc v, Vector4d dest) {
|
|
return v.mul(this, dest);
|
|
}
|
|
|
|
public Vector3d transformPosition(Vector3d v) {
|
|
v.set(m00 * v.x + m10 * v.y + m20 * v.z + m30,
|
|
m01 * v.x + m11 * v.y + m21 * v.z + m31,
|
|
m02 * v.x + m12 * v.y + m22 * v.z + m32);
|
|
return v;
|
|
}
|
|
|
|
public Vector3d transformPosition(Vector3dc v, Vector3d dest) {
|
|
dest.set(m00 * v.x() + m10 * v.y() + m20 * v.z() + m30,
|
|
m01 * v.x() + m11 * v.y() + m21 * v.z() + m31,
|
|
m02 * v.x() + m12 * v.y() + m22 * v.z() + m32);
|
|
return dest;
|
|
}
|
|
|
|
public Vector3d transformDirection(Vector3d v) {
|
|
v.set(m00 * v.x + m10 * v.y + m20 * v.z,
|
|
m01 * v.x + m11 * v.y + m21 * v.z,
|
|
m02 * v.x + m12 * v.y + m22 * v.z);
|
|
return v;
|
|
}
|
|
|
|
public Vector3d transformDirection(Vector3dc v, Vector3d dest) {
|
|
dest.set(m00 * v.x() + m10 * v.y() + m20 * v.z(),
|
|
m01 * v.x() + m11 * v.y() + m21 * v.z(),
|
|
m02 * v.x() + m12 * v.y() + m22 * v.z());
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Set the left 3x3 submatrix of this {@link Matrix4x3d} to the given {@link Matrix3dc} and don't change the other elements.
|
|
*
|
|
* @param mat
|
|
* the 3x3 matrix
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set3x3(Matrix3dc mat) {
|
|
m00 = mat.m00();
|
|
m01 = mat.m01();
|
|
m02 = mat.m02();
|
|
m10 = mat.m10();
|
|
m11 = mat.m11();
|
|
m12 = mat.m12();
|
|
m20 = mat.m20();
|
|
m21 = mat.m21();
|
|
m22 = mat.m22();
|
|
properties = 0;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set the left 3x3 submatrix of this {@link Matrix4x3d} to the given {@link Matrix3fc} and don't change the other elements.
|
|
*
|
|
* @param mat
|
|
* the 3x3 matrix
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d set3x3(Matrix3fc mat) {
|
|
m00 = mat.m00();
|
|
m01 = mat.m01();
|
|
m02 = mat.m02();
|
|
m10 = mat.m10();
|
|
m11 = mat.m11();
|
|
m12 = mat.m12();
|
|
m20 = mat.m20();
|
|
m21 = mat.m21();
|
|
m22 = mat.m22();
|
|
properties = 0;
|
|
return this;
|
|
}
|
|
|
|
public Matrix4x3d scale(Vector3dc xyz, Matrix4x3d dest) {
|
|
return scale(xyz.x(), xyz.y(), xyz.z(), dest);
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by scaling the base axes by the given <code>xyz.x</code>,
|
|
* <code>xyz.y</code> and <code>xyz.z</code> factors, respectively.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* scaling will be applied first!
|
|
*
|
|
* @param xyz
|
|
* the factors of the x, y and z component, respectively
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d scale(Vector3dc xyz) {
|
|
return scale(xyz.x(), xyz.y(), xyz.z(), this);
|
|
}
|
|
|
|
public Matrix4x3d scale(double x, double y, double z, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.scaling(x, y, z);
|
|
return scaleGeneric(x, y, z, dest);
|
|
}
|
|
private Matrix4x3d scaleGeneric(double x, double y, double z, Matrix4x3d dest) {
|
|
dest.m00 = m00 * x;
|
|
dest.m01 = m01 * x;
|
|
dest.m02 = m02 * x;
|
|
dest.m10 = m10 * y;
|
|
dest.m11 = m11 * y;
|
|
dest.m12 = m12 * y;
|
|
dest.m20 = m20 * z;
|
|
dest.m21 = m21 * z;
|
|
dest.m22 = m22 * z;
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to <code>this</code> matrix by scaling the base axes by the given x,
|
|
* y and z factors.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
|
|
* , the scaling will be applied first!
|
|
*
|
|
* @param x
|
|
* the factor of the x component
|
|
* @param y
|
|
* the factor of the y component
|
|
* @param z
|
|
* the factor of the z component
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d scale(double x, double y, double z) {
|
|
return scale(x, y, z, this);
|
|
}
|
|
|
|
public Matrix4x3d scale(double xyz, Matrix4x3d dest) {
|
|
return scale(xyz, xyz, xyz, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
|
|
* , the scaling will be applied first!
|
|
*
|
|
* @see #scale(double, double, double)
|
|
*
|
|
* @param xyz
|
|
* the factor for all components
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d scale(double xyz) {
|
|
return scale(xyz, xyz, xyz);
|
|
}
|
|
|
|
public Matrix4x3d scaleXY(double x, double y, Matrix4x3d dest) {
|
|
return scale(x, y, 1.0, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by scaling the X axis by <code>x</code> and the Y axis by <code>y</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* scaling will be applied first!
|
|
*
|
|
* @param x
|
|
* the factor of the x component
|
|
* @param y
|
|
* the factor of the y component
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d scaleXY(double x, double y) {
|
|
return scale(x, y, 1.0);
|
|
}
|
|
|
|
public Matrix4x3d scaleAround(double sx, double sy, double sz, double ox, double oy, double oz, Matrix4x3d dest) {
|
|
double nm30 = m00 * ox + m10 * oy + m20 * oz + m30;
|
|
double nm31 = m01 * ox + m11 * oy + m21 * oz + m31;
|
|
double nm32 = m02 * ox + m12 * oy + m22 * oz + m32;
|
|
boolean one = Math.absEqualsOne(sx) && Math.absEqualsOne(sy) && Math.absEqualsOne(sz);
|
|
return dest
|
|
._m00(m00 * sx)
|
|
._m01(m01 * sx)
|
|
._m02(m02 * sx)
|
|
._m10(m10 * sy)
|
|
._m11(m11 * sy)
|
|
._m12(m12 * sy)
|
|
._m20(m20 * sz)
|
|
._m21(m21 * sz)
|
|
._m22(m22 * sz)
|
|
._m30(-dest.m00 * ox - dest.m10 * oy - dest.m20 * oz + nm30)
|
|
._m31(-dest.m01 * ox - dest.m11 * oy - dest.m21 * oz + nm31)
|
|
._m32(-dest.m02 * ox - dest.m12 * oy - dest.m22 * oz + nm32)
|
|
._properties(properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | (one ? 0 : PROPERTY_ORTHONORMAL)));
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by scaling the base axes by the given sx,
|
|
* sy and sz factors while using <code>(ox, oy, oz)</code> as the scaling origin.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* scaling will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz)</code>
|
|
*
|
|
* @param sx
|
|
* the scaling factor of the x component
|
|
* @param sy
|
|
* the scaling factor of the y component
|
|
* @param sz
|
|
* the scaling factor of the z component
|
|
* @param ox
|
|
* the x coordinate of the scaling origin
|
|
* @param oy
|
|
* the y coordinate of the scaling origin
|
|
* @param oz
|
|
* the z coordinate of the scaling origin
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d scaleAround(double sx, double sy, double sz, double ox, double oy, double oz) {
|
|
return scaleAround(sx, sy, sz, ox, oy, oz, this);
|
|
}
|
|
|
|
/**
|
|
* Apply scaling to this matrix by scaling all three base axes by the given <code>factor</code>
|
|
* while using <code>(ox, oy, oz)</code> as the scaling origin.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* scaling will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz)</code>
|
|
*
|
|
* @param factor
|
|
* the scaling factor for all three axes
|
|
* @param ox
|
|
* the x coordinate of the scaling origin
|
|
* @param oy
|
|
* the y coordinate of the scaling origin
|
|
* @param oz
|
|
* the z coordinate of the scaling origin
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d scaleAround(double factor, double ox, double oy, double oz) {
|
|
return scaleAround(factor, factor, factor, ox, oy, oz, this);
|
|
}
|
|
|
|
public Matrix4x3d scaleAround(double factor, double ox, double oy, double oz, Matrix4x3d dest) {
|
|
return scaleAround(factor, factor, factor, ox, oy, oz, dest);
|
|
}
|
|
|
|
public Matrix4x3d scaleLocal(double x, double y, double z, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.scaling(x, y, z);
|
|
|
|
double nm00 = x * m00;
|
|
double nm01 = y * m01;
|
|
double nm02 = z * m02;
|
|
double nm10 = x * m10;
|
|
double nm11 = y * m11;
|
|
double nm12 = z * m12;
|
|
double nm20 = x * m20;
|
|
double nm21 = y * m21;
|
|
double nm22 = z * m22;
|
|
double nm30 = x * m30;
|
|
double nm31 = y * m31;
|
|
double nm32 = z * m32;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
dest.m22 = nm22;
|
|
dest.m30 = nm30;
|
|
dest.m31 = nm31;
|
|
dest.m32 = nm32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply scaling to this matrix by scaling the base axes by the given x,
|
|
* y and z factors.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
|
|
* then the new matrix will be <code>S * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>, the
|
|
* scaling will be applied last!
|
|
*
|
|
* @param x
|
|
* the factor of the x component
|
|
* @param y
|
|
* the factor of the y component
|
|
* @param z
|
|
* the factor of the z component
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d scaleLocal(double x, double y, double z) {
|
|
return scaleLocal(x, y, z, this);
|
|
}
|
|
|
|
public Matrix4x3d rotate(double ang, double x, double y, double z, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.rotation(ang, x, y, z);
|
|
else if ((properties & PROPERTY_TRANSLATION) != 0)
|
|
return rotateTranslation(ang, x, y, z, dest);
|
|
return rotateGeneric(ang, x, y, z, dest);
|
|
}
|
|
private Matrix4x3d rotateGeneric(double ang, double x, double y, double z, Matrix4x3d dest) {
|
|
if (y == 0.0 && z == 0.0 && Math.absEqualsOne(x))
|
|
return rotateX(x * ang, dest);
|
|
else if (x == 0.0 && z == 0.0 && Math.absEqualsOne(y))
|
|
return rotateY(y * ang, dest);
|
|
else if (x == 0.0 && y == 0.0 && Math.absEqualsOne(z))
|
|
return rotateZ(z * ang, dest);
|
|
return rotateGenericInternal(ang, x, y, z, dest);
|
|
}
|
|
private Matrix4x3d rotateGenericInternal(double ang, double x, double y, double z, Matrix4x3d dest) {
|
|
double s = Math.sin(ang);
|
|
double c = Math.cosFromSin(s, ang);
|
|
double C = 1.0 - c;
|
|
double xx = x * x, xy = x * y, xz = x * z;
|
|
double yy = y * y, yz = y * z;
|
|
double zz = z * z;
|
|
double rm00 = xx * C + c;
|
|
double rm01 = xy * C + z * s;
|
|
double rm02 = xz * C - y * s;
|
|
double rm10 = xy * C - z * s;
|
|
double rm11 = yy * C + c;
|
|
double rm12 = yz * C + x * s;
|
|
double rm20 = xz * C + y * s;
|
|
double rm21 = yz * C - x * s;
|
|
double rm22 = zz * C + c;
|
|
// add temporaries for dependent values
|
|
double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
|
|
double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
|
|
double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
|
|
double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
|
|
double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
|
|
double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
|
|
// set non-dependent values directly
|
|
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
|
|
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
|
|
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
|
|
// set other values
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply rotation to this matrix by rotating the given amount of radians
|
|
* about the given axis specified as x, y and z components.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>
|
|
* , the rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation matrix without post-multiplying the rotation
|
|
* transformation, use {@link #rotation(double, double, double, double) rotation()}.
|
|
*
|
|
* @see #rotation(double, double, double, double)
|
|
*
|
|
* @param ang
|
|
* the angle is in radians
|
|
* @param x
|
|
* the x component of the axis
|
|
* @param y
|
|
* the y component of the axis
|
|
* @param z
|
|
* the z component of the axis
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotate(double ang, double x, double y, double z) {
|
|
return rotate(ang, x, y, z, this);
|
|
}
|
|
|
|
/**
|
|
* Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians
|
|
* about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method assumes <code>this</code> to only contain a translation.
|
|
* <p>
|
|
* The axis described by the three components needs to be a unit vector.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation matrix without post-multiplying the rotation
|
|
* transformation, use {@link #rotation(double, double, double, double) rotation()}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(double, double, double, double)
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @param x
|
|
* the x component of the axis
|
|
* @param y
|
|
* the y component of the axis
|
|
* @param z
|
|
* the z component of the axis
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotateTranslation(double ang, double x, double y, double z, Matrix4x3d dest) {
|
|
double tx = m30, ty = m31, tz = m32;
|
|
if (y == 0.0 && z == 0.0 && Math.absEqualsOne(x))
|
|
return dest.rotationX(x * ang).setTranslation(tx, ty, tz);
|
|
else if (x == 0.0 && z == 0.0 && Math.absEqualsOne(y))
|
|
return dest.rotationY(y * ang).setTranslation(tx, ty, tz);
|
|
else if (x == 0.0 && y == 0.0 && Math.absEqualsOne(z))
|
|
return dest.rotationZ(z * ang).setTranslation(tx, ty, tz);
|
|
return rotateTranslationInternal(ang, x, y, z, dest);
|
|
}
|
|
private Matrix4x3d rotateTranslationInternal(double ang, double x, double y, double z, Matrix4x3d dest) {
|
|
double s = Math.sin(ang);
|
|
double c = Math.cosFromSin(s, ang);
|
|
double C = 1.0 - c;
|
|
double xx = x * x, xy = x * y, xz = x * z;
|
|
double yy = y * y, yz = y * z;
|
|
double zz = z * z;
|
|
double rm00 = xx * C + c;
|
|
double rm01 = xy * C + z * s;
|
|
double rm02 = xz * C - y * s;
|
|
double rm10 = xy * C - z * s;
|
|
double rm11 = yy * C + c;
|
|
double rm12 = yz * C + x * s;
|
|
double rm20 = xz * C + y * s;
|
|
double rm21 = yz * C - x * s;
|
|
double rm22 = zz * C + c;
|
|
double nm00 = rm00;
|
|
double nm01 = rm01;
|
|
double nm02 = rm02;
|
|
double nm10 = rm10;
|
|
double nm11 = rm11;
|
|
double nm12 = rm12;
|
|
// set non-dependent values directly
|
|
dest.m20 = rm20;
|
|
dest.m21 = rm21;
|
|
dest.m22 = rm22;
|
|
// set other values
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply the rotation transformation of the given {@link Quaterniondc} to this matrix while using <code>(ox, oy, oz)</code> as the rotation origin.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>M * Q</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
|
|
* the quaternion rotation will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)</code>
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @param quat
|
|
* the {@link Quaterniondc}
|
|
* @param ox
|
|
* the x coordinate of the rotation origin
|
|
* @param oy
|
|
* the y coordinate of the rotation origin
|
|
* @param oz
|
|
* the z coordinate of the rotation origin
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateAround(Quaterniondc quat, double ox, double oy, double oz) {
|
|
return rotateAround(quat, ox, oy, oz, this);
|
|
}
|
|
|
|
private Matrix4x3d rotateAroundAffine(Quaterniondc quat, double ox, double oy, double oz, Matrix4x3d dest) {
|
|
double w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x();
|
|
double y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z();
|
|
double zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy;
|
|
double xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw;
|
|
double yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw;
|
|
double rm00 = w2 + x2 - z2 - y2;
|
|
double rm01 = dxy + dzw;
|
|
double rm02 = dxz - dyw;
|
|
double rm10 = dxy - dzw;
|
|
double rm11 = y2 - z2 + w2 - x2;
|
|
double rm12 = dyz + dxw;
|
|
double rm20 = dyw + dxz;
|
|
double rm21 = dyz - dxw;
|
|
double rm22 = z2 - y2 - x2 + w2;
|
|
double tm30 = m00 * ox + m10 * oy + m20 * oz + m30;
|
|
double tm31 = m01 * ox + m11 * oy + m21 * oz + m31;
|
|
double tm32 = m02 * ox + m12 * oy + m22 * oz + m32;
|
|
double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
|
|
double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
|
|
double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
|
|
double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
|
|
double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
|
|
double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
|
|
dest
|
|
._m20(m00 * rm20 + m10 * rm21 + m20 * rm22)
|
|
._m21(m01 * rm20 + m11 * rm21 + m21 * rm22)
|
|
._m22(m02 * rm20 + m12 * rm21 + m22 * rm22)
|
|
._m00(nm00)
|
|
._m01(nm01)
|
|
._m02(nm02)
|
|
._m10(nm10)
|
|
._m11(nm11)
|
|
._m12(nm12)
|
|
._m30(-nm00 * ox - nm10 * oy - m20 * oz + tm30)
|
|
._m31(-nm01 * ox - nm11 * oy - m21 * oz + tm31)
|
|
._m32(-nm02 * ox - nm12 * oy - m22 * oz + tm32)
|
|
._properties(properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION));
|
|
return dest;
|
|
}
|
|
|
|
public Matrix4x3d rotateAround(Quaterniondc quat, double ox, double oy, double oz, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return rotationAround(quat, ox, oy, oz);
|
|
return rotateAroundAffine(quat, ox, oy, oz, dest);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a transformation composed of a rotation of the specified {@link Quaterniondc} while using <code>(ox, oy, oz)</code> as the rotation origin.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translation(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)</code>
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @param quat
|
|
* the {@link Quaterniondc}
|
|
* @param ox
|
|
* the x coordinate of the rotation origin
|
|
* @param oy
|
|
* the y coordinate of the rotation origin
|
|
* @param oz
|
|
* the z coordinate of the rotation origin
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotationAround(Quaterniondc quat, double ox, double oy, double oz) {
|
|
double w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x();
|
|
double y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z();
|
|
double zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy;
|
|
double xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw;
|
|
double yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw;
|
|
this._m20(dyw + dxz);
|
|
this._m21(dyz - dxw);
|
|
this._m22(z2 - y2 - x2 + w2);
|
|
this._m00(w2 + x2 - z2 - y2);
|
|
this._m01(dxy + dzw);
|
|
this._m02(dxz - dyw);
|
|
this._m10(dxy - dzw);
|
|
this._m11(y2 - z2 + w2 - x2);
|
|
this._m12(dyz + dxw);
|
|
this._m30(-m00 * ox - m10 * oy - m20 * oz + ox);
|
|
this._m31(-m01 * ox - m11 * oy - m21 * oz + oy);
|
|
this._m32(-m02 * ox - m12 * oy - m22 * oz + oz);
|
|
this.properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a rotation to this matrix by rotating the given amount of radians
|
|
* about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>.
|
|
* <p>
|
|
* The axis described by the three components needs to be a unit vector.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>R * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
|
|
* rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
|
|
* transformation, use {@link #rotation(double, double, double, double) rotation()}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(double, double, double, double)
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @param x
|
|
* the x component of the axis
|
|
* @param y
|
|
* the y component of the axis
|
|
* @param z
|
|
* the z component of the axis
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotateLocal(double ang, double x, double y, double z, Matrix4x3d dest) {
|
|
if (y == 0.0 && z == 0.0 && Math.absEqualsOne(x))
|
|
return rotateLocalX(x * ang, dest);
|
|
else if (x == 0.0 && z == 0.0 && Math.absEqualsOne(y))
|
|
return rotateLocalY(y * ang, dest);
|
|
else if (x == 0.0 && y == 0.0 && Math.absEqualsOne(z))
|
|
return rotateLocalZ(z * ang, dest);
|
|
return rotateLocalInternal(ang, x, y, z, dest);
|
|
}
|
|
private Matrix4x3d rotateLocalInternal(double ang, double x, double y, double z, Matrix4x3d dest) {
|
|
double s = Math.sin(ang);
|
|
double c = Math.cosFromSin(s, ang);
|
|
double C = 1.0 - c;
|
|
double xx = x * x, xy = x * y, xz = x * z;
|
|
double yy = y * y, yz = y * z;
|
|
double zz = z * z;
|
|
double lm00 = xx * C + c;
|
|
double lm01 = xy * C + z * s;
|
|
double lm02 = xz * C - y * s;
|
|
double lm10 = xy * C - z * s;
|
|
double lm11 = yy * C + c;
|
|
double lm12 = yz * C + x * s;
|
|
double lm20 = xz * C + y * s;
|
|
double lm21 = yz * C - x * s;
|
|
double lm22 = zz * C + c;
|
|
double nm00 = lm00 * m00 + lm10 * m01 + lm20 * m02;
|
|
double nm01 = lm01 * m00 + lm11 * m01 + lm21 * m02;
|
|
double nm02 = lm02 * m00 + lm12 * m01 + lm22 * m02;
|
|
double nm10 = lm00 * m10 + lm10 * m11 + lm20 * m12;
|
|
double nm11 = lm01 * m10 + lm11 * m11 + lm21 * m12;
|
|
double nm12 = lm02 * m10 + lm12 * m11 + lm22 * m12;
|
|
double nm20 = lm00 * m20 + lm10 * m21 + lm20 * m22;
|
|
double nm21 = lm01 * m20 + lm11 * m21 + lm21 * m22;
|
|
double nm22 = lm02 * m20 + lm12 * m21 + lm22 * m22;
|
|
double nm30 = lm00 * m30 + lm10 * m31 + lm20 * m32;
|
|
double nm31 = lm01 * m30 + lm11 * m31 + lm21 * m32;
|
|
double nm32 = lm02 * m30 + lm12 * m31 + lm22 * m32;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
dest.m22 = nm22;
|
|
dest.m30 = nm30;
|
|
dest.m31 = nm31;
|
|
dest.m32 = nm32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a rotation to this matrix by rotating the given amount of radians
|
|
* about the specified <code>(x, y, z)</code> axis.
|
|
* <p>
|
|
* The axis described by the three components needs to be a unit vector.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>R * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
|
|
* rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
|
|
* transformation, use {@link #rotation(double, double, double, double) rotation()}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(double, double, double, double)
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @param x
|
|
* the x component of the axis
|
|
* @param y
|
|
* the y component of the axis
|
|
* @param z
|
|
* the z component of the axis
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateLocal(double ang, double x, double y, double z) {
|
|
return rotateLocal(ang, x, y, z, this);
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians
|
|
* about the X axis and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>R * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
|
|
* rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
|
|
* transformation, use {@link #rotationX(double) rotationX()}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotationX(double)
|
|
*
|
|
* @param ang
|
|
* the angle in radians to rotate about the X axis
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotateLocalX(double ang, Matrix4x3d dest) {
|
|
double sin = Math.sin(ang);
|
|
double cos = Math.cosFromSin(sin, ang);
|
|
double nm01 = cos * m01 - sin * m02;
|
|
double nm02 = sin * m01 + cos * m02;
|
|
double nm11 = cos * m11 - sin * m12;
|
|
double nm12 = sin * m11 + cos * m12;
|
|
double nm21 = cos * m21 - sin * m22;
|
|
double nm22 = sin * m21 + cos * m22;
|
|
double nm31 = cos * m31 - sin * m32;
|
|
double nm32 = sin * m31 + cos * m32;
|
|
dest.m00 = m00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = m10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m20 = m20;
|
|
dest.m21 = nm21;
|
|
dest.m22 = nm22;
|
|
dest.m30 = m30;
|
|
dest.m31 = nm31;
|
|
dest.m32 = nm32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>R * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
|
|
* rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
|
|
* transformation, use {@link #rotationX(double) rotationX()}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotationX(double)
|
|
*
|
|
* @param ang
|
|
* the angle in radians to rotate about the X axis
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateLocalX(double ang) {
|
|
return rotateLocalX(ang, this);
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians
|
|
* about the Y axis and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>R * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
|
|
* rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
|
|
* transformation, use {@link #rotationY(double) rotationY()}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotationY(double)
|
|
*
|
|
* @param ang
|
|
* the angle in radians to rotate about the Y axis
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotateLocalY(double ang, Matrix4x3d dest) {
|
|
double sin = Math.sin(ang);
|
|
double cos = Math.cosFromSin(sin, ang);
|
|
double nm00 = cos * m00 + sin * m02;
|
|
double nm02 = -sin * m00 + cos * m02;
|
|
double nm10 = cos * m10 + sin * m12;
|
|
double nm12 = -sin * m10 + cos * m12;
|
|
double nm20 = cos * m20 + sin * m22;
|
|
double nm22 = -sin * m20 + cos * m22;
|
|
double nm30 = cos * m30 + sin * m32;
|
|
double nm32 = -sin * m30 + cos * m32;
|
|
dest.m00 = nm00;
|
|
dest.m01 = m01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = m11;
|
|
dest.m12 = nm12;
|
|
dest.m20 = nm20;
|
|
dest.m21 = m21;
|
|
dest.m22 = nm22;
|
|
dest.m30 = nm30;
|
|
dest.m31 = m31;
|
|
dest.m32 = nm32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>R * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
|
|
* rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
|
|
* transformation, use {@link #rotationY(double) rotationY()}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotationY(double)
|
|
*
|
|
* @param ang
|
|
* the angle in radians to rotate about the Y axis
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateLocalY(double ang) {
|
|
return rotateLocalY(ang, this);
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians
|
|
* about the Z axis and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>R * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
|
|
* rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
|
|
* transformation, use {@link #rotationZ(double) rotationZ()}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotationZ(double)
|
|
*
|
|
* @param ang
|
|
* the angle in radians to rotate about the Z axis
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotateLocalZ(double ang, Matrix4x3d dest) {
|
|
double sin = Math.sin(ang);
|
|
double cos = Math.cosFromSin(sin, ang);
|
|
double nm00 = cos * m00 - sin * m01;
|
|
double nm01 = sin * m00 + cos * m01;
|
|
double nm10 = cos * m10 - sin * m11;
|
|
double nm11 = sin * m10 + cos * m11;
|
|
double nm20 = cos * m20 - sin * m21;
|
|
double nm21 = sin * m20 + cos * m21;
|
|
double nm30 = cos * m30 - sin * m31;
|
|
double nm31 = sin * m30 + cos * m31;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = m02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = m12;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
dest.m22 = m22;
|
|
dest.m30 = nm30;
|
|
dest.m31 = nm31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>R * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
|
|
* rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation matrix without pre-multiplying the rotation
|
|
* transformation, use {@link #rotationZ(double) rotationY()}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotationY(double)
|
|
*
|
|
* @param ang
|
|
* the angle in radians to rotate about the Z axis
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateLocalZ(double ang) {
|
|
return rotateLocalZ(ang, this);
|
|
}
|
|
|
|
/**
|
|
* Apply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>M * T</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>M * T * v</code>, the translation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without post-multiplying
|
|
* it, use {@link #translation(Vector3dc)}.
|
|
*
|
|
* @see #translation(Vector3dc)
|
|
*
|
|
* @param offset
|
|
* the number of units in x, y and z by which to translate
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translate(Vector3dc offset) {
|
|
return translate(offset.x(), offset.y(), offset.z());
|
|
}
|
|
|
|
/**
|
|
* Apply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>M * T</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>M * T * v</code>, the translation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without post-multiplying
|
|
* it, use {@link #translation(Vector3dc)}.
|
|
*
|
|
* @see #translation(Vector3dc)
|
|
*
|
|
* @param offset
|
|
* the number of units in x, y and z by which to translate
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d translate(Vector3dc offset, Matrix4x3d dest) {
|
|
return translate(offset.x(), offset.y(), offset.z(), dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>M * T</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>M * T * v</code>, the translation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without post-multiplying
|
|
* it, use {@link #translation(Vector3fc)}.
|
|
*
|
|
* @see #translation(Vector3fc)
|
|
*
|
|
* @param offset
|
|
* the number of units in x, y and z by which to translate
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translate(Vector3fc offset) {
|
|
return translate(offset.x(), offset.y(), offset.z());
|
|
}
|
|
|
|
/**
|
|
* Apply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>M * T</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>M * T * v</code>, the translation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without post-multiplying
|
|
* it, use {@link #translation(Vector3fc)}.
|
|
*
|
|
* @see #translation(Vector3fc)
|
|
*
|
|
* @param offset
|
|
* the number of units in x, y and z by which to translate
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d translate(Vector3fc offset, Matrix4x3d dest) {
|
|
return translate(offset.x(), offset.y(), offset.z(), dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>M * T</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>M * T * v</code>, the translation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without post-multiplying
|
|
* it, use {@link #translation(double, double, double)}.
|
|
*
|
|
* @see #translation(double, double, double)
|
|
*
|
|
* @param x
|
|
* the offset to translate in x
|
|
* @param y
|
|
* the offset to translate in y
|
|
* @param z
|
|
* the offset to translate in z
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d translate(double x, double y, double z, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.translation(x, y, z);
|
|
return translateGeneric(x, y, z, dest);
|
|
}
|
|
private Matrix4x3d translateGeneric(double x, double y, double z, Matrix4x3d dest) {
|
|
dest.m00 = m00;
|
|
dest.m01 = m01;
|
|
dest.m02 = m02;
|
|
dest.m10 = m10;
|
|
dest.m11 = m11;
|
|
dest.m12 = m12;
|
|
dest.m20 = m20;
|
|
dest.m21 = m21;
|
|
dest.m22 = m22;
|
|
dest.m30 = m00 * x + m10 * y + m20 * z + m30;
|
|
dest.m31 = m01 * x + m11 * y + m21 * z + m31;
|
|
dest.m32 = m02 * x + m12 * y + m22 * z + m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>M * T</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>M * T * v</code>, the translation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without post-multiplying
|
|
* it, use {@link #translation(double, double, double)}.
|
|
*
|
|
* @see #translation(double, double, double)
|
|
*
|
|
* @param x
|
|
* the offset to translate in x
|
|
* @param y
|
|
* the offset to translate in y
|
|
* @param z
|
|
* the offset to translate in z
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translate(double x, double y, double z) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return translation(x, y, z);
|
|
Matrix4x3d c = this;
|
|
c.m30 = c.m00 * x + c.m10 * y + c.m20 * z + c.m30;
|
|
c.m31 = c.m01 * x + c.m11 * y + c.m21 * z + c.m31;
|
|
c.m32 = c.m02 * x + c.m12 * y + c.m22 * z + c.m32;
|
|
c.properties &= ~(PROPERTY_IDENTITY);
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>T * M</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>T * M * v</code>, the translation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without pre-multiplying
|
|
* it, use {@link #translation(Vector3fc)}.
|
|
*
|
|
* @see #translation(Vector3fc)
|
|
*
|
|
* @param offset
|
|
* the number of units in x, y and z by which to translate
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translateLocal(Vector3fc offset) {
|
|
return translateLocal(offset.x(), offset.y(), offset.z());
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>T * M</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>T * M * v</code>, the translation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without pre-multiplying
|
|
* it, use {@link #translation(Vector3fc)}.
|
|
*
|
|
* @see #translation(Vector3fc)
|
|
*
|
|
* @param offset
|
|
* the number of units in x, y and z by which to translate
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d translateLocal(Vector3fc offset, Matrix4x3d dest) {
|
|
return translateLocal(offset.x(), offset.y(), offset.z(), dest);
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>T * M</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>T * M * v</code>, the translation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without pre-multiplying
|
|
* it, use {@link #translation(Vector3dc)}.
|
|
*
|
|
* @see #translation(Vector3dc)
|
|
*
|
|
* @param offset
|
|
* the number of units in x, y and z by which to translate
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translateLocal(Vector3dc offset) {
|
|
return translateLocal(offset.x(), offset.y(), offset.z());
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>T * M</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>T * M * v</code>, the translation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without pre-multiplying
|
|
* it, use {@link #translation(Vector3dc)}.
|
|
*
|
|
* @see #translation(Vector3dc)
|
|
*
|
|
* @param offset
|
|
* the number of units in x, y and z by which to translate
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d translateLocal(Vector3dc offset, Matrix4x3d dest) {
|
|
return translateLocal(offset.x(), offset.y(), offset.z(), dest);
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>T * M</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>T * M * v</code>, the translation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without pre-multiplying
|
|
* it, use {@link #translation(double, double, double)}.
|
|
*
|
|
* @see #translation(double, double, double)
|
|
*
|
|
* @param x
|
|
* the offset to translate in x
|
|
* @param y
|
|
* the offset to translate in y
|
|
* @param z
|
|
* the offset to translate in z
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d translateLocal(double x, double y, double z, Matrix4x3d dest) {
|
|
dest.m00 = m00;
|
|
dest.m01 = m01;
|
|
dest.m02 = m02;
|
|
dest.m10 = m10;
|
|
dest.m11 = m11;
|
|
dest.m12 = m12;
|
|
dest.m20 = m20;
|
|
dest.m21 = m21;
|
|
dest.m22 = m22;
|
|
dest.m30 = m30 + x;
|
|
dest.m31 = m31 + y;
|
|
dest.m32 = m32 + z;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply a translation to this matrix by translating by the given number of
|
|
* units in x, y and z.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
|
|
* matrix, then the new matrix will be <code>T * M</code>. So when
|
|
* transforming a vector <code>v</code> with the new matrix by using
|
|
* <code>T * M * v</code>, the translation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a translation transformation without pre-multiplying
|
|
* it, use {@link #translation(double, double, double)}.
|
|
*
|
|
* @see #translation(double, double, double)
|
|
*
|
|
* @param x
|
|
* the offset to translate in x
|
|
* @param y
|
|
* the offset to translate in y
|
|
* @param z
|
|
* the offset to translate in z
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translateLocal(double x, double y, double z) {
|
|
return translateLocal(x, y, z, this);
|
|
}
|
|
|
|
public void writeExternal(ObjectOutput out) throws IOException {
|
|
out.writeDouble(m00);
|
|
out.writeDouble(m01);
|
|
out.writeDouble(m02);
|
|
out.writeDouble(m10);
|
|
out.writeDouble(m11);
|
|
out.writeDouble(m12);
|
|
out.writeDouble(m20);
|
|
out.writeDouble(m21);
|
|
out.writeDouble(m22);
|
|
out.writeDouble(m30);
|
|
out.writeDouble(m31);
|
|
out.writeDouble(m32);
|
|
}
|
|
|
|
public void readExternal(ObjectInput in) throws IOException {
|
|
m00 = in.readDouble();
|
|
m01 = in.readDouble();
|
|
m02 = in.readDouble();
|
|
m10 = in.readDouble();
|
|
m11 = in.readDouble();
|
|
m12 = in.readDouble();
|
|
m20 = in.readDouble();
|
|
m21 = in.readDouble();
|
|
m22 = in.readDouble();
|
|
m30 = in.readDouble();
|
|
m31 = in.readDouble();
|
|
m32 = in.readDouble();
|
|
determineProperties();
|
|
}
|
|
|
|
public Matrix4x3d rotateX(double ang, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.rotationX(ang);
|
|
else if ((properties & PROPERTY_TRANSLATION) != 0) {
|
|
double x = m30, y = m31, z = m32;
|
|
return dest.rotationX(ang).setTranslation(x, y, z);
|
|
}
|
|
return rotateXInternal(ang, dest);
|
|
}
|
|
private Matrix4x3d rotateXInternal(double ang, Matrix4x3d dest) {
|
|
double sin, cos;
|
|
sin = Math.sin(ang);
|
|
cos = Math.cosFromSin(sin, ang);
|
|
double rm11 = cos;
|
|
double rm12 = sin;
|
|
double rm21 = -sin;
|
|
double rm22 = cos;
|
|
|
|
// add temporaries for dependent values
|
|
double nm10 = m10 * rm11 + m20 * rm12;
|
|
double nm11 = m11 * rm11 + m21 * rm12;
|
|
double nm12 = m12 * rm11 + m22 * rm12;
|
|
// set non-dependent values directly
|
|
dest.m20 = m10 * rm21 + m20 * rm22;
|
|
dest.m21 = m11 * rm21 + m21 * rm22;
|
|
dest.m22 = m12 * rm21 + m22 * rm22;
|
|
// set other values
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m00 = m00;
|
|
dest.m01 = m01;
|
|
dest.m02 = m02;
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply rotation about the X axis to this matrix by rotating the given amount of radians.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateX(double ang) {
|
|
return rotateX(ang, this);
|
|
}
|
|
|
|
public Matrix4x3d rotateY(double ang, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.rotationY(ang);
|
|
else if ((properties & PROPERTY_TRANSLATION) != 0) {
|
|
double x = m30, y = m31, z = m32;
|
|
return dest.rotationY(ang).setTranslation(x, y, z);
|
|
}
|
|
return rotateYInternal(ang, dest);
|
|
}
|
|
private Matrix4x3d rotateYInternal(double ang, Matrix4x3d dest) {
|
|
double sin, cos;
|
|
sin = Math.sin(ang);
|
|
cos = Math.cosFromSin(sin, ang);
|
|
double rm00 = cos;
|
|
double rm02 = -sin;
|
|
double rm20 = sin;
|
|
double rm22 = cos;
|
|
|
|
// add temporaries for dependent values
|
|
double nm00 = m00 * rm00 + m20 * rm02;
|
|
double nm01 = m01 * rm00 + m21 * rm02;
|
|
double nm02 = m02 * rm00 + m22 * rm02;
|
|
// set non-dependent values directly
|
|
dest.m20 = m00 * rm20 + m20 * rm22;
|
|
dest.m21 = m01 * rm20 + m21 * rm22;
|
|
dest.m22 = m02 * rm20 + m22 * rm22;
|
|
// set other values
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = m10;
|
|
dest.m11 = m11;
|
|
dest.m12 = m12;
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply rotation about the Y axis to this matrix by rotating the given amount of radians.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateY(double ang) {
|
|
return rotateY(ang, this);
|
|
}
|
|
|
|
public Matrix4x3d rotateZ(double ang, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.rotationZ(ang);
|
|
else if ((properties & PROPERTY_TRANSLATION) != 0) {
|
|
double x = m30, y = m31, z = m32;
|
|
return dest.rotationZ(ang).setTranslation(x, y, z);
|
|
}
|
|
return rotateZInternal(ang, dest);
|
|
}
|
|
private Matrix4x3d rotateZInternal(double ang, Matrix4x3d dest) {
|
|
double sin, cos;
|
|
sin = Math.sin(ang);
|
|
cos = Math.cosFromSin(sin, ang);
|
|
double rm00 = cos;
|
|
double rm01 = sin;
|
|
double rm10 = -sin;
|
|
double rm11 = cos;
|
|
|
|
// add temporaries for dependent values
|
|
double nm00 = m00 * rm00 + m10 * rm01;
|
|
double nm01 = m01 * rm00 + m11 * rm01;
|
|
double nm02 = m02 * rm00 + m12 * rm01;
|
|
// set non-dependent values directly
|
|
dest.m10 = m00 * rm10 + m10 * rm11;
|
|
dest.m11 = m01 * rm10 + m11 * rm11;
|
|
dest.m12 = m02 * rm10 + m12 * rm11;
|
|
// set other values
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m20 = m20;
|
|
dest.m21 = m21;
|
|
dest.m22 = m22;
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply rotation about the Z axis to this matrix by rotating the given amount of radians.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
|
|
*
|
|
* @param ang
|
|
* the angle in radians
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateZ(double ang) {
|
|
return rotateZ(ang, this);
|
|
}
|
|
|
|
/**
|
|
* Apply rotation of <code>angles.x</code> radians about the X axis, followed by a rotation of <code>angles.y</code> radians about the Y axis and
|
|
* followed by a rotation of <code>angles.z</code> radians about the Z axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>rotateX(angles.x).rotateY(angles.y).rotateZ(angles.z)</code>
|
|
*
|
|
* @param angles
|
|
* the Euler angles
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateXYZ(Vector3d angles) {
|
|
return rotateXYZ(angles.x, angles.y, angles.z);
|
|
}
|
|
|
|
/**
|
|
* Apply rotation of <code>angleX</code> radians about the X axis, followed by a rotation of <code>angleY</code> radians about the Y axis and
|
|
* followed by a rotation of <code>angleZ</code> radians about the Z axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>rotateX(angleX).rotateY(angleY).rotateZ(angleZ)</code>
|
|
*
|
|
* @param angleX
|
|
* the angle to rotate about X
|
|
* @param angleY
|
|
* the angle to rotate about Y
|
|
* @param angleZ
|
|
* the angle to rotate about Z
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateXYZ(double angleX, double angleY, double angleZ) {
|
|
return rotateXYZ(angleX, angleY, angleZ, this);
|
|
}
|
|
|
|
public Matrix4x3d rotateXYZ(double angleX, double angleY, double angleZ, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.rotationXYZ(angleX, angleY, angleZ);
|
|
else if ((properties & PROPERTY_TRANSLATION) != 0) {
|
|
double tx = m30, ty = m31, tz = m32;
|
|
return dest.rotationXYZ(angleX, angleY, angleZ).setTranslation(tx, ty, tz);
|
|
}
|
|
return rotateXYZInternal(angleX, angleY, angleZ, dest);
|
|
}
|
|
private Matrix4x3d rotateXYZInternal(double angleX, double angleY, double angleZ, Matrix4x3d dest) {
|
|
double sinX = Math.sin(angleX);
|
|
double cosX = Math.cosFromSin(sinX, angleX);
|
|
double sinY = Math.sin(angleY);
|
|
double cosY = Math.cosFromSin(sinY, angleY);
|
|
double sinZ = Math.sin(angleZ);
|
|
double cosZ = Math.cosFromSin(sinZ, angleZ);
|
|
double m_sinX = -sinX;
|
|
double m_sinY = -sinY;
|
|
double m_sinZ = -sinZ;
|
|
|
|
// rotateX
|
|
double nm10 = m10 * cosX + m20 * sinX;
|
|
double nm11 = m11 * cosX + m21 * sinX;
|
|
double nm12 = m12 * cosX + m22 * sinX;
|
|
double nm20 = m10 * m_sinX + m20 * cosX;
|
|
double nm21 = m11 * m_sinX + m21 * cosX;
|
|
double nm22 = m12 * m_sinX + m22 * cosX;
|
|
// rotateY
|
|
double nm00 = m00 * cosY + nm20 * m_sinY;
|
|
double nm01 = m01 * cosY + nm21 * m_sinY;
|
|
double nm02 = m02 * cosY + nm22 * m_sinY;
|
|
dest.m20 = m00 * sinY + nm20 * cosY;
|
|
dest.m21 = m01 * sinY + nm21 * cosY;
|
|
dest.m22 = m02 * sinY + nm22 * cosY;
|
|
// rotateZ
|
|
dest.m00 = nm00 * cosZ + nm10 * sinZ;
|
|
dest.m01 = nm01 * cosZ + nm11 * sinZ;
|
|
dest.m02 = nm02 * cosZ + nm12 * sinZ;
|
|
dest.m10 = nm00 * m_sinZ + nm10 * cosZ;
|
|
dest.m11 = nm01 * m_sinZ + nm11 * cosZ;
|
|
dest.m12 = nm02 * m_sinZ + nm12 * cosZ;
|
|
// copy last column from 'this'
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply rotation of <code>angles.z</code> radians about the Z axis, followed by a rotation of <code>angles.y</code> radians about the Y axis and
|
|
* followed by a rotation of <code>angles.x</code> radians about the X axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x)</code>
|
|
*
|
|
* @param angles
|
|
* the Euler angles
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateZYX(Vector3d angles) {
|
|
return rotateZYX(angles.z, angles.y, angles.x);
|
|
}
|
|
|
|
/**
|
|
* Apply rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and
|
|
* followed by a rotation of <code>angleX</code> radians about the X axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>rotateZ(angleZ).rotateY(angleY).rotateX(angleX)</code>
|
|
*
|
|
* @param angleZ
|
|
* the angle to rotate about Z
|
|
* @param angleY
|
|
* the angle to rotate about Y
|
|
* @param angleX
|
|
* the angle to rotate about X
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateZYX(double angleZ, double angleY, double angleX) {
|
|
return rotateZYX(angleZ, angleY, angleX, this);
|
|
}
|
|
|
|
public Matrix4x3d rotateZYX(double angleZ, double angleY, double angleX, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.rotationZYX(angleZ, angleY, angleX);
|
|
else if ((properties & PROPERTY_TRANSLATION) != 0) {
|
|
double tx = m30, ty = m31, tz = m32;
|
|
return dest.rotationZYX(angleZ, angleY, angleX).setTranslation(tx, ty, tz);
|
|
}
|
|
return rotateZYXInternal(angleZ, angleY, angleX, dest);
|
|
}
|
|
private Matrix4x3d rotateZYXInternal(double angleZ, double angleY, double angleX, Matrix4x3d dest) {
|
|
double sinX = Math.sin(angleX);
|
|
double cosX = Math.cosFromSin(sinX, angleX);
|
|
double sinY = Math.sin(angleY);
|
|
double cosY = Math.cosFromSin(sinY, angleY);
|
|
double sinZ = Math.sin(angleZ);
|
|
double cosZ = Math.cosFromSin(sinZ, angleZ);
|
|
double m_sinZ = -sinZ;
|
|
double m_sinY = -sinY;
|
|
double m_sinX = -sinX;
|
|
|
|
// rotateZ
|
|
double nm00 = m00 * cosZ + m10 * sinZ;
|
|
double nm01 = m01 * cosZ + m11 * sinZ;
|
|
double nm02 = m02 * cosZ + m12 * sinZ;
|
|
double nm10 = m00 * m_sinZ + m10 * cosZ;
|
|
double nm11 = m01 * m_sinZ + m11 * cosZ;
|
|
double nm12 = m02 * m_sinZ + m12 * cosZ;
|
|
// rotateY
|
|
double nm20 = nm00 * sinY + m20 * cosY;
|
|
double nm21 = nm01 * sinY + m21 * cosY;
|
|
double nm22 = nm02 * sinY + m22 * cosY;
|
|
dest.m00 = nm00 * cosY + m20 * m_sinY;
|
|
dest.m01 = nm01 * cosY + m21 * m_sinY;
|
|
dest.m02 = nm02 * cosY + m22 * m_sinY;
|
|
// rotateX
|
|
dest.m10 = nm10 * cosX + nm20 * sinX;
|
|
dest.m11 = nm11 * cosX + nm21 * sinX;
|
|
dest.m12 = nm12 * cosX + nm22 * sinX;
|
|
dest.m20 = nm10 * m_sinX + nm20 * cosX;
|
|
dest.m21 = nm11 * m_sinX + nm21 * cosX;
|
|
dest.m22 = nm12 * m_sinX + nm22 * cosX;
|
|
// copy last column from 'this'
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply rotation of <code>angles.y</code> radians about the Y axis, followed by a rotation of <code>angles.x</code> radians about the X axis and
|
|
* followed by a rotation of <code>angles.z</code> radians about the Z axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)</code>
|
|
*
|
|
* @param angles
|
|
* the Euler angles
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateYXZ(Vector3d angles) {
|
|
return rotateYXZ(angles.y, angles.x, angles.z);
|
|
}
|
|
|
|
/**
|
|
* Apply rotation of <code>angleY</code> radians about the Y axis, followed by a rotation of <code>angleX</code> radians about the X axis and
|
|
* followed by a rotation of <code>angleZ</code> radians about the Z axis.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* rotation will be applied first!
|
|
* <p>
|
|
* This method is equivalent to calling: <code>rotateY(angleY).rotateX(angleX).rotateZ(angleZ)</code>
|
|
*
|
|
* @param angleY
|
|
* the angle to rotate about Y
|
|
* @param angleX
|
|
* the angle to rotate about X
|
|
* @param angleZ
|
|
* the angle to rotate about Z
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateYXZ(double angleY, double angleX, double angleZ) {
|
|
return rotateYXZ(angleY, angleX, angleZ, this);
|
|
}
|
|
|
|
public Matrix4x3d rotateYXZ(double angleY, double angleX, double angleZ, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.rotationYXZ(angleY, angleX, angleZ);
|
|
else if ((properties & PROPERTY_TRANSLATION) != 0) {
|
|
double tx = m30, ty = m31, tz = m32;
|
|
return dest.rotationYXZ(angleY, angleX, angleZ).setTranslation(tx, ty, tz);
|
|
}
|
|
return rotateYXZInternal(angleY, angleX, angleZ, dest);
|
|
}
|
|
private Matrix4x3d rotateYXZInternal(double angleY, double angleX, double angleZ, Matrix4x3d dest) {
|
|
double sinX = Math.sin(angleX);
|
|
double cosX = Math.cosFromSin(sinX, angleX);
|
|
double sinY = Math.sin(angleY);
|
|
double cosY = Math.cosFromSin(sinY, angleY);
|
|
double sinZ = Math.sin(angleZ);
|
|
double cosZ = Math.cosFromSin(sinZ, angleZ);
|
|
double m_sinY = -sinY;
|
|
double m_sinX = -sinX;
|
|
double m_sinZ = -sinZ;
|
|
|
|
// rotateY
|
|
double nm20 = m00 * sinY + m20 * cosY;
|
|
double nm21 = m01 * sinY + m21 * cosY;
|
|
double nm22 = m02 * sinY + m22 * cosY;
|
|
double nm00 = m00 * cosY + m20 * m_sinY;
|
|
double nm01 = m01 * cosY + m21 * m_sinY;
|
|
double nm02 = m02 * cosY + m22 * m_sinY;
|
|
// rotateX
|
|
double nm10 = m10 * cosX + nm20 * sinX;
|
|
double nm11 = m11 * cosX + nm21 * sinX;
|
|
double nm12 = m12 * cosX + nm22 * sinX;
|
|
dest.m20 = m10 * m_sinX + nm20 * cosX;
|
|
dest.m21 = m11 * m_sinX + nm21 * cosX;
|
|
dest.m22 = m12 * m_sinX + nm22 * cosX;
|
|
// rotateZ
|
|
dest.m00 = nm00 * cosZ + nm10 * sinZ;
|
|
dest.m01 = nm01 * cosZ + nm11 * sinZ;
|
|
dest.m02 = nm02 * cosZ + nm12 * sinZ;
|
|
dest.m10 = nm00 * m_sinZ + nm10 * cosZ;
|
|
dest.m11 = nm01 * m_sinZ + nm11 * cosZ;
|
|
dest.m12 = nm02 * m_sinZ + nm12 * cosZ;
|
|
// copy last column from 'this'
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation transformation using the given {@link AxisAngle4f}.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional rotation.
|
|
* <p>
|
|
* In order to apply the rotation transformation to an existing transformation,
|
|
* use {@link #rotate(AxisAngle4f) rotate()} instead.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(AxisAngle4f)
|
|
*
|
|
* @param angleAxis
|
|
* the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized})
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotation(AxisAngle4f angleAxis) {
|
|
return rotation(angleAxis.angle, angleAxis.x, angleAxis.y, angleAxis.z);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation transformation using the given {@link AxisAngle4d}.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional rotation.
|
|
* <p>
|
|
* In order to apply the rotation transformation to an existing transformation,
|
|
* use {@link #rotate(AxisAngle4d) rotate()} instead.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(AxisAngle4d)
|
|
*
|
|
* @param angleAxis
|
|
* the {@link AxisAngle4d} (needs to be {@link AxisAngle4d#normalize() normalized})
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotation(AxisAngle4d angleAxis) {
|
|
return rotation(angleAxis.angle, angleAxis.x, angleAxis.y, angleAxis.z);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to the rotation - and possibly scaling - transformation of the given {@link Quaterniondc}.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional rotation.
|
|
* <p>
|
|
* In order to apply the rotation transformation to an existing transformation,
|
|
* use {@link #rotate(Quaterniondc) rotate()} instead.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(Quaterniondc)
|
|
*
|
|
* @param quat
|
|
* the {@link Quaterniondc}
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotation(Quaterniondc quat) {
|
|
double w2 = quat.w() * quat.w();
|
|
double x2 = quat.x() * quat.x();
|
|
double y2 = quat.y() * quat.y();
|
|
double z2 = quat.z() * quat.z();
|
|
double zw = quat.z() * quat.w(), dzw = zw + zw;
|
|
double xy = quat.x() * quat.y(), dxy = xy + xy;
|
|
double xz = quat.x() * quat.z(), dxz = xz + xz;
|
|
double yw = quat.y() * quat.w(), dyw = yw + yw;
|
|
double yz = quat.y() * quat.z(), dyz = yz + yz;
|
|
double xw = quat.x() * quat.w(), dxw = xw + xw;
|
|
_m00(w2 + x2 - z2 - y2);
|
|
_m01(dxy + dzw);
|
|
_m02(dxz - dyw);
|
|
_m10(dxy - dzw);
|
|
_m11(y2 - z2 + w2 - x2);
|
|
_m12(dyz + dxw);
|
|
_m20(dyw + dxz);
|
|
_m21(dyz - dxw);
|
|
_m22(z2 - y2 - x2 + w2);
|
|
_m30(0.0);
|
|
_m31(0.0);
|
|
_m32(0.0);
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to the rotation - and possibly scaling - transformation of the given {@link Quaternionfc}.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* The resulting matrix can be multiplied against another transformation
|
|
* matrix to obtain an additional rotation.
|
|
* <p>
|
|
* In order to apply the rotation transformation to an existing transformation,
|
|
* use {@link #rotate(Quaternionfc) rotate()} instead.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(Quaternionfc)
|
|
*
|
|
* @param quat
|
|
* the {@link Quaternionfc}
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotation(Quaternionfc quat) {
|
|
double w2 = quat.w() * quat.w();
|
|
double x2 = quat.x() * quat.x();
|
|
double y2 = quat.y() * quat.y();
|
|
double z2 = quat.z() * quat.z();
|
|
double zw = quat.z() * quat.w(), dzw = zw + zw;
|
|
double xy = quat.x() * quat.y(), dxy = xy + xy;
|
|
double xz = quat.x() * quat.z(), dxz = xz + xz;
|
|
double yw = quat.y() * quat.w(), dyw = yw + yw;
|
|
double yz = quat.y() * quat.z(), dyz = yz + yz;
|
|
double xw = quat.x() * quat.w(), dxw = xw + xw;
|
|
_m00(w2 + x2 - z2 - y2);
|
|
_m01(dxy + dzw);
|
|
_m02(dxz - dyw);
|
|
_m10(dxy - dzw);
|
|
_m11(y2 - z2 + w2 - x2);
|
|
_m12(dyz + dxw);
|
|
_m20(dyw + dxz);
|
|
_m21(dyz - dxw);
|
|
_m22(z2 - y2 - x2 + w2);
|
|
_m30(0.0);
|
|
_m31(0.0);
|
|
_m32(0.0);
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set <code>this</code> matrix to <code>T * R * S</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code>,
|
|
* <code>R</code> is a rotation transformation specified by the quaternion <code>(qx, qy, qz, qw)</code>, and <code>S</code> is a scaling transformation
|
|
* which scales the three axes x, y and z by <code>(sx, sy, sz)</code>.
|
|
* <p>
|
|
* When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and
|
|
* at last the translation.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz)</code>
|
|
*
|
|
* @see #translation(double, double, double)
|
|
* @see #rotate(Quaterniondc)
|
|
* @see #scale(double, double, double)
|
|
*
|
|
* @param tx
|
|
* the number of units by which to translate the x-component
|
|
* @param ty
|
|
* the number of units by which to translate the y-component
|
|
* @param tz
|
|
* the number of units by which to translate the z-component
|
|
* @param qx
|
|
* the x-coordinate of the vector part of the quaternion
|
|
* @param qy
|
|
* the y-coordinate of the vector part of the quaternion
|
|
* @param qz
|
|
* the z-coordinate of the vector part of the quaternion
|
|
* @param qw
|
|
* the scalar part of the quaternion
|
|
* @param sx
|
|
* the scaling factor for the x-axis
|
|
* @param sy
|
|
* the scaling factor for the y-axis
|
|
* @param sz
|
|
* the scaling factor for the z-axis
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translationRotateScale(double tx, double ty, double tz,
|
|
double qx, double qy, double qz, double qw,
|
|
double sx, double sy, double sz) {
|
|
double dqx = qx + qx, dqy = qy + qy, dqz = qz + qz;
|
|
double q00 = dqx * qx;
|
|
double q11 = dqy * qy;
|
|
double q22 = dqz * qz;
|
|
double q01 = dqx * qy;
|
|
double q02 = dqx * qz;
|
|
double q03 = dqx * qw;
|
|
double q12 = dqy * qz;
|
|
double q13 = dqy * qw;
|
|
double q23 = dqz * qw;
|
|
m00 = sx - (q11 + q22) * sx;
|
|
m01 = (q01 + q23) * sx;
|
|
m02 = (q02 - q13) * sx;
|
|
m10 = (q01 - q23) * sy;
|
|
m11 = sy - (q22 + q00) * sy;
|
|
m12 = (q12 + q03) * sy;
|
|
m20 = (q02 + q13) * sz;
|
|
m21 = (q12 - q03) * sz;
|
|
m22 = sz - (q11 + q00) * sz;
|
|
m30 = tx;
|
|
m31 = ty;
|
|
m32 = tz;
|
|
properties = 0;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set <code>this</code> matrix to <code>T * R * S</code>, where <code>T</code> is the given <code>translation</code>,
|
|
* <code>R</code> is a rotation transformation specified by the given quaternion, and <code>S</code> is a scaling transformation
|
|
* which scales the axes by <code>scale</code>.
|
|
* <p>
|
|
* When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and
|
|
* at last the translation.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translation(translation).rotate(quat).scale(scale)</code>
|
|
*
|
|
* @see #translation(Vector3fc)
|
|
* @see #rotate(Quaternionfc)
|
|
*
|
|
* @param translation
|
|
* the translation
|
|
* @param quat
|
|
* the quaternion representing a rotation
|
|
* @param scale
|
|
* the scaling factors
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translationRotateScale(Vector3fc translation,
|
|
Quaternionfc quat,
|
|
Vector3fc scale) {
|
|
return translationRotateScale(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale.x(), scale.y(), scale.z());
|
|
}
|
|
|
|
/**
|
|
* Set <code>this</code> matrix to <code>T * R * S</code>, where <code>T</code> is the given <code>translation</code>,
|
|
* <code>R</code> is a rotation transformation specified by the given quaternion, and <code>S</code> is a scaling transformation
|
|
* which scales the axes by <code>scale</code>.
|
|
* <p>
|
|
* When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and
|
|
* at last the translation.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translation(translation).rotate(quat).scale(scale)</code>
|
|
*
|
|
* @see #translation(Vector3dc)
|
|
* @see #rotate(Quaterniondc)
|
|
*
|
|
* @param translation
|
|
* the translation
|
|
* @param quat
|
|
* the quaternion representing a rotation
|
|
* @param scale
|
|
* the scaling factors
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translationRotateScale(Vector3dc translation,
|
|
Quaterniondc quat,
|
|
Vector3dc scale) {
|
|
return translationRotateScale(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale.x(), scale.y(), scale.z());
|
|
}
|
|
|
|
/**
|
|
* Set <code>this</code> matrix to <code>T * R * S * M</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code>,
|
|
* <code>R</code> is a rotation transformation specified by the quaternion <code>(qx, qy, qz, qw)</code>, <code>S</code> is a scaling transformation
|
|
* which scales the three axes x, y and z by <code>(sx, sy, sz)</code>.
|
|
* <p>
|
|
* When transforming a vector by the resulting matrix the transformation described by <code>M</code> will be applied first, then the scaling, then rotation and
|
|
* at last the translation.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mul(m)</code>
|
|
*
|
|
* @see #translation(double, double, double)
|
|
* @see #rotate(Quaterniondc)
|
|
* @see #scale(double, double, double)
|
|
* @see #mul(Matrix4x3dc)
|
|
*
|
|
* @param tx
|
|
* the number of units by which to translate the x-component
|
|
* @param ty
|
|
* the number of units by which to translate the y-component
|
|
* @param tz
|
|
* the number of units by which to translate the z-component
|
|
* @param qx
|
|
* the x-coordinate of the vector part of the quaternion
|
|
* @param qy
|
|
* the y-coordinate of the vector part of the quaternion
|
|
* @param qz
|
|
* the z-coordinate of the vector part of the quaternion
|
|
* @param qw
|
|
* the scalar part of the quaternion
|
|
* @param sx
|
|
* the scaling factor for the x-axis
|
|
* @param sy
|
|
* the scaling factor for the y-axis
|
|
* @param sz
|
|
* the scaling factor for the z-axis
|
|
* @param m
|
|
* the matrix to multiply by
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translationRotateScaleMul(
|
|
double tx, double ty, double tz,
|
|
double qx, double qy, double qz, double qw,
|
|
double sx, double sy, double sz,
|
|
Matrix4x3dc m) {
|
|
double dqx = qx + qx;
|
|
double dqy = qy + qy;
|
|
double dqz = qz + qz;
|
|
double q00 = dqx * qx;
|
|
double q11 = dqy * qy;
|
|
double q22 = dqz * qz;
|
|
double q01 = dqx * qy;
|
|
double q02 = dqx * qz;
|
|
double q03 = dqx * qw;
|
|
double q12 = dqy * qz;
|
|
double q13 = dqy * qw;
|
|
double q23 = dqz * qw;
|
|
double nm00 = sx - (q11 + q22) * sx;
|
|
double nm01 = (q01 + q23) * sx;
|
|
double nm02 = (q02 - q13) * sx;
|
|
double nm10 = (q01 - q23) * sy;
|
|
double nm11 = sy - (q22 + q00) * sy;
|
|
double nm12 = (q12 + q03) * sy;
|
|
double nm20 = (q02 + q13) * sz;
|
|
double nm21 = (q12 - q03) * sz;
|
|
double nm22 = sz - (q11 + q00) * sz;
|
|
double m00 = nm00 * m.m00() + nm10 * m.m01() + nm20 * m.m02();
|
|
double m01 = nm01 * m.m00() + nm11 * m.m01() + nm21 * m.m02();
|
|
m02 = nm02 * m.m00() + nm12 * m.m01() + nm22 * m.m02();
|
|
this.m00 = m00;
|
|
this.m01 = m01;
|
|
double m10 = nm00 * m.m10() + nm10 * m.m11() + nm20 * m.m12();
|
|
double m11 = nm01 * m.m10() + nm11 * m.m11() + nm21 * m.m12();
|
|
m12 = nm02 * m.m10() + nm12 * m.m11() + nm22 * m.m12();
|
|
this.m10 = m10;
|
|
this.m11 = m11;
|
|
double m20 = nm00 * m.m20() + nm10 * m.m21() + nm20 * m.m22();
|
|
double m21 = nm01 * m.m20() + nm11 * m.m21() + nm21 * m.m22();
|
|
m22 = nm02 * m.m20() + nm12 * m.m21() + nm22 * m.m22();
|
|
this.m20 = m20;
|
|
this.m21 = m21;
|
|
double m30 = nm00 * m.m30() + nm10 * m.m31() + nm20 * m.m32() + tx;
|
|
double m31 = nm01 * m.m30() + nm11 * m.m31() + nm21 * m.m32() + ty;
|
|
m32 = nm02 * m.m30() + nm12 * m.m31() + nm22 * m.m32() + tz;
|
|
this.m30 = m30;
|
|
this.m31 = m31;
|
|
properties = 0;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set <code>this</code> matrix to <code>T * R * S * M</code>, where <code>T</code> is the given <code>translation</code>,
|
|
* <code>R</code> is a rotation transformation specified by the given quaternion, <code>S</code> is a scaling transformation
|
|
* which scales the axes by <code>scale</code>.
|
|
* <p>
|
|
* When transforming a vector by the resulting matrix the transformation described by <code>M</code> will be applied first, then the scaling, then rotation and
|
|
* at last the translation.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translation(translation).rotate(quat).scale(scale).mul(m)</code>
|
|
*
|
|
* @see #translation(Vector3dc)
|
|
* @see #rotate(Quaterniondc)
|
|
* @see #mul(Matrix4x3dc)
|
|
*
|
|
* @param translation
|
|
* the translation
|
|
* @param quat
|
|
* the quaternion representing a rotation
|
|
* @param scale
|
|
* the scaling factors
|
|
* @param m
|
|
* the matrix to multiply by
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translationRotateScaleMul(Vector3dc translation, Quaterniondc quat, Vector3dc scale, Matrix4x3dc m) {
|
|
return translationRotateScaleMul(translation.x(), translation.y(), translation.z(), quat.x(), quat.y(), quat.z(), quat.w(), scale.x(), scale.y(), scale.z(), m);
|
|
}
|
|
|
|
/**
|
|
* Set <code>this</code> matrix to <code>T * R</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code> and
|
|
* <code>R</code> is a rotation transformation specified by the given quaternion.
|
|
* <p>
|
|
* When transforming a vector by the resulting matrix the rotation transformation will be applied first and then the translation.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat)</code>
|
|
*
|
|
* @see #translation(double, double, double)
|
|
* @see #rotate(Quaterniondc)
|
|
*
|
|
* @param tx
|
|
* the number of units by which to translate the x-component
|
|
* @param ty
|
|
* the number of units by which to translate the y-component
|
|
* @param tz
|
|
* the number of units by which to translate the z-component
|
|
* @param quat
|
|
* the quaternion representing a rotation
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translationRotate(double tx, double ty, double tz, Quaterniondc quat) {
|
|
double dqx = quat.x() + quat.x(), dqy = quat.y() + quat.y(), dqz = quat.z() + quat.z();
|
|
double q00 = dqx * quat.x();
|
|
double q11 = dqy * quat.y();
|
|
double q22 = dqz * quat.z();
|
|
double q01 = dqx * quat.y();
|
|
double q02 = dqx * quat.z();
|
|
double q03 = dqx * quat.w();
|
|
double q12 = dqy * quat.z();
|
|
double q13 = dqy * quat.w();
|
|
double q23 = dqz * quat.w();
|
|
m00 = 1.0 - (q11 + q22);
|
|
m01 = q01 + q23;
|
|
m02 = q02 - q13;
|
|
m10 = q01 - q23;
|
|
m11 = 1.0 - (q22 + q00);
|
|
m12 = q12 + q03;
|
|
m20 = q02 + q13;
|
|
m21 = q12 - q03;
|
|
m22 = 1.0 - (q11 + q00);
|
|
m30 = tx;
|
|
m31 = ty;
|
|
m32 = tz;
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set <code>this</code> matrix to <code>T * R * M</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code>,
|
|
* <code>R</code> is a rotation - and possibly scaling - transformation specified by the given quaternion and <code>M</code> is the given matrix <code>mat</code>.
|
|
* <p>
|
|
* When transforming a vector by the resulting matrix the transformation described by <code>M</code> will be applied first, then the scaling, then rotation and
|
|
* at last the translation.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat).mul(mat)</code>
|
|
*
|
|
* @see #translation(double, double, double)
|
|
* @see #rotate(Quaternionfc)
|
|
* @see #mul(Matrix4x3dc)
|
|
*
|
|
* @param tx
|
|
* the number of units by which to translate the x-component
|
|
* @param ty
|
|
* the number of units by which to translate the y-component
|
|
* @param tz
|
|
* the number of units by which to translate the z-component
|
|
* @param quat
|
|
* the quaternion representing a rotation
|
|
* @param mat
|
|
* the matrix to multiply with
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translationRotateMul(double tx, double ty, double tz, Quaternionfc quat, Matrix4x3dc mat) {
|
|
return translationRotateMul(tx, ty, tz, quat.x(), quat.y(), quat.z(), quat.w(), mat);
|
|
}
|
|
|
|
/**
|
|
* Set <code>this</code> matrix to <code>T * R * M</code>, where <code>T</code> is a translation by the given <code>(tx, ty, tz)</code>,
|
|
* <code>R</code> is a rotation - and possibly scaling - transformation specified by the quaternion <code>(qx, qy, qz, qw)</code> and <code>M</code> is the given matrix <code>mat</code>
|
|
* <p>
|
|
* When transforming a vector by the resulting matrix the transformation described by <code>M</code> will be applied first, then the scaling, then rotation and
|
|
* at last the translation.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translation(tx, ty, tz).rotate(quat).mul(mat)</code>
|
|
*
|
|
* @see #translation(double, double, double)
|
|
* @see #rotate(Quaternionfc)
|
|
* @see #mul(Matrix4x3dc)
|
|
*
|
|
* @param tx
|
|
* the number of units by which to translate the x-component
|
|
* @param ty
|
|
* the number of units by which to translate the y-component
|
|
* @param tz
|
|
* the number of units by which to translate the z-component
|
|
* @param qx
|
|
* the x-coordinate of the vector part of the quaternion
|
|
* @param qy
|
|
* the y-coordinate of the vector part of the quaternion
|
|
* @param qz
|
|
* the z-coordinate of the vector part of the quaternion
|
|
* @param qw
|
|
* the scalar part of the quaternion
|
|
* @param mat
|
|
* the matrix to multiply with
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translationRotateMul(double tx, double ty, double tz, double qx, double qy, double qz, double qw, Matrix4x3dc mat) {
|
|
double w2 = qw * qw;
|
|
double x2 = qx * qx;
|
|
double y2 = qy * qy;
|
|
double z2 = qz * qz;
|
|
double zw = qz * qw;
|
|
double xy = qx * qy;
|
|
double xz = qx * qz;
|
|
double yw = qy * qw;
|
|
double yz = qy * qz;
|
|
double xw = qx * qw;
|
|
double nm00 = w2 + x2 - z2 - y2;
|
|
double nm01 = xy + zw + zw + xy;
|
|
double nm02 = xz - yw + xz - yw;
|
|
double nm10 = -zw + xy - zw + xy;
|
|
double nm11 = y2 - z2 + w2 - x2;
|
|
double nm12 = yz + yz + xw + xw;
|
|
double nm20 = yw + xz + xz + yw;
|
|
double nm21 = yz + yz - xw - xw;
|
|
double nm22 = z2 - y2 - x2 + w2;
|
|
m00 = nm00 * mat.m00() + nm10 * mat.m01() + nm20 * mat.m02();
|
|
m01 = nm01 * mat.m00() + nm11 * mat.m01() + nm21 * mat.m02();
|
|
m02 = nm02 * mat.m00() + nm12 * mat.m01() + nm22 * mat.m02();
|
|
m10 = nm00 * mat.m10() + nm10 * mat.m11() + nm20 * mat.m12();
|
|
m11 = nm01 * mat.m10() + nm11 * mat.m11() + nm21 * mat.m12();
|
|
m12 = nm02 * mat.m10() + nm12 * mat.m11() + nm22 * mat.m12();
|
|
m20 = nm00 * mat.m20() + nm10 * mat.m21() + nm20 * mat.m22();
|
|
m21 = nm01 * mat.m20() + nm11 * mat.m21() + nm21 * mat.m22();
|
|
m22 = nm02 * mat.m20() + nm12 * mat.m21() + nm22 * mat.m22();
|
|
m30 = nm00 * mat.m30() + nm10 * mat.m31() + nm20 * mat.m32() + tx;
|
|
m31 = nm01 * mat.m30() + nm11 * mat.m31() + nm21 * mat.m32() + ty;
|
|
m32 = nm02 * mat.m30() + nm12 * mat.m31() + nm22 * mat.m32() + tz;
|
|
this.properties = 0;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix and store
|
|
* the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>M * Q</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
|
|
* the quaternion rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying,
|
|
* use {@link #rotation(Quaterniondc)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(Quaterniondc)
|
|
*
|
|
* @param quat
|
|
* the {@link Quaterniondc}
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotate(Quaterniondc quat, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.rotation(quat);
|
|
else if ((properties & PROPERTY_TRANSLATION) != 0)
|
|
return rotateTranslation(quat, dest);
|
|
return rotateGeneric(quat, dest);
|
|
}
|
|
private Matrix4x3d rotateGeneric(Quaterniondc quat, Matrix4x3d dest) {
|
|
double w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x();
|
|
double y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z();
|
|
double zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy;
|
|
double xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw;
|
|
double yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw;
|
|
double rm00 = w2 + x2 - z2 - y2;
|
|
double rm01 = dxy + dzw;
|
|
double rm02 = dxz - dyw;
|
|
double rm10 = dxy - dzw;
|
|
double rm11 = y2 - z2 + w2 - x2;
|
|
double rm12 = dyz + dxw;
|
|
double rm20 = dyw + dxz;
|
|
double rm21 = dyz - dxw;
|
|
double rm22 = z2 - y2 - x2 + w2;
|
|
double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
|
|
double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
|
|
double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
|
|
double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
|
|
double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
|
|
double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
|
|
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
|
|
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
|
|
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix and store
|
|
* the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>M * Q</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
|
|
* the quaternion rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying,
|
|
* use {@link #rotation(Quaternionfc)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(Quaternionfc)
|
|
*
|
|
* @param quat
|
|
* the {@link Quaternionfc}
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotate(Quaternionfc quat, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.rotation(quat);
|
|
else if ((properties & PROPERTY_TRANSLATION) != 0)
|
|
return rotateTranslation(quat, dest);
|
|
return rotateGeneric(quat, dest);
|
|
}
|
|
private Matrix4x3d rotateGeneric(Quaternionfc quat, Matrix4x3d dest) {
|
|
double w2 = quat.w() * quat.w();
|
|
double x2 = quat.x() * quat.x();
|
|
double y2 = quat.y() * quat.y();
|
|
double z2 = quat.z() * quat.z();
|
|
double zw = quat.z() * quat.w();
|
|
double xy = quat.x() * quat.y();
|
|
double xz = quat.x() * quat.z();
|
|
double yw = quat.y() * quat.w();
|
|
double yz = quat.y() * quat.z();
|
|
double xw = quat.x() * quat.w();
|
|
double rm00 = w2 + x2 - z2 - y2;
|
|
double rm01 = xy + zw + zw + xy;
|
|
double rm02 = xz - yw + xz - yw;
|
|
double rm10 = -zw + xy - zw + xy;
|
|
double rm11 = y2 - z2 + w2 - x2;
|
|
double rm12 = yz + yz + xw + xw;
|
|
double rm20 = yw + xz + xz + yw;
|
|
double rm21 = yz + yz - xw - xw;
|
|
double rm22 = z2 - y2 - x2 + w2;
|
|
double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
|
|
double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
|
|
double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
|
|
double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
|
|
double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
|
|
double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
|
|
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
|
|
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
|
|
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>M * Q</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
|
|
* the quaternion rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying,
|
|
* use {@link #rotation(Quaterniondc)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(Quaterniondc)
|
|
*
|
|
* @param quat
|
|
* the {@link Quaterniondc}
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotate(Quaterniondc quat) {
|
|
return rotate(quat, this);
|
|
}
|
|
|
|
/**
|
|
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>M * Q</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
|
|
* the quaternion rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying,
|
|
* use {@link #rotation(Quaternionfc)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(Quaternionfc)
|
|
*
|
|
* @param quat
|
|
* the {@link Quaternionfc}
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotate(Quaternionfc quat) {
|
|
return rotate(quat, this);
|
|
}
|
|
|
|
/**
|
|
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix, which is assumed to only contain a translation, and store
|
|
* the result in <code>dest</code>.
|
|
* <p>
|
|
* This method assumes <code>this</code> to only contain a translation.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>M * Q</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
|
|
* the quaternion rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying,
|
|
* use {@link #rotation(Quaterniondc)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(Quaterniondc)
|
|
*
|
|
* @param quat
|
|
* the {@link Quaterniondc}
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotateTranslation(Quaterniondc quat, Matrix4x3d dest) {
|
|
double w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x();
|
|
double y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z();
|
|
double zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy;
|
|
double xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw;
|
|
double yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw;
|
|
double rm00 = w2 + x2 - z2 - y2;
|
|
double rm01 = dxy + dzw;
|
|
double rm02 = dxz - dyw;
|
|
double rm10 = dxy - dzw;
|
|
double rm11 = y2 - z2 + w2 - x2;
|
|
double rm12 = dyz + dxw;
|
|
double rm20 = dyw + dxz;
|
|
double rm21 = dyz - dxw;
|
|
double rm22 = z2 - y2 - x2 + w2;
|
|
dest.m20 = rm20;
|
|
dest.m21 = rm21;
|
|
dest.m22 = rm22;
|
|
dest.m00 = rm00;
|
|
dest.m01 = rm01;
|
|
dest.m02 = rm02;
|
|
dest.m10 = rm10;
|
|
dest.m11 = rm11;
|
|
dest.m12 = rm12;
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix, which is assumed to only contain a translation, and store
|
|
* the result in <code>dest</code>.
|
|
* <p>
|
|
* This method assumes <code>this</code> to only contain a translation.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>M * Q</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
|
|
* the quaternion rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying,
|
|
* use {@link #rotation(Quaternionfc)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(Quaternionfc)
|
|
*
|
|
* @param quat
|
|
* the {@link Quaternionfc}
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotateTranslation(Quaternionfc quat, Matrix4x3d dest) {
|
|
double w2 = quat.w() * quat.w();
|
|
double x2 = quat.x() * quat.x();
|
|
double y2 = quat.y() * quat.y();
|
|
double z2 = quat.z() * quat.z();
|
|
double zw = quat.z() * quat.w();
|
|
double xy = quat.x() * quat.y();
|
|
double xz = quat.x() * quat.z();
|
|
double yw = quat.y() * quat.w();
|
|
double yz = quat.y() * quat.z();
|
|
double xw = quat.x() * quat.w();
|
|
double rm00 = w2 + x2 - z2 - y2;
|
|
double rm01 = xy + zw + zw + xy;
|
|
double rm02 = xz - yw + xz - yw;
|
|
double rm10 = -zw + xy - zw + xy;
|
|
double rm11 = y2 - z2 + w2 - x2;
|
|
double rm12 = yz + yz + xw + xw;
|
|
double rm20 = yw + xz + xz + yw;
|
|
double rm21 = yz + yz - xw - xw;
|
|
double rm22 = z2 - y2 - x2 + w2;
|
|
double nm00 = rm00;
|
|
double nm01 = rm01;
|
|
double nm02 = rm02;
|
|
double nm10 = rm10;
|
|
double nm11 = rm11;
|
|
double nm12 = rm12;
|
|
dest.m20 = rm20;
|
|
dest.m21 = rm21;
|
|
dest.m22 = rm22;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaterniondc} to this matrix and store
|
|
* the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>Q * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>Q * M * v</code>,
|
|
* the quaternion rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without pre-multiplying,
|
|
* use {@link #rotation(Quaterniondc)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(Quaterniondc)
|
|
*
|
|
* @param quat
|
|
* the {@link Quaterniondc}
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotateLocal(Quaterniondc quat, Matrix4x3d dest) {
|
|
double w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x();
|
|
double y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z();
|
|
double zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy;
|
|
double xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw;
|
|
double yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw;
|
|
double lm00 = w2 + x2 - z2 - y2;
|
|
double lm01 = dxy + dzw;
|
|
double lm02 = dxz - dyw;
|
|
double lm10 = dxy - dzw;
|
|
double lm11 = y2 - z2 + w2 - x2;
|
|
double lm12 = dyz + dxw;
|
|
double lm20 = dyw + dxz;
|
|
double lm21 = dyz - dxw;
|
|
double lm22 = z2 - y2 - x2 + w2;
|
|
double nm00 = lm00 * m00 + lm10 * m01 + lm20 * m02;
|
|
double nm01 = lm01 * m00 + lm11 * m01 + lm21 * m02;
|
|
double nm02 = lm02 * m00 + lm12 * m01 + lm22 * m02;
|
|
double nm10 = lm00 * m10 + lm10 * m11 + lm20 * m12;
|
|
double nm11 = lm01 * m10 + lm11 * m11 + lm21 * m12;
|
|
double nm12 = lm02 * m10 + lm12 * m11 + lm22 * m12;
|
|
double nm20 = lm00 * m20 + lm10 * m21 + lm20 * m22;
|
|
double nm21 = lm01 * m20 + lm11 * m21 + lm21 * m22;
|
|
double nm22 = lm02 * m20 + lm12 * m21 + lm22 * m22;
|
|
double nm30 = lm00 * m30 + lm10 * m31 + lm20 * m32;
|
|
double nm31 = lm01 * m30 + lm11 * m31 + lm21 * m32;
|
|
double nm32 = lm02 * m30 + lm12 * m31 + lm22 * m32;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
dest.m22 = nm22;
|
|
dest.m30 = nm30;
|
|
dest.m31 = nm31;
|
|
dest.m32 = nm32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply the rotation transformation of the given {@link Quaterniondc} to this matrix.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>Q * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>Q * M * v</code>,
|
|
* the quaternion rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without pre-multiplying,
|
|
* use {@link #rotation(Quaterniondc)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(Quaterniondc)
|
|
*
|
|
* @param quat
|
|
* the {@link Quaterniondc}
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateLocal(Quaterniondc quat) {
|
|
return rotateLocal(quat, this);
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix and store
|
|
* the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>Q * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>Q * M * v</code>,
|
|
* the quaternion rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without pre-multiplying,
|
|
* use {@link #rotation(Quaternionfc)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(Quaternionfc)
|
|
*
|
|
* @param quat
|
|
* the {@link Quaternionfc}
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotateLocal(Quaternionfc quat, Matrix4x3d dest) {
|
|
double w2 = quat.w() * quat.w(), x2 = quat.x() * quat.x();
|
|
double y2 = quat.y() * quat.y(), z2 = quat.z() * quat.z();
|
|
double zw = quat.z() * quat.w(), dzw = zw + zw, xy = quat.x() * quat.y(), dxy = xy + xy;
|
|
double xz = quat.x() * quat.z(), dxz = xz + xz, yw = quat.y() * quat.w(), dyw = yw + yw;
|
|
double yz = quat.y() * quat.z(), dyz = yz + yz, xw = quat.x() * quat.w(), dxw = xw + xw;
|
|
double lm00 = w2 + x2 - z2 - y2;
|
|
double lm01 = dxy + dzw;
|
|
double lm02 = dxz - dyw;
|
|
double lm10 = dxy - dzw;
|
|
double lm11 = y2 - z2 + w2 - x2;
|
|
double lm12 = dyz + dxw;
|
|
double lm20 = dyw + dxz;
|
|
double lm21 = dyz - dxw;
|
|
double lm22 = z2 - y2 - x2 + w2;
|
|
double nm00 = lm00 * m00 + lm10 * m01 + lm20 * m02;
|
|
double nm01 = lm01 * m00 + lm11 * m01 + lm21 * m02;
|
|
double nm02 = lm02 * m00 + lm12 * m01 + lm22 * m02;
|
|
double nm10 = lm00 * m10 + lm10 * m11 + lm20 * m12;
|
|
double nm11 = lm01 * m10 + lm11 * m11 + lm21 * m12;
|
|
double nm12 = lm02 * m10 + lm12 * m11 + lm22 * m12;
|
|
double nm20 = lm00 * m20 + lm10 * m21 + lm20 * m22;
|
|
double nm21 = lm01 * m20 + lm11 * m21 + lm21 * m22;
|
|
double nm22 = lm02 * m20 + lm12 * m21 + lm22 * m22;
|
|
double nm30 = lm00 * m30 + lm10 * m31 + lm20 * m32;
|
|
double nm31 = lm01 * m30 + lm11 * m31 + lm21 * m32;
|
|
double nm32 = lm02 * m30 + lm12 * m31 + lm22 * m32;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
dest.m22 = nm22;
|
|
dest.m30 = nm30;
|
|
dest.m31 = nm31;
|
|
dest.m32 = nm32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
|
|
* then the new matrix will be <code>Q * M</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>Q * M * v</code>,
|
|
* the quaternion rotation will be applied last!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without pre-multiplying,
|
|
* use {@link #rotation(Quaternionfc)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotation(Quaternionfc)
|
|
*
|
|
* @param quat
|
|
* the {@link Quaternionfc}
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateLocal(Quaternionfc quat) {
|
|
return rotateLocal(quat, this);
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation, rotating about the given {@link AxisAngle4f}, to this matrix.
|
|
* <p>
|
|
* The axis described by the <code>axis</code> vector needs to be a unit vector.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4f},
|
|
* then the new matrix will be <code>M * A</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
|
|
* the {@link AxisAngle4f} rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying,
|
|
* use {@link #rotation(AxisAngle4f)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(double, double, double, double)
|
|
* @see #rotation(AxisAngle4f)
|
|
*
|
|
* @param axisAngle
|
|
* the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized})
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotate(AxisAngle4f axisAngle) {
|
|
return rotate(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z);
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation, rotating about the given {@link AxisAngle4f} and store the result in <code>dest</code>.
|
|
* <p>
|
|
* The axis described by the <code>axis</code> vector needs to be a unit vector.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4f},
|
|
* then the new matrix will be <code>M * A</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
|
|
* the {@link AxisAngle4f} rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying,
|
|
* use {@link #rotation(AxisAngle4f)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(double, double, double, double)
|
|
* @see #rotation(AxisAngle4f)
|
|
*
|
|
* @param axisAngle
|
|
* the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized})
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotate(AxisAngle4f axisAngle, Matrix4x3d dest) {
|
|
return rotate(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation, rotating about the given {@link AxisAngle4d}, to this matrix.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4d},
|
|
* then the new matrix will be <code>M * A</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
|
|
* the {@link AxisAngle4d} rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying,
|
|
* use {@link #rotation(AxisAngle4d)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(double, double, double, double)
|
|
* @see #rotation(AxisAngle4d)
|
|
*
|
|
* @param axisAngle
|
|
* the {@link AxisAngle4d} (needs to be {@link AxisAngle4d#normalize() normalized})
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotate(AxisAngle4d axisAngle) {
|
|
return rotate(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z);
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation, rotating about the given {@link AxisAngle4d} and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4d},
|
|
* then the new matrix will be <code>M * A</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
|
|
* the {@link AxisAngle4d} rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying,
|
|
* use {@link #rotation(AxisAngle4d)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(double, double, double, double)
|
|
* @see #rotation(AxisAngle4d)
|
|
*
|
|
* @param axisAngle
|
|
* the {@link AxisAngle4d} (needs to be {@link AxisAngle4d#normalize() normalized})
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotate(AxisAngle4d axisAngle, Matrix4x3d dest) {
|
|
return rotate(axisAngle.angle, axisAngle.x, axisAngle.y, axisAngle.z, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given angle and axis,
|
|
* then the new matrix will be <code>M * A</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
|
|
* the axis-angle rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying,
|
|
* use {@link #rotation(double, Vector3dc)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(double, double, double, double)
|
|
* @see #rotation(double, Vector3dc)
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @param axis
|
|
* the rotation axis (needs to be {@link Vector3d#normalize() normalized})
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotate(double angle, Vector3dc axis) {
|
|
return rotate(angle, axis.x(), axis.y(), axis.z());
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation, rotating the given radians about the specified axis and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given angle and axis,
|
|
* then the new matrix will be <code>M * A</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
|
|
* the axis-angle rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying,
|
|
* use {@link #rotation(double, Vector3dc)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(double, double, double, double)
|
|
* @see #rotation(double, Vector3dc)
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @param axis
|
|
* the rotation axis (needs to be {@link Vector3d#normalize() normalized})
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotate(double angle, Vector3dc axis, Matrix4x3d dest) {
|
|
return rotate(angle, axis.x(), axis.y(), axis.z(), dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given angle and axis,
|
|
* then the new matrix will be <code>M * A</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
|
|
* the axis-angle rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying,
|
|
* use {@link #rotation(double, Vector3fc)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(double, double, double, double)
|
|
* @see #rotation(double, Vector3fc)
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @param axis
|
|
* the rotation axis (needs to be {@link Vector3f#normalize() normalized})
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotate(double angle, Vector3fc axis) {
|
|
return rotate(angle, axis.x(), axis.y(), axis.z());
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation, rotating the given radians about the specified axis and store the result in <code>dest</code>.
|
|
* <p>
|
|
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
|
|
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
|
|
* When used with a left-handed coordinate system, the rotation is clockwise.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given angle and axis,
|
|
* then the new matrix will be <code>M * A</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
|
|
* the axis-angle rotation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying,
|
|
* use {@link #rotation(double, Vector3fc)}.
|
|
* <p>
|
|
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
|
|
*
|
|
* @see #rotate(double, double, double, double)
|
|
* @see #rotation(double, Vector3fc)
|
|
*
|
|
* @param angle
|
|
* the angle in radians
|
|
* @param axis
|
|
* the rotation axis (needs to be {@link Vector3f#normalize() normalized})
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotate(double angle, Vector3fc axis, Matrix4x3d dest) {
|
|
return rotate(angle, axis.x(), axis.y(), axis.z(), dest);
|
|
}
|
|
|
|
public Vector4d getRow(int row, Vector4d dest) throws IndexOutOfBoundsException {
|
|
switch (row) {
|
|
case 0:
|
|
dest.x = m00;
|
|
dest.y = m10;
|
|
dest.z = m20;
|
|
dest.w = m30;
|
|
break;
|
|
case 1:
|
|
dest.x = m01;
|
|
dest.y = m11;
|
|
dest.z = m21;
|
|
dest.w = m31;
|
|
break;
|
|
case 2:
|
|
dest.x = m02;
|
|
dest.y = m12;
|
|
dest.z = m22;
|
|
dest.w = m32;
|
|
break;
|
|
default:
|
|
throw new IndexOutOfBoundsException();
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Set the row at the given <code>row</code> index, starting with <code>0</code>.
|
|
*
|
|
* @param row
|
|
* the row index in <code>[0..2]</code>
|
|
* @param src
|
|
* the row components to set
|
|
* @return this
|
|
* @throws IndexOutOfBoundsException if <code>row</code> is not in <code>[0..2]</code>
|
|
*/
|
|
public Matrix4x3d setRow(int row, Vector4dc src) throws IndexOutOfBoundsException {
|
|
switch (row) {
|
|
case 0:
|
|
this.m00 = src.x();
|
|
this.m10 = src.y();
|
|
this.m20 = src.z();
|
|
this.m30 = src.w();
|
|
break;
|
|
case 1:
|
|
this.m01 = src.x();
|
|
this.m11 = src.y();
|
|
this.m21 = src.z();
|
|
this.m31 = src.w();
|
|
break;
|
|
case 2:
|
|
this.m02 = src.x();
|
|
this.m12 = src.y();
|
|
this.m22 = src.z();
|
|
this.m32 = src.w();
|
|
break;
|
|
default:
|
|
throw new IndexOutOfBoundsException();
|
|
}
|
|
properties = 0;
|
|
return this;
|
|
}
|
|
|
|
public Vector3d getColumn(int column, Vector3d dest) throws IndexOutOfBoundsException {
|
|
switch (column) {
|
|
case 0:
|
|
dest.x = m00;
|
|
dest.y = m01;
|
|
dest.z = m02;
|
|
break;
|
|
case 1:
|
|
dest.x = m10;
|
|
dest.y = m11;
|
|
dest.z = m12;
|
|
break;
|
|
case 2:
|
|
dest.x = m20;
|
|
dest.y = m21;
|
|
dest.z = m22;
|
|
break;
|
|
case 3:
|
|
dest.x = m30;
|
|
dest.y = m31;
|
|
dest.z = m32;
|
|
break;
|
|
default:
|
|
throw new IndexOutOfBoundsException();
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Set the column at the given <code>column</code> index, starting with <code>0</code>.
|
|
*
|
|
* @param column
|
|
* the column index in <code>[0..3]</code>
|
|
* @param src
|
|
* the column components to set
|
|
* @return this
|
|
* @throws IndexOutOfBoundsException if <code>column</code> is not in <code>[0..3]</code>
|
|
*/
|
|
public Matrix4x3d setColumn(int column, Vector3dc src) throws IndexOutOfBoundsException {
|
|
switch (column) {
|
|
case 0:
|
|
this.m00 = src.x();
|
|
this.m01 = src.y();
|
|
this.m02 = src.z();
|
|
break;
|
|
case 1:
|
|
this.m10 = src.x();
|
|
this.m11 = src.y();
|
|
this.m12 = src.z();
|
|
break;
|
|
case 2:
|
|
this.m20 = src.x();
|
|
this.m21 = src.y();
|
|
this.m22 = src.z();
|
|
break;
|
|
case 3:
|
|
this.m30 = src.x();
|
|
this.m31 = src.y();
|
|
this.m32 = src.z();
|
|
break;
|
|
default:
|
|
throw new IndexOutOfBoundsException();
|
|
}
|
|
properties = 0;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Compute a normal matrix from the left 3x3 submatrix of <code>this</code>
|
|
* and store it into the left 3x3 submatrix of <code>this</code>.
|
|
* All other values of <code>this</code> will be set to {@link #identity() identity}.
|
|
* <p>
|
|
* The normal matrix of <code>m</code> is the transpose of the inverse of <code>m</code>.
|
|
* <p>
|
|
* Please note that, if <code>this</code> is an orthogonal matrix or a matrix whose columns are orthogonal vectors,
|
|
* then this method <i>need not</i> be invoked, since in that case <code>this</code> itself is its normal matrix.
|
|
* In that case, use {@link #set3x3(Matrix4x3dc)} to set a given Matrix4x3d to only the left 3x3 submatrix
|
|
* of this matrix.
|
|
*
|
|
* @see #set3x3(Matrix4x3dc)
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d normal() {
|
|
return normal(this);
|
|
}
|
|
|
|
/**
|
|
* Compute a normal matrix from the left 3x3 submatrix of <code>this</code>
|
|
* and store it into the left 3x3 submatrix of <code>dest</code>.
|
|
* All other values of <code>dest</code> will be set to {@link #identity() identity}.
|
|
* <p>
|
|
* The normal matrix of <code>m</code> is the transpose of the inverse of <code>m</code>.
|
|
* <p>
|
|
* Please note that, if <code>this</code> is an orthogonal matrix or a matrix whose columns are orthogonal vectors,
|
|
* then this method <i>need not</i> be invoked, since in that case <code>this</code> itself is its normal matrix.
|
|
* In that case, use {@link #set3x3(Matrix4x3dc)} to set a given Matrix4x3d to only the left 3x3 submatrix
|
|
* of a given matrix.
|
|
*
|
|
* @see #set3x3(Matrix4x3dc)
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d normal(Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.identity();
|
|
else if ((properties & PROPERTY_ORTHONORMAL) != 0)
|
|
return normalOrthonormal(dest);
|
|
return normalGeneric(dest);
|
|
}
|
|
private Matrix4x3d normalOrthonormal(Matrix4x3d dest) {
|
|
if (dest != this)
|
|
dest.set(this);
|
|
return dest._properties(PROPERTY_ORTHONORMAL);
|
|
}
|
|
private Matrix4x3d normalGeneric(Matrix4x3d dest) {
|
|
double m00m11 = m00 * m11;
|
|
double m01m10 = m01 * m10;
|
|
double m02m10 = m02 * m10;
|
|
double m00m12 = m00 * m12;
|
|
double m01m12 = m01 * m12;
|
|
double m02m11 = m02 * m11;
|
|
double det = (m00m11 - m01m10) * m22 + (m02m10 - m00m12) * m21 + (m01m12 - m02m11) * m20;
|
|
double s = 1.0 / det;
|
|
/* Invert and transpose in one go */
|
|
double nm00 = (m11 * m22 - m21 * m12) * s;
|
|
double nm01 = (m20 * m12 - m10 * m22) * s;
|
|
double nm02 = (m10 * m21 - m20 * m11) * s;
|
|
double nm10 = (m21 * m02 - m01 * m22) * s;
|
|
double nm11 = (m00 * m22 - m20 * m02) * s;
|
|
double nm12 = (m20 * m01 - m00 * m21) * s;
|
|
double nm20 = (m01m12 - m02m11) * s;
|
|
double nm21 = (m02m10 - m00m12) * s;
|
|
double nm22 = (m00m11 - m01m10) * s;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
dest.m22 = nm22;
|
|
dest.m30 = 0.0;
|
|
dest.m31 = 0.0;
|
|
dest.m32 = 0.0;
|
|
dest.properties = properties & ~PROPERTY_TRANSLATION;
|
|
return dest;
|
|
}
|
|
|
|
public Matrix3d normal(Matrix3d dest) {
|
|
if ((properties & PROPERTY_ORTHONORMAL) != 0)
|
|
return normalOrthonormal(dest);
|
|
return normalGeneric(dest);
|
|
}
|
|
private Matrix3d normalOrthonormal(Matrix3d dest) {
|
|
return dest.set(this);
|
|
}
|
|
private Matrix3d normalGeneric(Matrix3d dest) {
|
|
double m00m11 = m00 * m11;
|
|
double m01m10 = m01 * m10;
|
|
double m02m10 = m02 * m10;
|
|
double m00m12 = m00 * m12;
|
|
double m01m12 = m01 * m12;
|
|
double m02m11 = m02 * m11;
|
|
double det = (m00m11 - m01m10) * m22 + (m02m10 - m00m12) * m21 + (m01m12 - m02m11) * m20;
|
|
double s = 1.0 / det;
|
|
/* Invert and transpose in one go */
|
|
dest.m00((m11 * m22 - m21 * m12) * s);
|
|
dest.m01((m20 * m12 - m10 * m22) * s);
|
|
dest.m02((m10 * m21 - m20 * m11) * s);
|
|
dest.m10((m21 * m02 - m01 * m22) * s);
|
|
dest.m11((m00 * m22 - m20 * m02) * s);
|
|
dest.m12((m20 * m01 - m00 * m21) * s);
|
|
dest.m20((m01m12 - m02m11) * s);
|
|
dest.m21((m02m10 - m00m12) * s);
|
|
dest.m22((m00m11 - m01m10) * s);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Compute the cofactor matrix of the left 3x3 submatrix of <code>this</code>.
|
|
* <p>
|
|
* The cofactor matrix can be used instead of {@link #normal()} to transform normals
|
|
* when the orientation of the normals with respect to the surface should be preserved.
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d cofactor3x3() {
|
|
return cofactor3x3(this);
|
|
}
|
|
|
|
/**
|
|
* Compute the cofactor matrix of the left 3x3 submatrix of <code>this</code>
|
|
* and store it into <code>dest</code>.
|
|
* <p>
|
|
* The cofactor matrix can be used instead of {@link #normal(Matrix3d)} to transform normals
|
|
* when the orientation of the normals with respect to the surface should be preserved.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix3d cofactor3x3(Matrix3d dest) {
|
|
dest.m00 = m11 * m22 - m21 * m12;
|
|
dest.m01 = m20 * m12 - m10 * m22;
|
|
dest.m02 = m10 * m21 - m20 * m11;
|
|
dest.m10 = m21 * m02 - m01 * m22;
|
|
dest.m11 = m00 * m22 - m20 * m02;
|
|
dest.m12 = m20 * m01 - m00 * m21;
|
|
dest.m20 = m01 * m12 - m02 * m11;
|
|
dest.m21 = m02 * m10 - m00 * m12;
|
|
dest.m22 = m00 * m11 - m01 * m10;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Compute the cofactor matrix of the left 3x3 submatrix of <code>this</code>
|
|
* and store it into <code>dest</code>.
|
|
* All other values of <code>dest</code> will be set to {@link #identity() identity}.
|
|
* <p>
|
|
* The cofactor matrix can be used instead of {@link #normal(Matrix4x3d)} to transform normals
|
|
* when the orientation of the normals with respect to the surface should be preserved.
|
|
*
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d cofactor3x3(Matrix4x3d dest) {
|
|
double nm00 = m11 * m22 - m21 * m12;
|
|
double nm01 = m20 * m12 - m10 * m22;
|
|
double nm02 = m10 * m21 - m20 * m11;
|
|
double nm10 = m21 * m02 - m01 * m22;
|
|
double nm11 = m00 * m22 - m20 * m02;
|
|
double nm12 = m20 * m01 - m00 * m21;
|
|
double nm20 = m01 * m12 - m11 * m02;
|
|
double nm21 = m02 * m10 - m12 * m00;
|
|
double nm22 = m00 * m11 - m10 * m01;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
dest.m22 = nm22;
|
|
dest.m30 = 0.0;
|
|
dest.m31 = 0.0;
|
|
dest.m32 = 0.0;
|
|
dest.properties = properties & ~PROPERTY_TRANSLATION;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Normalize the left 3x3 submatrix of this matrix.
|
|
* <p>
|
|
* The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit
|
|
* vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself
|
|
* (i.e. had <i>skewing</i>).
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d normalize3x3() {
|
|
return normalize3x3(this);
|
|
}
|
|
|
|
public Matrix4x3d normalize3x3(Matrix4x3d dest) {
|
|
double invXlen = Math.invsqrt(m00 * m00 + m01 * m01 + m02 * m02);
|
|
double invYlen = Math.invsqrt(m10 * m10 + m11 * m11 + m12 * m12);
|
|
double invZlen = Math.invsqrt(m20 * m20 + m21 * m21 + m22 * m22);
|
|
dest.m00 = m00 * invXlen; dest.m01 = m01 * invXlen; dest.m02 = m02 * invXlen;
|
|
dest.m10 = m10 * invYlen; dest.m11 = m11 * invYlen; dest.m12 = m12 * invYlen;
|
|
dest.m20 = m20 * invZlen; dest.m21 = m21 * invZlen; dest.m22 = m22 * invZlen;
|
|
return dest;
|
|
}
|
|
|
|
public Matrix3d normalize3x3(Matrix3d dest) {
|
|
double invXlen = Math.invsqrt(m00 * m00 + m01 * m01 + m02 * m02);
|
|
double invYlen = Math.invsqrt(m10 * m10 + m11 * m11 + m12 * m12);
|
|
double invZlen = Math.invsqrt(m20 * m20 + m21 * m21 + m22 * m22);
|
|
dest.m00(m00 * invXlen); dest.m01(m01 * invXlen); dest.m02(m02 * invXlen);
|
|
dest.m10(m10 * invYlen); dest.m11(m11 * invYlen); dest.m12(m12 * invYlen);
|
|
dest.m20(m20 * invZlen); dest.m21(m21 * invZlen); dest.m22(m22 * invZlen);
|
|
return dest;
|
|
}
|
|
|
|
public Matrix4x3d reflect(double a, double b, double c, double d, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.reflection(a, b, c, d);
|
|
|
|
double da = a + a, db = b + b, dc = c + c, dd = d + d;
|
|
double rm00 = 1.0 - da * a;
|
|
double rm01 = -da * b;
|
|
double rm02 = -da * c;
|
|
double rm10 = -db * a;
|
|
double rm11 = 1.0 - db * b;
|
|
double rm12 = -db * c;
|
|
double rm20 = -dc * a;
|
|
double rm21 = -dc * b;
|
|
double rm22 = 1.0 - dc * c;
|
|
double rm30 = -dd * a;
|
|
double rm31 = -dd * b;
|
|
double rm32 = -dd * c;
|
|
|
|
// matrix multiplication
|
|
dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30;
|
|
dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31;
|
|
dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32;
|
|
double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
|
|
double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
|
|
double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
|
|
double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
|
|
double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
|
|
double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
|
|
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
|
|
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
|
|
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply a mirror/reflection transformation to this matrix that reflects about the given plane
|
|
* specified via the equation <code>x*a + y*b + z*c + d = 0</code>.
|
|
* <p>
|
|
* The vector <code>(a, b, c)</code> must be a unit vector.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* reflection will be applied first!
|
|
* <p>
|
|
* Reference: <a href="https://msdn.microsoft.com/en-us/library/windows/desktop/bb281733(v=vs.85).aspx">msdn.microsoft.com</a>
|
|
*
|
|
* @param a
|
|
* the x factor in the plane equation
|
|
* @param b
|
|
* the y factor in the plane equation
|
|
* @param c
|
|
* the z factor in the plane equation
|
|
* @param d
|
|
* the constant in the plane equation
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d reflect(double a, double b, double c, double d) {
|
|
return reflect(a, b, c, d, this);
|
|
}
|
|
|
|
/**
|
|
* Apply a mirror/reflection transformation to this matrix that reflects about the given plane
|
|
* specified via the plane normal and a point on the plane.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* reflection will be applied first!
|
|
*
|
|
* @param nx
|
|
* the x-coordinate of the plane normal
|
|
* @param ny
|
|
* the y-coordinate of the plane normal
|
|
* @param nz
|
|
* the z-coordinate of the plane normal
|
|
* @param px
|
|
* the x-coordinate of a point on the plane
|
|
* @param py
|
|
* the y-coordinate of a point on the plane
|
|
* @param pz
|
|
* the z-coordinate of a point on the plane
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d reflect(double nx, double ny, double nz, double px, double py, double pz) {
|
|
return reflect(nx, ny, nz, px, py, pz, this);
|
|
}
|
|
|
|
public Matrix4x3d reflect(double nx, double ny, double nz, double px, double py, double pz, Matrix4x3d dest) {
|
|
double invLength = Math.invsqrt(nx * nx + ny * ny + nz * nz);
|
|
double nnx = nx * invLength;
|
|
double nny = ny * invLength;
|
|
double nnz = nz * invLength;
|
|
/* See: http://mathworld.wolfram.com/Plane.html */
|
|
return reflect(nnx, nny, nnz, -nnx * px - nny * py - nnz * pz, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a mirror/reflection transformation to this matrix that reflects about the given plane
|
|
* specified via the plane normal and a point on the plane.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* reflection will be applied first!
|
|
*
|
|
* @param normal
|
|
* the plane normal
|
|
* @param point
|
|
* a point on the plane
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d reflect(Vector3dc normal, Vector3dc point) {
|
|
return reflect(normal.x(), normal.y(), normal.z(), point.x(), point.y(), point.z());
|
|
}
|
|
|
|
/**
|
|
* Apply a mirror/reflection transformation to this matrix that reflects about a plane
|
|
* specified via the plane orientation and a point on the plane.
|
|
* <p>
|
|
* This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene.
|
|
* It is assumed that the default mirror plane's normal is <code>(0, 0, 1)</code>. So, if the given {@link Quaterniondc} is
|
|
* the identity (does not apply any additional rotation), the reflection plane will be <code>z=0</code>, offset by the given <code>point</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
|
|
* then the new matrix will be <code>M * R</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
|
|
* reflection will be applied first!
|
|
*
|
|
* @param orientation
|
|
* the plane orientation relative to an implied normal vector of <code>(0, 0, 1)</code>
|
|
* @param point
|
|
* a point on the plane
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d reflect(Quaterniondc orientation, Vector3dc point) {
|
|
return reflect(orientation, point, this);
|
|
}
|
|
|
|
public Matrix4x3d reflect(Quaterniondc orientation, Vector3dc point, Matrix4x3d dest) {
|
|
double num1 = orientation.x() + orientation.x();
|
|
double num2 = orientation.y() + orientation.y();
|
|
double num3 = orientation.z() + orientation.z();
|
|
double normalX = orientation.x() * num3 + orientation.w() * num2;
|
|
double normalY = orientation.y() * num3 - orientation.w() * num1;
|
|
double normalZ = 1.0 - (orientation.x() * num1 + orientation.y() * num2);
|
|
return reflect(normalX, normalY, normalZ, point.x(), point.y(), point.z(), dest);
|
|
}
|
|
|
|
public Matrix4x3d reflect(Vector3dc normal, Vector3dc point, Matrix4x3d dest) {
|
|
return reflect(normal.x(), normal.y(), normal.z(), point.x(), point.y(), point.z(), dest);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a mirror/reflection transformation that reflects about the given plane
|
|
* specified via the equation <code>x*a + y*b + z*c + d = 0</code>.
|
|
* <p>
|
|
* The vector <code>(a, b, c)</code> must be a unit vector.
|
|
* <p>
|
|
* Reference: <a href="https://msdn.microsoft.com/en-us/library/windows/desktop/bb281733(v=vs.85).aspx">msdn.microsoft.com</a>
|
|
*
|
|
* @param a
|
|
* the x factor in the plane equation
|
|
* @param b
|
|
* the y factor in the plane equation
|
|
* @param c
|
|
* the z factor in the plane equation
|
|
* @param d
|
|
* the constant in the plane equation
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d reflection(double a, double b, double c, double d) {
|
|
double da = a + a, db = b + b, dc = c + c, dd = d + d;
|
|
m00 = 1.0 - da * a;
|
|
m01 = -da * b;
|
|
m02 = -da * c;
|
|
m10 = -db * a;
|
|
m11 = 1.0 - db * b;
|
|
m12 = -db * c;
|
|
m20 = -dc * a;
|
|
m21 = -dc * b;
|
|
m22 = 1.0 - dc * c;
|
|
m30 = -dd * a;
|
|
m31 = -dd * b;
|
|
m32 = -dd * c;
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a mirror/reflection transformation that reflects about the given plane
|
|
* specified via the plane normal and a point on the plane.
|
|
*
|
|
* @param nx
|
|
* the x-coordinate of the plane normal
|
|
* @param ny
|
|
* the y-coordinate of the plane normal
|
|
* @param nz
|
|
* the z-coordinate of the plane normal
|
|
* @param px
|
|
* the x-coordinate of a point on the plane
|
|
* @param py
|
|
* the y-coordinate of a point on the plane
|
|
* @param pz
|
|
* the z-coordinate of a point on the plane
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d reflection(double nx, double ny, double nz, double px, double py, double pz) {
|
|
double invLength = Math.invsqrt(nx * nx + ny * ny + nz * nz);
|
|
double nnx = nx * invLength;
|
|
double nny = ny * invLength;
|
|
double nnz = nz * invLength;
|
|
/* See: http://mathworld.wolfram.com/Plane.html */
|
|
return reflection(nnx, nny, nnz, -nnx * px - nny * py - nnz * pz);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a mirror/reflection transformation that reflects about the given plane
|
|
* specified via the plane normal and a point on the plane.
|
|
*
|
|
* @param normal
|
|
* the plane normal
|
|
* @param point
|
|
* a point on the plane
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d reflection(Vector3dc normal, Vector3dc point) {
|
|
return reflection(normal.x(), normal.y(), normal.z(), point.x(), point.y(), point.z());
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a mirror/reflection transformation that reflects about a plane
|
|
* specified via the plane orientation and a point on the plane.
|
|
* <p>
|
|
* This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene.
|
|
* It is assumed that the default mirror plane's normal is <code>(0, 0, 1)</code>. So, if the given {@link Quaterniondc} is
|
|
* the identity (does not apply any additional rotation), the reflection plane will be <code>z=0</code>, offset by the given <code>point</code>.
|
|
*
|
|
* @param orientation
|
|
* the plane orientation
|
|
* @param point
|
|
* a point on the plane
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d reflection(Quaterniondc orientation, Vector3dc point) {
|
|
double num1 = orientation.x() + orientation.x();
|
|
double num2 = orientation.y() + orientation.y();
|
|
double num3 = orientation.z() + orientation.z();
|
|
double normalX = orientation.x() * num3 + orientation.w() * num2;
|
|
double normalY = orientation.y() * num3 - orientation.w() * num1;
|
|
double normalZ = 1.0 - (orientation.x() * num1 + orientation.y() * num2);
|
|
return reflection(normalX, normalY, normalZ, point.x(), point.y(), point.z());
|
|
}
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a right-handed coordinate system
|
|
* using the given NDC z range to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to an orthographic projection without post-multiplying it,
|
|
* use {@link #setOrtho(double, double, double, double, double, double, boolean) setOrtho()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrtho(double, double, double, double, double, double, boolean)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest) {
|
|
// calculate right matrix elements
|
|
double rm00 = 2.0 / (right - left);
|
|
double rm11 = 2.0 / (top - bottom);
|
|
double rm22 = (zZeroToOne ? 1.0 : 2.0) / (zNear - zFar);
|
|
double rm30 = (left + right) / (left - right);
|
|
double rm31 = (top + bottom) / (bottom - top);
|
|
double rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
|
|
|
|
// perform optimized multiplication
|
|
// compute the last column first, because other columns do not depend on it
|
|
dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30;
|
|
dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31;
|
|
dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32;
|
|
dest.m00 = m00 * rm00;
|
|
dest.m01 = m01 * rm00;
|
|
dest.m02 = m02 * rm00;
|
|
dest.m10 = m10 * rm11;
|
|
dest.m11 = m11 * rm11;
|
|
dest.m12 = m12 * rm11;
|
|
dest.m20 = m20 * rm22;
|
|
dest.m21 = m21 * rm22;
|
|
dest.m22 = m22 * rm22;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
|
|
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a right-handed coordinate system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to an orthographic projection without post-multiplying it,
|
|
* use {@link #setOrtho(double, double, double, double, double, double) setOrtho()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrtho(double, double, double, double, double, double)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest) {
|
|
return ortho(left, right, bottom, top, zNear, zFar, false, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a right-handed coordinate system
|
|
* using the given NDC z range to this matrix.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to an orthographic projection without post-multiplying it,
|
|
* use {@link #setOrtho(double, double, double, double, double, double, boolean) setOrtho()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrtho(double, double, double, double, double, double, boolean)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne) {
|
|
return ortho(left, right, bottom, top, zNear, zFar, zZeroToOne, this);
|
|
}
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a right-handed coordinate system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to an orthographic projection without post-multiplying it,
|
|
* use {@link #setOrtho(double, double, double, double, double, double) setOrtho()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrtho(double, double, double, double, double, double)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar) {
|
|
return ortho(left, right, bottom, top, zNear, zFar, false);
|
|
}
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a left-handed coordiante system
|
|
* using the given NDC z range to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to an orthographic projection without post-multiplying it,
|
|
* use {@link #setOrthoLH(double, double, double, double, double, double, boolean) setOrthoLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrthoLH(double, double, double, double, double, double, boolean)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest) {
|
|
// calculate right matrix elements
|
|
double rm00 = 2.0 / (right - left);
|
|
double rm11 = 2.0 / (top - bottom);
|
|
double rm22 = (zZeroToOne ? 1.0 : 2.0) / (zFar - zNear);
|
|
double rm30 = (left + right) / (left - right);
|
|
double rm31 = (top + bottom) / (bottom - top);
|
|
double rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
|
|
|
|
// perform optimized multiplication
|
|
// compute the last column first, because other columns do not depend on it
|
|
dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30;
|
|
dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31;
|
|
dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32;
|
|
dest.m00 = m00 * rm00;
|
|
dest.m01 = m01 * rm00;
|
|
dest.m02 = m02 * rm00;
|
|
dest.m10 = m10 * rm11;
|
|
dest.m11 = m11 * rm11;
|
|
dest.m12 = m12 * rm11;
|
|
dest.m20 = m20 * rm22;
|
|
dest.m21 = m21 * rm22;
|
|
dest.m22 = m22 * rm22;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
|
|
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a left-handed coordiante system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to an orthographic projection without post-multiplying it,
|
|
* use {@link #setOrthoLH(double, double, double, double, double, double) setOrthoLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrthoLH(double, double, double, double, double, double)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest) {
|
|
return orthoLH(left, right, bottom, top, zNear, zFar, false, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a left-handed coordiante system
|
|
* using the given NDC z range to this matrix.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to an orthographic projection without post-multiplying it,
|
|
* use {@link #setOrthoLH(double, double, double, double, double, double, boolean) setOrthoLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrthoLH(double, double, double, double, double, double, boolean)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne) {
|
|
return orthoLH(left, right, bottom, top, zNear, zFar, zZeroToOne, this);
|
|
}
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a left-handed coordiante system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to an orthographic projection without post-multiplying it,
|
|
* use {@link #setOrthoLH(double, double, double, double, double, double) setOrthoLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrthoLH(double, double, double, double, double, double)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar) {
|
|
return orthoLH(left, right, bottom, top, zNear, zFar, false);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be an orthographic projection transformation for a right-handed coordinate system
|
|
* using the given NDC z range.
|
|
* <p>
|
|
* In order to apply the orthographic projection to an already existing transformation,
|
|
* use {@link #ortho(double, double, double, double, double, double, boolean) ortho()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #ortho(double, double, double, double, double, double, boolean)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setOrtho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne) {
|
|
m00 = 2.0 / (right - left);
|
|
m01 = 0.0;
|
|
m02 = 0.0;
|
|
m10 = 0.0;
|
|
m11 = 2.0 / (top - bottom);
|
|
m12 = 0.0;
|
|
m20 = 0.0;
|
|
m21 = 0.0;
|
|
m22 = (zZeroToOne ? 1.0 : 2.0) / (zNear - zFar);
|
|
m30 = (right + left) / (left - right);
|
|
m31 = (top + bottom) / (bottom - top);
|
|
m32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
|
|
properties = 0;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be an orthographic projection transformation for a right-handed coordinate system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code>.
|
|
* <p>
|
|
* In order to apply the orthographic projection to an already existing transformation,
|
|
* use {@link #ortho(double, double, double, double, double, double) ortho()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #ortho(double, double, double, double, double, double)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setOrtho(double left, double right, double bottom, double top, double zNear, double zFar) {
|
|
return setOrtho(left, right, bottom, top, zNear, zFar, false);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be an orthographic projection transformation for a left-handed coordinate system
|
|
* using the given NDC z range.
|
|
* <p>
|
|
* In order to apply the orthographic projection to an already existing transformation,
|
|
* use {@link #orthoLH(double, double, double, double, double, double, boolean) orthoLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #orthoLH(double, double, double, double, double, double, boolean)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setOrthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne) {
|
|
m00 = 2.0 / (right - left);
|
|
m01 = 0.0;
|
|
m02 = 0.0;
|
|
m10 = 0.0;
|
|
m11 = 2.0 / (top - bottom);
|
|
m12 = 0.0;
|
|
m20 = 0.0;
|
|
m21 = 0.0;
|
|
m22 = (zZeroToOne ? 1.0 : 2.0) / (zFar - zNear);
|
|
m30 = (right + left) / (left - right);
|
|
m31 = (top + bottom) / (bottom - top);
|
|
m32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
|
|
properties = 0;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be an orthographic projection transformation for a left-handed coordinate system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code>.
|
|
* <p>
|
|
* In order to apply the orthographic projection to an already existing transformation,
|
|
* use {@link #orthoLH(double, double, double, double, double, double) orthoLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #orthoLH(double, double, double, double, double, double)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setOrthoLH(double left, double right, double bottom, double top, double zNear, double zFar) {
|
|
return setOrthoLH(left, right, bottom, top, zNear, zFar, false);
|
|
}
|
|
|
|
/**
|
|
* Apply a symmetric orthographic projection transformation for a right-handed coordinate system
|
|
* using the given NDC z range to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, boolean, Matrix4x3d) ortho()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
|
|
* use {@link #setOrthoSymmetric(double, double, double, double, boolean) setOrthoSymmetric()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrthoSymmetric(double, double, double, double, boolean)
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param dest
|
|
* will hold the result
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest) {
|
|
// calculate right matrix elements
|
|
double rm00 = 2.0 / width;
|
|
double rm11 = 2.0 / height;
|
|
double rm22 = (zZeroToOne ? 1.0 : 2.0) / (zNear - zFar);
|
|
double rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
|
|
|
|
// perform optimized multiplication
|
|
// compute the last column first, because other columns do not depend on it
|
|
dest.m30 = m20 * rm32 + m30;
|
|
dest.m31 = m21 * rm32 + m31;
|
|
dest.m32 = m22 * rm32 + m32;
|
|
dest.m00 = m00 * rm00;
|
|
dest.m01 = m01 * rm00;
|
|
dest.m02 = m02 * rm00;
|
|
dest.m10 = m10 * rm11;
|
|
dest.m11 = m11 * rm11;
|
|
dest.m12 = m12 * rm11;
|
|
dest.m20 = m20 * rm22;
|
|
dest.m21 = m21 * rm22;
|
|
dest.m22 = m22 * rm22;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
|
|
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply a symmetric orthographic projection transformation for a right-handed coordinate system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, Matrix4x3d) ortho()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
|
|
* use {@link #setOrthoSymmetric(double, double, double, double) setOrthoSymmetric()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrthoSymmetric(double, double, double, double)
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar, Matrix4x3d dest) {
|
|
return orthoSymmetric(width, height, zNear, zFar, false, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a symmetric orthographic projection transformation for a right-handed coordinate system
|
|
* using the given NDC z range to this matrix.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, boolean) ortho()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
|
|
* use {@link #setOrthoSymmetric(double, double, double, double, boolean) setOrthoSymmetric()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrthoSymmetric(double, double, double, double, boolean)
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne) {
|
|
return orthoSymmetric(width, height, zNear, zFar, zZeroToOne, this);
|
|
}
|
|
|
|
/**
|
|
* Apply a symmetric orthographic projection transformation for a right-handed coordinate system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double) ortho()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
|
|
* use {@link #setOrthoSymmetric(double, double, double, double) setOrthoSymmetric()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrthoSymmetric(double, double, double, double)
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar) {
|
|
return orthoSymmetric(width, height, zNear, zFar, false, this);
|
|
}
|
|
|
|
/**
|
|
* Apply a symmetric orthographic projection transformation for a left-handed coordinate system
|
|
* using the given NDC z range to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, boolean, Matrix4x3d) orthoLH()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
|
|
* use {@link #setOrthoSymmetricLH(double, double, double, double, boolean) setOrthoSymmetricLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrthoSymmetricLH(double, double, double, double, boolean)
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param dest
|
|
* will hold the result
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest) {
|
|
// calculate right matrix elements
|
|
double rm00 = 2.0 / width;
|
|
double rm11 = 2.0 / height;
|
|
double rm22 = (zZeroToOne ? 1.0 : 2.0) / (zFar - zNear);
|
|
double rm32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
|
|
|
|
// perform optimized multiplication
|
|
// compute the last column first, because other columns do not depend on it
|
|
dest.m30 = m20 * rm32 + m30;
|
|
dest.m31 = m21 * rm32 + m31;
|
|
dest.m32 = m22 * rm32 + m32;
|
|
dest.m00 = m00 * rm00;
|
|
dest.m01 = m01 * rm00;
|
|
dest.m02 = m02 * rm00;
|
|
dest.m10 = m10 * rm11;
|
|
dest.m11 = m11 * rm11;
|
|
dest.m12 = m12 * rm11;
|
|
dest.m20 = m20 * rm22;
|
|
dest.m21 = m21 * rm22;
|
|
dest.m22 = m22 * rm22;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
|
|
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply a symmetric orthographic projection transformation for a left-handed coordinate system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, Matrix4x3d) orthoLH()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
|
|
* use {@link #setOrthoSymmetricLH(double, double, double, double) setOrthoSymmetricLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrthoSymmetricLH(double, double, double, double)
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar, Matrix4x3d dest) {
|
|
return orthoSymmetricLH(width, height, zNear, zFar, false, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a symmetric orthographic projection transformation for a left-handed coordinate system
|
|
* using the given NDC z range to this matrix.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, boolean) orthoLH()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
|
|
* use {@link #setOrthoSymmetricLH(double, double, double, double, boolean) setOrthoSymmetricLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrthoSymmetricLH(double, double, double, double, boolean)
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne) {
|
|
return orthoSymmetricLH(width, height, zNear, zFar, zZeroToOne, this);
|
|
}
|
|
|
|
/**
|
|
* Apply a symmetric orthographic projection transformation for a left-handed coordinate system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double) orthoLH()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a symmetric orthographic projection without post-multiplying it,
|
|
* use {@link #setOrthoSymmetricLH(double, double, double, double) setOrthoSymmetricLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrthoSymmetricLH(double, double, double, double)
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar) {
|
|
return orthoSymmetricLH(width, height, zNear, zFar, false, this);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system
|
|
* using the given NDC z range.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double, boolean) setOrtho()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* In order to apply the symmetric orthographic projection to an already existing transformation,
|
|
* use {@link #orthoSymmetric(double, double, double, double, boolean) orthoSymmetric()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #orthoSymmetric(double, double, double, double, boolean)
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setOrthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne) {
|
|
m00 = 2.0 / width;
|
|
m01 = 0.0;
|
|
m02 = 0.0;
|
|
m10 = 0.0;
|
|
m11 = 2.0 / height;
|
|
m12 = 0.0;
|
|
m20 = 0.0;
|
|
m21 = 0.0;
|
|
m22 = (zZeroToOne ? 1.0 : 2.0) / (zNear - zFar);
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
|
|
properties = 0;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code>.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double) setOrtho()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* In order to apply the symmetric orthographic projection to an already existing transformation,
|
|
* use {@link #orthoSymmetric(double, double, double, double) orthoSymmetric()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #orthoSymmetric(double, double, double, double)
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setOrthoSymmetric(double width, double height, double zNear, double zFar) {
|
|
return setOrthoSymmetric(width, height, zNear, zFar, false);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double, boolean) setOrtho()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* In order to apply the symmetric orthographic projection to an already existing transformation,
|
|
* use {@link #orthoSymmetricLH(double, double, double, double, boolean) orthoSymmetricLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #orthoSymmetricLH(double, double, double, double, boolean)
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @param zZeroToOne
|
|
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
|
|
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setOrthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne) {
|
|
m00 = 2.0 / width;
|
|
m01 = 0.0;
|
|
m02 = 0.0;
|
|
m10 = 0.0;
|
|
m11 = 2.0 / height;
|
|
m12 = 0.0;
|
|
m20 = 0.0;
|
|
m21 = 0.0;
|
|
m22 = (zZeroToOne ? 1.0 : 2.0) / (zFar - zNear);
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = (zZeroToOne ? zNear : (zFar + zNear)) / (zNear - zFar);
|
|
properties = 0;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system
|
|
* using OpenGL's NDC z range of <code>[-1..+1]</code>.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #setOrthoLH(double, double, double, double, double, double) setOrthoLH()} with
|
|
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
|
|
* <p>
|
|
* In order to apply the symmetric orthographic projection to an already existing transformation,
|
|
* use {@link #orthoSymmetricLH(double, double, double, double) orthoSymmetricLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #orthoSymmetricLH(double, double, double, double)
|
|
*
|
|
* @param width
|
|
* the distance between the right and left frustum edges
|
|
* @param height
|
|
* the distance between the top and bottom frustum edges
|
|
* @param zNear
|
|
* near clipping plane distance
|
|
* @param zFar
|
|
* far clipping plane distance
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setOrthoSymmetricLH(double width, double height, double zNear, double zFar) {
|
|
return setOrthoSymmetricLH(width, height, zNear, zFar, false);
|
|
}
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a right-handed coordinate system
|
|
* to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double, Matrix4x3d) ortho()} with
|
|
* <code>zNear=-1</code> and <code>zFar=+1</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to an orthographic projection without post-multiplying it,
|
|
* use {@link #setOrtho2D(double, double, double, double) setOrtho()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #ortho(double, double, double, double, double, double, Matrix4x3d)
|
|
* @see #setOrtho2D(double, double, double, double)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d ortho2D(double left, double right, double bottom, double top, Matrix4x3d dest) {
|
|
// calculate right matrix elements
|
|
double rm00 = 2.0 / (right - left);
|
|
double rm11 = 2.0 / (top - bottom);
|
|
double rm30 = -(right + left) / (right - left);
|
|
double rm31 = -(top + bottom) / (top - bottom);
|
|
|
|
// perform optimized multiplication
|
|
// compute the last column first, because other columns do not depend on it
|
|
dest.m30 = m00 * rm30 + m10 * rm31 + m30;
|
|
dest.m31 = m01 * rm30 + m11 * rm31 + m31;
|
|
dest.m32 = m02 * rm30 + m12 * rm31 + m32;
|
|
dest.m00 = m00 * rm00;
|
|
dest.m01 = m01 * rm00;
|
|
dest.m02 = m02 * rm00;
|
|
dest.m10 = m10 * rm11;
|
|
dest.m11 = m11 * rm11;
|
|
dest.m12 = m12 * rm11;
|
|
dest.m20 = -m20;
|
|
dest.m21 = -m21;
|
|
dest.m22 = -m22;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
|
|
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #ortho(double, double, double, double, double, double) ortho()} with
|
|
* <code>zNear=-1</code> and <code>zFar=+1</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to an orthographic projection without post-multiplying it,
|
|
* use {@link #setOrtho2D(double, double, double, double) setOrtho2D()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #ortho(double, double, double, double, double, double)
|
|
* @see #setOrtho2D(double, double, double, double)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d ortho2D(double left, double right, double bottom, double top) {
|
|
return ortho2D(left, right, bottom, top, this);
|
|
}
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in <code>dest</code>.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double, Matrix4x3d) orthoLH()} with
|
|
* <code>zNear=-1</code> and <code>zFar=+1</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to an orthographic projection without post-multiplying it,
|
|
* use {@link #setOrtho2DLH(double, double, double, double) setOrthoLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #orthoLH(double, double, double, double, double, double, Matrix4x3d)
|
|
* @see #setOrtho2DLH(double, double, double, double)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d ortho2DLH(double left, double right, double bottom, double top, Matrix4x3d dest) {
|
|
// calculate right matrix elements
|
|
double rm00 = 2.0 / (right - left);
|
|
double rm11 = 2.0 / (top - bottom);
|
|
double rm30 = -(right + left) / (right - left);
|
|
double rm31 = -(top + bottom) / (top - bottom);
|
|
|
|
// perform optimized multiplication
|
|
// compute the last column first, because other columns do not depend on it
|
|
dest.m30 = m00 * rm30 + m10 * rm31 + m30;
|
|
dest.m31 = m01 * rm30 + m11 * rm31 + m31;
|
|
dest.m32 = m02 * rm30 + m12 * rm31 + m32;
|
|
dest.m00 = m00 * rm00;
|
|
dest.m01 = m01 * rm00;
|
|
dest.m02 = m02 * rm00;
|
|
dest.m10 = m10 * rm11;
|
|
dest.m11 = m11 * rm11;
|
|
dest.m12 = m12 * rm11;
|
|
dest.m20 = m20;
|
|
dest.m21 = m21;
|
|
dest.m22 = m22;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
|
|
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #orthoLH(double, double, double, double, double, double) orthoLH()} with
|
|
* <code>zNear=-1</code> and <code>zFar=+1</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* orthographic projection transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to an orthographic projection without post-multiplying it,
|
|
* use {@link #setOrtho2DLH(double, double, double, double) setOrtho2DLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #orthoLH(double, double, double, double, double, double)
|
|
* @see #setOrtho2DLH(double, double, double, double)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d ortho2DLH(double left, double right, double bottom, double top) {
|
|
return ortho2DLH(left, right, bottom, top, this);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double) setOrtho()} with
|
|
* <code>zNear=-1</code> and <code>zFar=+1</code>.
|
|
* <p>
|
|
* In order to apply the orthographic projection to an already existing transformation,
|
|
* use {@link #ortho2D(double, double, double, double) ortho2D()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrtho(double, double, double, double, double, double)
|
|
* @see #ortho2D(double, double, double, double)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setOrtho2D(double left, double right, double bottom, double top) {
|
|
m00 = 2.0 / (right - left);
|
|
m01 = 0.0;
|
|
m02 = 0.0;
|
|
m10 = 0.0;
|
|
m11 = 2.0 / (top - bottom);
|
|
m12 = 0.0;
|
|
m20 = 0.0;
|
|
m21 = 0.0;
|
|
m22 = -1.0;
|
|
m30 = -(right + left) / (right - left);
|
|
m31 = -(top + bottom) / (top - bottom);
|
|
m32 = 0.0;
|
|
properties = 0;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.
|
|
* <p>
|
|
* This method is equivalent to calling {@link #setOrtho(double, double, double, double, double, double) setOrthoLH()} with
|
|
* <code>zNear=-1</code> and <code>zFar=+1</code>.
|
|
* <p>
|
|
* In order to apply the orthographic projection to an already existing transformation,
|
|
* use {@link #ortho2DLH(double, double, double, double) ortho2DLH()}.
|
|
* <p>
|
|
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
|
|
*
|
|
* @see #setOrthoLH(double, double, double, double, double, double)
|
|
* @see #ortho2DLH(double, double, double, double)
|
|
*
|
|
* @param left
|
|
* the distance from the center to the left frustum edge
|
|
* @param right
|
|
* the distance from the center to the right frustum edge
|
|
* @param bottom
|
|
* the distance from the center to the bottom frustum edge
|
|
* @param top
|
|
* the distance from the center to the top frustum edge
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setOrtho2DLH(double left, double right, double bottom, double top) {
|
|
m00 = 2.0 / (right - left);
|
|
m01 = 0.0;
|
|
m02 = 0.0;
|
|
m10 = 0.0;
|
|
m11 = 2.0 / (top - bottom);
|
|
m12 = 0.0;
|
|
m20 = 0.0;
|
|
m21 = 0.0;
|
|
m22 = 1.0;
|
|
m30 = -(right + left) / (right - left);
|
|
m31 = -(top + bottom) / (top - bottom);
|
|
m32 = 0.0;
|
|
properties = 0;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the
|
|
* lookalong rotation transformation will be applied first!
|
|
* <p>
|
|
* This is equivalent to calling
|
|
* {@link #lookAt(Vector3dc, Vector3dc, Vector3dc) lookAt}
|
|
* with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>.
|
|
* <p>
|
|
* In order to set the matrix to a lookalong transformation without post-multiplying it,
|
|
* use {@link #setLookAlong(Vector3dc, Vector3dc) setLookAlong()}.
|
|
*
|
|
* @see #lookAlong(double, double, double, double, double, double)
|
|
* @see #lookAt(Vector3dc, Vector3dc, Vector3dc)
|
|
* @see #setLookAlong(Vector3dc, Vector3dc)
|
|
*
|
|
* @param dir
|
|
* the direction in space to look along
|
|
* @param up
|
|
* the direction of 'up'
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d lookAlong(Vector3dc dir, Vector3dc up) {
|
|
return lookAlong(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), this);
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the
|
|
* lookalong rotation transformation will be applied first!
|
|
* <p>
|
|
* This is equivalent to calling
|
|
* {@link #lookAt(Vector3dc, Vector3dc, Vector3dc) lookAt}
|
|
* with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>.
|
|
* <p>
|
|
* In order to set the matrix to a lookalong transformation without post-multiplying it,
|
|
* use {@link #setLookAlong(Vector3dc, Vector3dc) setLookAlong()}.
|
|
*
|
|
* @see #lookAlong(double, double, double, double, double, double)
|
|
* @see #lookAt(Vector3dc, Vector3dc, Vector3dc)
|
|
* @see #setLookAlong(Vector3dc, Vector3dc)
|
|
*
|
|
* @param dir
|
|
* the direction in space to look along
|
|
* @param up
|
|
* the direction of 'up'
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d lookAlong(Vector3dc dir, Vector3dc up, Matrix4x3d dest) {
|
|
return lookAlong(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the
|
|
* lookalong rotation transformation will be applied first!
|
|
* <p>
|
|
* This is equivalent to calling
|
|
* {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt()}
|
|
* with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>.
|
|
* <p>
|
|
* In order to set the matrix to a lookalong transformation without post-multiplying it,
|
|
* use {@link #setLookAlong(double, double, double, double, double, double) setLookAlong()}
|
|
*
|
|
* @see #lookAt(double, double, double, double, double, double, double, double, double)
|
|
* @see #setLookAlong(double, double, double, double, double, double)
|
|
*
|
|
* @param dirX
|
|
* the x-coordinate of the direction to look along
|
|
* @param dirY
|
|
* the y-coordinate of the direction to look along
|
|
* @param dirZ
|
|
* the z-coordinate of the direction to look along
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d lookAlong(double dirX, double dirY, double dirZ,
|
|
double upX, double upY, double upZ, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return setLookAlong(dirX, dirY, dirZ, upX, upY, upZ);
|
|
|
|
// Normalize direction
|
|
double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
|
|
dirX *= -invDirLength;
|
|
dirY *= -invDirLength;
|
|
dirZ *= -invDirLength;
|
|
// left = up x direction
|
|
double leftX, leftY, leftZ;
|
|
leftX = upY * dirZ - upZ * dirY;
|
|
leftY = upZ * dirX - upX * dirZ;
|
|
leftZ = upX * dirY - upY * dirX;
|
|
// normalize left
|
|
double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
|
|
leftX *= invLeftLength;
|
|
leftY *= invLeftLength;
|
|
leftZ *= invLeftLength;
|
|
// up = direction x left
|
|
double upnX = dirY * leftZ - dirZ * leftY;
|
|
double upnY = dirZ * leftX - dirX * leftZ;
|
|
double upnZ = dirX * leftY - dirY * leftX;
|
|
|
|
// calculate right matrix elements
|
|
double rm00 = leftX;
|
|
double rm01 = upnX;
|
|
double rm02 = dirX;
|
|
double rm10 = leftY;
|
|
double rm11 = upnY;
|
|
double rm12 = dirY;
|
|
double rm20 = leftZ;
|
|
double rm21 = upnZ;
|
|
double rm22 = dirZ;
|
|
|
|
// perform optimized matrix multiplication
|
|
// introduce temporaries for dependent results
|
|
double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
|
|
double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
|
|
double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
|
|
double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
|
|
double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
|
|
double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
|
|
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
|
|
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
|
|
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
|
|
// set the rest of the matrix elements
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the
|
|
* lookalong rotation transformation will be applied first!
|
|
* <p>
|
|
* This is equivalent to calling
|
|
* {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt()}
|
|
* with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>.
|
|
* <p>
|
|
* In order to set the matrix to a lookalong transformation without post-multiplying it,
|
|
* use {@link #setLookAlong(double, double, double, double, double, double) setLookAlong()}
|
|
*
|
|
* @see #lookAt(double, double, double, double, double, double, double, double, double)
|
|
* @see #setLookAlong(double, double, double, double, double, double)
|
|
*
|
|
* @param dirX
|
|
* the x-coordinate of the direction to look along
|
|
* @param dirY
|
|
* the y-coordinate of the direction to look along
|
|
* @param dirZ
|
|
* the z-coordinate of the direction to look along
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d lookAlong(double dirX, double dirY, double dirZ,
|
|
double upX, double upY, double upZ) {
|
|
return lookAlong(dirX, dirY, dirZ, upX, upY, upZ, this);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation transformation to make <code>-z</code>
|
|
* point along <code>dir</code>.
|
|
* <p>
|
|
* This is equivalent to calling
|
|
* {@link #setLookAt(Vector3dc, Vector3dc, Vector3dc) setLookAt()}
|
|
* with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>.
|
|
* <p>
|
|
* In order to apply the lookalong transformation to any previous existing transformation,
|
|
* use {@link #lookAlong(Vector3dc, Vector3dc)}.
|
|
*
|
|
* @see #setLookAlong(Vector3dc, Vector3dc)
|
|
* @see #lookAlong(Vector3dc, Vector3dc)
|
|
*
|
|
* @param dir
|
|
* the direction in space to look along
|
|
* @param up
|
|
* the direction of 'up'
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setLookAlong(Vector3dc dir, Vector3dc up) {
|
|
return setLookAlong(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z());
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a rotation transformation to make <code>-z</code>
|
|
* point along <code>dir</code>.
|
|
* <p>
|
|
* This is equivalent to calling
|
|
* {@link #setLookAt(double, double, double, double, double, double, double, double, double)
|
|
* setLookAt()} with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>.
|
|
* <p>
|
|
* In order to apply the lookalong transformation to any previous existing transformation,
|
|
* use {@link #lookAlong(double, double, double, double, double, double) lookAlong()}
|
|
*
|
|
* @see #setLookAlong(double, double, double, double, double, double)
|
|
* @see #lookAlong(double, double, double, double, double, double)
|
|
*
|
|
* @param dirX
|
|
* the x-coordinate of the direction to look along
|
|
* @param dirY
|
|
* the y-coordinate of the direction to look along
|
|
* @param dirZ
|
|
* the z-coordinate of the direction to look along
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setLookAlong(double dirX, double dirY, double dirZ,
|
|
double upX, double upY, double upZ) {
|
|
// Normalize direction
|
|
double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
|
|
dirX *= -invDirLength;
|
|
dirY *= -invDirLength;
|
|
dirZ *= -invDirLength;
|
|
// left = up x direction
|
|
double leftX, leftY, leftZ;
|
|
leftX = upY * dirZ - upZ * dirY;
|
|
leftY = upZ * dirX - upX * dirZ;
|
|
leftZ = upX * dirY - upY * dirX;
|
|
// normalize left
|
|
double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
|
|
leftX *= invLeftLength;
|
|
leftY *= invLeftLength;
|
|
leftZ *= invLeftLength;
|
|
// up = direction x left
|
|
double upnX = dirY * leftZ - dirZ * leftY;
|
|
double upnY = dirZ * leftX - dirX * leftZ;
|
|
double upnZ = dirX * leftY - dirY * leftX;
|
|
|
|
m00 = leftX;
|
|
m01 = upnX;
|
|
m02 = dirX;
|
|
m10 = leftY;
|
|
m11 = upnY;
|
|
m12 = dirY;
|
|
m20 = leftZ;
|
|
m21 = upnZ;
|
|
m22 = dirZ;
|
|
m30 = 0.0;
|
|
m31 = 0.0;
|
|
m32 = 0.0;
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns
|
|
* <code>-z</code> with <code>center - eye</code>.
|
|
* <p>
|
|
* In order to not make use of vectors to specify <code>eye</code>, <code>center</code> and <code>up</code> but use primitives,
|
|
* like in the GLU function, use {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()}
|
|
* instead.
|
|
* <p>
|
|
* In order to apply the lookat transformation to a previous existing transformation,
|
|
* use {@link #lookAt(Vector3dc, Vector3dc, Vector3dc) lookAt()}.
|
|
*
|
|
* @see #setLookAt(double, double, double, double, double, double, double, double, double)
|
|
* @see #lookAt(Vector3dc, Vector3dc, Vector3dc)
|
|
*
|
|
* @param eye
|
|
* the position of the camera
|
|
* @param center
|
|
* the point in space to look at
|
|
* @param up
|
|
* the direction of 'up'
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setLookAt(Vector3dc eye, Vector3dc center, Vector3dc up) {
|
|
return setLookAt(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z());
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a "lookat" transformation for a right-handed coordinate system,
|
|
* that aligns <code>-z</code> with <code>center - eye</code>.
|
|
* <p>
|
|
* In order to apply the lookat transformation to a previous existing transformation,
|
|
* use {@link #lookAt(double, double, double, double, double, double, double, double, double) lookAt}.
|
|
*
|
|
* @see #setLookAt(Vector3dc, Vector3dc, Vector3dc)
|
|
* @see #lookAt(double, double, double, double, double, double, double, double, double)
|
|
*
|
|
* @param eyeX
|
|
* the x-coordinate of the eye/camera location
|
|
* @param eyeY
|
|
* the y-coordinate of the eye/camera location
|
|
* @param eyeZ
|
|
* the z-coordinate of the eye/camera location
|
|
* @param centerX
|
|
* the x-coordinate of the point to look at
|
|
* @param centerY
|
|
* the y-coordinate of the point to look at
|
|
* @param centerZ
|
|
* the z-coordinate of the point to look at
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setLookAt(double eyeX, double eyeY, double eyeZ,
|
|
double centerX, double centerY, double centerZ,
|
|
double upX, double upY, double upZ) {
|
|
// Compute direction from position to lookAt
|
|
double dirX, dirY, dirZ;
|
|
dirX = eyeX - centerX;
|
|
dirY = eyeY - centerY;
|
|
dirZ = eyeZ - centerZ;
|
|
// Normalize direction
|
|
double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
|
|
dirX *= invDirLength;
|
|
dirY *= invDirLength;
|
|
dirZ *= invDirLength;
|
|
// left = up x direction
|
|
double leftX, leftY, leftZ;
|
|
leftX = upY * dirZ - upZ * dirY;
|
|
leftY = upZ * dirX - upX * dirZ;
|
|
leftZ = upX * dirY - upY * dirX;
|
|
// normalize left
|
|
double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
|
|
leftX *= invLeftLength;
|
|
leftY *= invLeftLength;
|
|
leftZ *= invLeftLength;
|
|
// up = direction x left
|
|
double upnX = dirY * leftZ - dirZ * leftY;
|
|
double upnY = dirZ * leftX - dirX * leftZ;
|
|
double upnZ = dirX * leftY - dirY * leftX;
|
|
|
|
m00 = leftX;
|
|
m01 = upnX;
|
|
m02 = dirX;
|
|
m10 = leftY;
|
|
m11 = upnY;
|
|
m12 = dirY;
|
|
m20 = leftZ;
|
|
m21 = upnZ;
|
|
m22 = dirZ;
|
|
m30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ);
|
|
m31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ);
|
|
m32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ);
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Apply a "lookat" transformation to this matrix for a right-handed coordinate system,
|
|
* that aligns <code>-z</code> with <code>center - eye</code> and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a lookat transformation without post-multiplying it,
|
|
* use {@link #setLookAt(Vector3dc, Vector3dc, Vector3dc)}.
|
|
*
|
|
* @see #lookAt(double, double, double, double, double, double, double, double, double)
|
|
* @see #setLookAlong(Vector3dc, Vector3dc)
|
|
*
|
|
* @param eye
|
|
* the position of the camera
|
|
* @param center
|
|
* the point in space to look at
|
|
* @param up
|
|
* the direction of 'up'
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d lookAt(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest) {
|
|
return lookAt(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a "lookat" transformation to this matrix for a right-handed coordinate system,
|
|
* that aligns <code>-z</code> with <code>center - eye</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a lookat transformation without post-multiplying it,
|
|
* use {@link #setLookAt(Vector3dc, Vector3dc, Vector3dc)}.
|
|
*
|
|
* @see #lookAt(double, double, double, double, double, double, double, double, double)
|
|
* @see #setLookAlong(Vector3dc, Vector3dc)
|
|
*
|
|
* @param eye
|
|
* the position of the camera
|
|
* @param center
|
|
* the point in space to look at
|
|
* @param up
|
|
* the direction of 'up'
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d lookAt(Vector3dc eye, Vector3dc center, Vector3dc up) {
|
|
return lookAt(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), this);
|
|
}
|
|
|
|
/**
|
|
* Apply a "lookat" transformation to this matrix for a right-handed coordinate system,
|
|
* that aligns <code>-z</code> with <code>center - eye</code> and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a lookat transformation without post-multiplying it,
|
|
* use {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()}.
|
|
*
|
|
* @see #lookAt(Vector3dc, Vector3dc, Vector3dc)
|
|
* @see #setLookAt(double, double, double, double, double, double, double, double, double)
|
|
*
|
|
* @param eyeX
|
|
* the x-coordinate of the eye/camera location
|
|
* @param eyeY
|
|
* the y-coordinate of the eye/camera location
|
|
* @param eyeZ
|
|
* the z-coordinate of the eye/camera location
|
|
* @param centerX
|
|
* the x-coordinate of the point to look at
|
|
* @param centerY
|
|
* the y-coordinate of the point to look at
|
|
* @param centerZ
|
|
* the z-coordinate of the point to look at
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d lookAt(double eyeX, double eyeY, double eyeZ,
|
|
double centerX, double centerY, double centerZ,
|
|
double upX, double upY, double upZ, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.setLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ);
|
|
return lookAtGeneric(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, dest);
|
|
}
|
|
private Matrix4x3d lookAtGeneric(double eyeX, double eyeY, double eyeZ,
|
|
double centerX, double centerY, double centerZ,
|
|
double upX, double upY, double upZ, Matrix4x3d dest) {
|
|
// Compute direction from position to lookAt
|
|
double dirX, dirY, dirZ;
|
|
dirX = eyeX - centerX;
|
|
dirY = eyeY - centerY;
|
|
dirZ = eyeZ - centerZ;
|
|
// Normalize direction
|
|
double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
|
|
dirX *= invDirLength;
|
|
dirY *= invDirLength;
|
|
dirZ *= invDirLength;
|
|
// left = up x direction
|
|
double leftX, leftY, leftZ;
|
|
leftX = upY * dirZ - upZ * dirY;
|
|
leftY = upZ * dirX - upX * dirZ;
|
|
leftZ = upX * dirY - upY * dirX;
|
|
// normalize left
|
|
double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
|
|
leftX *= invLeftLength;
|
|
leftY *= invLeftLength;
|
|
leftZ *= invLeftLength;
|
|
// up = direction x left
|
|
double upnX = dirY * leftZ - dirZ * leftY;
|
|
double upnY = dirZ * leftX - dirX * leftZ;
|
|
double upnZ = dirX * leftY - dirY * leftX;
|
|
|
|
// calculate right matrix elements
|
|
double rm00 = leftX;
|
|
double rm01 = upnX;
|
|
double rm02 = dirX;
|
|
double rm10 = leftY;
|
|
double rm11 = upnY;
|
|
double rm12 = dirY;
|
|
double rm20 = leftZ;
|
|
double rm21 = upnZ;
|
|
double rm22 = dirZ;
|
|
double rm30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ);
|
|
double rm31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ);
|
|
double rm32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ);
|
|
|
|
// perform optimized matrix multiplication
|
|
// compute last column first, because others do not depend on it
|
|
dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30;
|
|
dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31;
|
|
dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32;
|
|
// introduce temporaries for dependent results
|
|
double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
|
|
double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
|
|
double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
|
|
double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
|
|
double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
|
|
double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
|
|
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
|
|
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
|
|
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
|
|
// set the rest of the matrix elements
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply a "lookat" transformation to this matrix for a right-handed coordinate system,
|
|
* that aligns <code>-z</code> with <code>center - eye</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a lookat transformation without post-multiplying it,
|
|
* use {@link #setLookAt(double, double, double, double, double, double, double, double, double) setLookAt()}.
|
|
*
|
|
* @see #lookAt(Vector3dc, Vector3dc, Vector3dc)
|
|
* @see #setLookAt(double, double, double, double, double, double, double, double, double)
|
|
*
|
|
* @param eyeX
|
|
* the x-coordinate of the eye/camera location
|
|
* @param eyeY
|
|
* the y-coordinate of the eye/camera location
|
|
* @param eyeZ
|
|
* the z-coordinate of the eye/camera location
|
|
* @param centerX
|
|
* the x-coordinate of the point to look at
|
|
* @param centerY
|
|
* the y-coordinate of the point to look at
|
|
* @param centerZ
|
|
* the z-coordinate of the point to look at
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d lookAt(double eyeX, double eyeY, double eyeZ,
|
|
double centerX, double centerY, double centerZ,
|
|
double upX, double upY, double upZ) {
|
|
return lookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, this);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns
|
|
* <code>+z</code> with <code>center - eye</code>.
|
|
* <p>
|
|
* In order to not make use of vectors to specify <code>eye</code>, <code>center</code> and <code>up</code> but use primitives,
|
|
* like in the GLU function, use {@link #setLookAtLH(double, double, double, double, double, double, double, double, double) setLookAtLH()}
|
|
* instead.
|
|
* <p>
|
|
* In order to apply the lookat transformation to a previous existing transformation,
|
|
* use {@link #lookAtLH(Vector3dc, Vector3dc, Vector3dc) lookAt()}.
|
|
*
|
|
* @see #setLookAtLH(double, double, double, double, double, double, double, double, double)
|
|
* @see #lookAtLH(Vector3dc, Vector3dc, Vector3dc)
|
|
*
|
|
* @param eye
|
|
* the position of the camera
|
|
* @param center
|
|
* the point in space to look at
|
|
* @param up
|
|
* the direction of 'up'
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setLookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up) {
|
|
return setLookAtLH(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z());
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to be a "lookat" transformation for a left-handed coordinate system,
|
|
* that aligns <code>+z</code> with <code>center - eye</code>.
|
|
* <p>
|
|
* In order to apply the lookat transformation to a previous existing transformation,
|
|
* use {@link #lookAtLH(double, double, double, double, double, double, double, double, double) lookAtLH}.
|
|
*
|
|
* @see #setLookAtLH(Vector3dc, Vector3dc, Vector3dc)
|
|
* @see #lookAtLH(double, double, double, double, double, double, double, double, double)
|
|
*
|
|
* @param eyeX
|
|
* the x-coordinate of the eye/camera location
|
|
* @param eyeY
|
|
* the y-coordinate of the eye/camera location
|
|
* @param eyeZ
|
|
* the z-coordinate of the eye/camera location
|
|
* @param centerX
|
|
* the x-coordinate of the point to look at
|
|
* @param centerY
|
|
* the y-coordinate of the point to look at
|
|
* @param centerZ
|
|
* the z-coordinate of the point to look at
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d setLookAtLH(double eyeX, double eyeY, double eyeZ,
|
|
double centerX, double centerY, double centerZ,
|
|
double upX, double upY, double upZ) {
|
|
// Compute direction from position to lookAt
|
|
double dirX, dirY, dirZ;
|
|
dirX = centerX - eyeX;
|
|
dirY = centerY - eyeY;
|
|
dirZ = centerZ - eyeZ;
|
|
// Normalize direction
|
|
double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
|
|
dirX *= invDirLength;
|
|
dirY *= invDirLength;
|
|
dirZ *= invDirLength;
|
|
// left = up x direction
|
|
double leftX, leftY, leftZ;
|
|
leftX = upY * dirZ - upZ * dirY;
|
|
leftY = upZ * dirX - upX * dirZ;
|
|
leftZ = upX * dirY - upY * dirX;
|
|
// normalize left
|
|
double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
|
|
leftX *= invLeftLength;
|
|
leftY *= invLeftLength;
|
|
leftZ *= invLeftLength;
|
|
// up = direction x left
|
|
double upnX = dirY * leftZ - dirZ * leftY;
|
|
double upnY = dirZ * leftX - dirX * leftZ;
|
|
double upnZ = dirX * leftY - dirY * leftX;
|
|
|
|
m00 = leftX;
|
|
m01 = upnX;
|
|
m02 = dirX;
|
|
m10 = leftY;
|
|
m11 = upnY;
|
|
m12 = dirY;
|
|
m20 = leftZ;
|
|
m21 = upnZ;
|
|
m22 = dirZ;
|
|
m30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ);
|
|
m31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ);
|
|
m32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ);
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Apply a "lookat" transformation to this matrix for a left-handed coordinate system,
|
|
* that aligns <code>+z</code> with <code>center - eye</code> and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a lookat transformation without post-multiplying it,
|
|
* use {@link #setLookAtLH(Vector3dc, Vector3dc, Vector3dc)}.
|
|
*
|
|
* @see #lookAtLH(double, double, double, double, double, double, double, double, double)
|
|
*
|
|
* @param eye
|
|
* the position of the camera
|
|
* @param center
|
|
* the point in space to look at
|
|
* @param up
|
|
* the direction of 'up'
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d lookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest) {
|
|
return lookAtLH(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a "lookat" transformation to this matrix for a left-handed coordinate system,
|
|
* that aligns <code>+z</code> with <code>center - eye</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a lookat transformation without post-multiplying it,
|
|
* use {@link #setLookAtLH(Vector3dc, Vector3dc, Vector3dc)}.
|
|
*
|
|
* @see #lookAtLH(double, double, double, double, double, double, double, double, double)
|
|
*
|
|
* @param eye
|
|
* the position of the camera
|
|
* @param center
|
|
* the point in space to look at
|
|
* @param up
|
|
* the direction of 'up'
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d lookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up) {
|
|
return lookAtLH(eye.x(), eye.y(), eye.z(), center.x(), center.y(), center.z(), up.x(), up.y(), up.z(), this);
|
|
}
|
|
|
|
/**
|
|
* Apply a "lookat" transformation to this matrix for a left-handed coordinate system,
|
|
* that aligns <code>+z</code> with <code>center - eye</code> and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a lookat transformation without post-multiplying it,
|
|
* use {@link #setLookAtLH(double, double, double, double, double, double, double, double, double) setLookAtLH()}.
|
|
*
|
|
* @see #lookAtLH(Vector3dc, Vector3dc, Vector3dc)
|
|
* @see #setLookAtLH(double, double, double, double, double, double, double, double, double)
|
|
*
|
|
* @param eyeX
|
|
* the x-coordinate of the eye/camera location
|
|
* @param eyeY
|
|
* the y-coordinate of the eye/camera location
|
|
* @param eyeZ
|
|
* the z-coordinate of the eye/camera location
|
|
* @param centerX
|
|
* the x-coordinate of the point to look at
|
|
* @param centerY
|
|
* the y-coordinate of the point to look at
|
|
* @param centerZ
|
|
* the z-coordinate of the point to look at
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d lookAtLH(double eyeX, double eyeY, double eyeZ,
|
|
double centerX, double centerY, double centerZ,
|
|
double upX, double upY, double upZ, Matrix4x3d dest) {
|
|
if ((properties & PROPERTY_IDENTITY) != 0)
|
|
return dest.setLookAtLH(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ);
|
|
return lookAtLHGeneric(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, dest);
|
|
}
|
|
private Matrix4x3d lookAtLHGeneric(double eyeX, double eyeY, double eyeZ,
|
|
double centerX, double centerY, double centerZ,
|
|
double upX, double upY, double upZ, Matrix4x3d dest) {
|
|
// Compute direction from position to lookAt
|
|
double dirX, dirY, dirZ;
|
|
dirX = centerX - eyeX;
|
|
dirY = centerY - eyeY;
|
|
dirZ = centerZ - eyeZ;
|
|
// Normalize direction
|
|
double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
|
|
dirX *= invDirLength;
|
|
dirY *= invDirLength;
|
|
dirZ *= invDirLength;
|
|
// left = up x direction
|
|
double leftX, leftY, leftZ;
|
|
leftX = upY * dirZ - upZ * dirY;
|
|
leftY = upZ * dirX - upX * dirZ;
|
|
leftZ = upX * dirY - upY * dirX;
|
|
// normalize left
|
|
double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
|
|
leftX *= invLeftLength;
|
|
leftY *= invLeftLength;
|
|
leftZ *= invLeftLength;
|
|
// up = direction x left
|
|
double upnX = dirY * leftZ - dirZ * leftY;
|
|
double upnY = dirZ * leftX - dirX * leftZ;
|
|
double upnZ = dirX * leftY - dirY * leftX;
|
|
|
|
// calculate right matrix elements
|
|
double rm00 = leftX;
|
|
double rm01 = upnX;
|
|
double rm02 = dirX;
|
|
double rm10 = leftY;
|
|
double rm11 = upnY;
|
|
double rm12 = dirY;
|
|
double rm20 = leftZ;
|
|
double rm21 = upnZ;
|
|
double rm22 = dirZ;
|
|
double rm30 = -(leftX * eyeX + leftY * eyeY + leftZ * eyeZ);
|
|
double rm31 = -(upnX * eyeX + upnY * eyeY + upnZ * eyeZ);
|
|
double rm32 = -(dirX * eyeX + dirY * eyeY + dirZ * eyeZ);
|
|
|
|
// perform optimized matrix multiplication
|
|
// compute last column first, because others do not depend on it
|
|
dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30;
|
|
dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31;
|
|
dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32;
|
|
// introduce temporaries for dependent results
|
|
double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
|
|
double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
|
|
double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
|
|
double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
|
|
double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
|
|
double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
|
|
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
|
|
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
|
|
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
|
|
// set the rest of the matrix elements
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply a "lookat" transformation to this matrix for a left-handed coordinate system,
|
|
* that aligns <code>+z</code> with <code>center - eye</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a lookat transformation without post-multiplying it,
|
|
* use {@link #setLookAtLH(double, double, double, double, double, double, double, double, double) setLookAtLH()}.
|
|
*
|
|
* @see #lookAtLH(Vector3dc, Vector3dc, Vector3dc)
|
|
* @see #setLookAtLH(double, double, double, double, double, double, double, double, double)
|
|
*
|
|
* @param eyeX
|
|
* the x-coordinate of the eye/camera location
|
|
* @param eyeY
|
|
* the y-coordinate of the eye/camera location
|
|
* @param eyeZ
|
|
* the z-coordinate of the eye/camera location
|
|
* @param centerX
|
|
* the x-coordinate of the point to look at
|
|
* @param centerY
|
|
* the y-coordinate of the point to look at
|
|
* @param centerZ
|
|
* the z-coordinate of the point to look at
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d lookAtLH(double eyeX, double eyeY, double eyeZ,
|
|
double centerX, double centerY, double centerZ,
|
|
double upX, double upY, double upZ) {
|
|
return lookAtLH(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ, this);
|
|
}
|
|
|
|
public Vector4d frustumPlane(int which, Vector4d dest) {
|
|
switch (which) {
|
|
case PLANE_NX:
|
|
dest.set(m00, m10, m20, 1.0 + m30).normalize();
|
|
break;
|
|
case PLANE_PX:
|
|
dest.set(-m00, -m10, -m20, 1.0 - m30).normalize();
|
|
break;
|
|
case PLANE_NY:
|
|
dest.set(m01, m11, m21, 1.0 + m31).normalize();
|
|
break;
|
|
case PLANE_PY:
|
|
dest.set(-m01, -m11, -m21, 1.0 - m31).normalize();
|
|
break;
|
|
case PLANE_NZ:
|
|
dest.set(m02, m12, m22, 1.0 + m32).normalize();
|
|
break;
|
|
case PLANE_PZ:
|
|
dest.set(-m02, -m12, -m22, 1.0 - m32).normalize();
|
|
break;
|
|
default:
|
|
throw new IllegalArgumentException("which"); //$NON-NLS-1$
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
public Vector3d positiveZ(Vector3d dir) {
|
|
dir.x = m10 * m21 - m11 * m20;
|
|
dir.y = m20 * m01 - m21 * m00;
|
|
dir.z = m00 * m11 - m01 * m10;
|
|
return dir.normalize(dir);
|
|
}
|
|
|
|
public Vector3d normalizedPositiveZ(Vector3d dir) {
|
|
dir.x = m02;
|
|
dir.y = m12;
|
|
dir.z = m22;
|
|
return dir;
|
|
}
|
|
|
|
public Vector3d positiveX(Vector3d dir) {
|
|
dir.x = m11 * m22 - m12 * m21;
|
|
dir.y = m02 * m21 - m01 * m22;
|
|
dir.z = m01 * m12 - m02 * m11;
|
|
return dir.normalize(dir);
|
|
}
|
|
|
|
public Vector3d normalizedPositiveX(Vector3d dir) {
|
|
dir.x = m00;
|
|
dir.y = m10;
|
|
dir.z = m20;
|
|
return dir;
|
|
}
|
|
|
|
public Vector3d positiveY(Vector3d dir) {
|
|
dir.x = m12 * m20 - m10 * m22;
|
|
dir.y = m00 * m22 - m02 * m20;
|
|
dir.z = m02 * m10 - m00 * m12;
|
|
return dir.normalize(dir);
|
|
}
|
|
|
|
public Vector3d normalizedPositiveY(Vector3d dir) {
|
|
dir.x = m01;
|
|
dir.y = m11;
|
|
dir.z = m21;
|
|
return dir;
|
|
}
|
|
|
|
public Vector3d origin(Vector3d origin) {
|
|
double a = m00 * m11 - m01 * m10;
|
|
double b = m00 * m12 - m02 * m10;
|
|
double d = m01 * m12 - m02 * m11;
|
|
double g = m20 * m31 - m21 * m30;
|
|
double h = m20 * m32 - m22 * m30;
|
|
double j = m21 * m32 - m22 * m31;
|
|
origin.x = -m10 * j + m11 * h - m12 * g;
|
|
origin.y = m00 * j - m01 * h + m02 * g;
|
|
origin.z = -m30 * d + m31 * b - m32 * a;
|
|
return origin;
|
|
}
|
|
|
|
/**
|
|
* Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation
|
|
* <code>x*a + y*b + z*c + d = 0</code> as if casting a shadow from a given light position/direction <code>light</code>.
|
|
* <p>
|
|
* If <code>light.w</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* shadow projection will be applied first!
|
|
* <p>
|
|
* Reference: <a href="ftp://ftp.sgi.com/opengl/contrib/blythe/advanced99/notes/node192.html">ftp.sgi.com</a>
|
|
*
|
|
* @param light
|
|
* the light's vector
|
|
* @param a
|
|
* the x factor in the plane equation
|
|
* @param b
|
|
* the y factor in the plane equation
|
|
* @param c
|
|
* the z factor in the plane equation
|
|
* @param d
|
|
* the constant in the plane equation
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d shadow(Vector4dc light, double a, double b, double c, double d) {
|
|
return shadow(light.x(), light.y(), light.z(), light.w(), a, b, c, d, this);
|
|
}
|
|
|
|
public Matrix4x3d shadow(Vector4dc light, double a, double b, double c, double d, Matrix4x3d dest) {
|
|
return shadow(light.x(), light.y(), light.z(), light.w(), a, b, c, d, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation
|
|
* <code>x*a + y*b + z*c + d = 0</code> as if casting a shadow from a given light position/direction <code>(lightX, lightY, lightZ, lightW)</code>.
|
|
* <p>
|
|
* If <code>lightW</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* shadow projection will be applied first!
|
|
* <p>
|
|
* Reference: <a href="ftp://ftp.sgi.com/opengl/contrib/blythe/advanced99/notes/node192.html">ftp.sgi.com</a>
|
|
*
|
|
* @param lightX
|
|
* the x-component of the light's vector
|
|
* @param lightY
|
|
* the y-component of the light's vector
|
|
* @param lightZ
|
|
* the z-component of the light's vector
|
|
* @param lightW
|
|
* the w-component of the light's vector
|
|
* @param a
|
|
* the x factor in the plane equation
|
|
* @param b
|
|
* the y factor in the plane equation
|
|
* @param c
|
|
* the z factor in the plane equation
|
|
* @param d
|
|
* the constant in the plane equation
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d) {
|
|
return shadow(lightX, lightY, lightZ, lightW, a, b, c, d, this);
|
|
}
|
|
|
|
public Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d, Matrix4x3d dest) {
|
|
// normalize plane
|
|
double invPlaneLen = Math.invsqrt(a*a + b*b + c*c);
|
|
double an = a * invPlaneLen;
|
|
double bn = b * invPlaneLen;
|
|
double cn = c * invPlaneLen;
|
|
double dn = d * invPlaneLen;
|
|
|
|
double dot = an * lightX + bn * lightY + cn * lightZ + dn * lightW;
|
|
|
|
// compute right matrix elements
|
|
double rm00 = dot - an * lightX;
|
|
double rm01 = -an * lightY;
|
|
double rm02 = -an * lightZ;
|
|
double rm03 = -an * lightW;
|
|
double rm10 = -bn * lightX;
|
|
double rm11 = dot - bn * lightY;
|
|
double rm12 = -bn * lightZ;
|
|
double rm13 = -bn * lightW;
|
|
double rm20 = -cn * lightX;
|
|
double rm21 = -cn * lightY;
|
|
double rm22 = dot - cn * lightZ;
|
|
double rm23 = -cn * lightW;
|
|
double rm30 = -dn * lightX;
|
|
double rm31 = -dn * lightY;
|
|
double rm32 = -dn * lightZ;
|
|
double rm33 = dot - dn * lightW;
|
|
|
|
// matrix multiplication
|
|
double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02 + m30 * rm03;
|
|
double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02 + m31 * rm03;
|
|
double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02 + m32 * rm03;
|
|
double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12 + m30 * rm13;
|
|
double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12 + m31 * rm13;
|
|
double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12 + m32 * rm13;
|
|
double nm20 = m00 * rm20 + m10 * rm21 + m20 * rm22 + m30 * rm23;
|
|
double nm21 = m01 * rm20 + m11 * rm21 + m21 * rm22 + m31 * rm23;
|
|
double nm22 = m02 * rm20 + m12 * rm21 + m22 * rm22 + m32 * rm23;
|
|
dest.m30 = m00 * rm30 + m10 * rm31 + m20 * rm32 + m30 * rm33;
|
|
dest.m31 = m01 * rm30 + m11 * rm31 + m21 * rm32 + m31 * rm33;
|
|
dest.m32 = m02 * rm30 + m12 * rm31 + m22 * rm32 + m32 * rm33;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
dest.m22 = nm22;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION | PROPERTY_ORTHONORMAL);
|
|
|
|
return dest;
|
|
}
|
|
|
|
public Matrix4x3d shadow(Vector4dc light, Matrix4x3dc planeTransform, Matrix4x3d dest) {
|
|
// compute plane equation by transforming (y = 0)
|
|
double a = planeTransform.m10();
|
|
double b = planeTransform.m11();
|
|
double c = planeTransform.m12();
|
|
double d = -a * planeTransform.m30() - b * planeTransform.m31() - c * planeTransform.m32();
|
|
return shadow(light.x(), light.y(), light.z(), light.w(), a, b, c, d, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a projection transformation to this matrix that projects onto the plane with the general plane equation
|
|
* <code>y = 0</code> as if casting a shadow from a given light position/direction <code>light</code>.
|
|
* <p>
|
|
* Before the shadow projection is applied, the plane is transformed via the specified <code>planeTransformation</code>.
|
|
* <p>
|
|
* If <code>light.w</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* shadow projection will be applied first!
|
|
*
|
|
* @param light
|
|
* the light's vector
|
|
* @param planeTransform
|
|
* the transformation to transform the implied plane <code>y = 0</code> before applying the projection
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d shadow(Vector4dc light, Matrix4x3dc planeTransform) {
|
|
return shadow(light, planeTransform, this);
|
|
}
|
|
|
|
public Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, Matrix4x3dc planeTransform, Matrix4x3d dest) {
|
|
// compute plane equation by transforming (y = 0)
|
|
double a = planeTransform.m10();
|
|
double b = planeTransform.m11();
|
|
double c = planeTransform.m12();
|
|
double d = -a * planeTransform.m30() - b * planeTransform.m31() - c * planeTransform.m32();
|
|
return shadow(lightX, lightY, lightZ, lightW, a, b, c, d, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a projection transformation to this matrix that projects onto the plane with the general plane equation
|
|
* <code>y = 0</code> as if casting a shadow from a given light position/direction <code>(lightX, lightY, lightZ, lightW)</code>.
|
|
* <p>
|
|
* Before the shadow projection is applied, the plane is transformed via the specified <code>planeTransformation</code>.
|
|
* <p>
|
|
* If <code>lightW</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix,
|
|
* then the new matrix will be <code>M * S</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
|
|
* shadow projection will be applied first!
|
|
*
|
|
* @param lightX
|
|
* the x-component of the light vector
|
|
* @param lightY
|
|
* the y-component of the light vector
|
|
* @param lightZ
|
|
* the z-component of the light vector
|
|
* @param lightW
|
|
* the w-component of the light vector
|
|
* @param planeTransform
|
|
* the transformation to transform the implied plane <code>y = 0</code> before applying the projection
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, Matrix4x3dc planeTransform) {
|
|
return shadow(lightX, lightY, lightZ, lightW, planeTransform, this);
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with position <code>objPos</code> towards
|
|
* a target position at <code>targetPos</code> while constraining a cylindrical rotation around the given <code>up</code> vector.
|
|
* <p>
|
|
* This method can be used to create the complete model transformation for a given object, including the translation of the object to
|
|
* its position <code>objPos</code>.
|
|
*
|
|
* @param objPos
|
|
* the position of the object to rotate towards <code>targetPos</code>
|
|
* @param targetPos
|
|
* the position of the target (for example the camera) towards which to rotate the object
|
|
* @param up
|
|
* the rotation axis (must be {@link Vector3d#normalize() normalized})
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d billboardCylindrical(Vector3dc objPos, Vector3dc targetPos, Vector3dc up) {
|
|
double dirX = targetPos.x() - objPos.x();
|
|
double dirY = targetPos.y() - objPos.y();
|
|
double dirZ = targetPos.z() - objPos.z();
|
|
// left = up x dir
|
|
double leftX = up.y() * dirZ - up.z() * dirY;
|
|
double leftY = up.z() * dirX - up.x() * dirZ;
|
|
double leftZ = up.x() * dirY - up.y() * dirX;
|
|
// normalize left
|
|
double invLeftLen = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
|
|
leftX *= invLeftLen;
|
|
leftY *= invLeftLen;
|
|
leftZ *= invLeftLen;
|
|
// recompute dir by constraining rotation around 'up'
|
|
// dir = left x up
|
|
dirX = leftY * up.z() - leftZ * up.y();
|
|
dirY = leftZ * up.x() - leftX * up.z();
|
|
dirZ = leftX * up.y() - leftY * up.x();
|
|
// normalize dir
|
|
double invDirLen = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
|
|
dirX *= invDirLen;
|
|
dirY *= invDirLen;
|
|
dirZ *= invDirLen;
|
|
// set matrix elements
|
|
m00 = leftX;
|
|
m01 = leftY;
|
|
m02 = leftZ;
|
|
m10 = up.x();
|
|
m11 = up.y();
|
|
m12 = up.z();
|
|
m20 = dirX;
|
|
m21 = dirY;
|
|
m22 = dirZ;
|
|
m30 = objPos.x();
|
|
m31 = objPos.y();
|
|
m32 = objPos.z();
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position <code>objPos</code> towards
|
|
* a target position at <code>targetPos</code>.
|
|
* <p>
|
|
* This method can be used to create the complete model transformation for a given object, including the translation of the object to
|
|
* its position <code>objPos</code>.
|
|
* <p>
|
|
* If preserving an <i>up</i> vector is not necessary when rotating the +Z axis, then a shortest arc rotation can be obtained
|
|
* using {@link #billboardSpherical(Vector3dc, Vector3dc)}.
|
|
*
|
|
* @see #billboardSpherical(Vector3dc, Vector3dc)
|
|
*
|
|
* @param objPos
|
|
* the position of the object to rotate towards <code>targetPos</code>
|
|
* @param targetPos
|
|
* the position of the target (for example the camera) towards which to rotate the object
|
|
* @param up
|
|
* the up axis used to orient the object
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d billboardSpherical(Vector3dc objPos, Vector3dc targetPos, Vector3dc up) {
|
|
double dirX = targetPos.x() - objPos.x();
|
|
double dirY = targetPos.y() - objPos.y();
|
|
double dirZ = targetPos.z() - objPos.z();
|
|
// normalize dir
|
|
double invDirLen = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
|
|
dirX *= invDirLen;
|
|
dirY *= invDirLen;
|
|
dirZ *= invDirLen;
|
|
// left = up x dir
|
|
double leftX = up.y() * dirZ - up.z() * dirY;
|
|
double leftY = up.z() * dirX - up.x() * dirZ;
|
|
double leftZ = up.x() * dirY - up.y() * dirX;
|
|
// normalize left
|
|
double invLeftLen = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
|
|
leftX *= invLeftLen;
|
|
leftY *= invLeftLen;
|
|
leftZ *= invLeftLen;
|
|
// up = dir x left
|
|
double upX = dirY * leftZ - dirZ * leftY;
|
|
double upY = dirZ * leftX - dirX * leftZ;
|
|
double upZ = dirX * leftY - dirY * leftX;
|
|
// set matrix elements
|
|
m00 = leftX;
|
|
m01 = leftY;
|
|
m02 = leftZ;
|
|
m10 = upX;
|
|
m11 = upY;
|
|
m12 = upZ;
|
|
m20 = dirX;
|
|
m21 = dirY;
|
|
m22 = dirZ;
|
|
m30 = objPos.x();
|
|
m31 = objPos.y();
|
|
m32 = objPos.z();
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with position <code>objPos</code> towards
|
|
* a target position at <code>targetPos</code> using a shortest arc rotation by not preserving any <i>up</i> vector of the object.
|
|
* <p>
|
|
* This method can be used to create the complete model transformation for a given object, including the translation of the object to
|
|
* its position <code>objPos</code>.
|
|
* <p>
|
|
* In order to specify an <i>up</i> vector which needs to be maintained when rotating the +Z axis of the object,
|
|
* use {@link #billboardSpherical(Vector3dc, Vector3dc, Vector3dc)}.
|
|
*
|
|
* @see #billboardSpherical(Vector3dc, Vector3dc, Vector3dc)
|
|
*
|
|
* @param objPos
|
|
* the position of the object to rotate towards <code>targetPos</code>
|
|
* @param targetPos
|
|
* the position of the target (for example the camera) towards which to rotate the object
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d billboardSpherical(Vector3dc objPos, Vector3dc targetPos) {
|
|
double toDirX = targetPos.x() - objPos.x();
|
|
double toDirY = targetPos.y() - objPos.y();
|
|
double toDirZ = targetPos.z() - objPos.z();
|
|
double x = -toDirY;
|
|
double y = toDirX;
|
|
double w = Math.sqrt(toDirX * toDirX + toDirY * toDirY + toDirZ * toDirZ) + toDirZ;
|
|
double invNorm = Math.invsqrt(x * x + y * y + w * w);
|
|
x *= invNorm;
|
|
y *= invNorm;
|
|
w *= invNorm;
|
|
double q00 = (x + x) * x;
|
|
double q11 = (y + y) * y;
|
|
double q01 = (x + x) * y;
|
|
double q03 = (x + x) * w;
|
|
double q13 = (y + y) * w;
|
|
m00 = 1.0 - q11;
|
|
m01 = q01;
|
|
m02 = -q13;
|
|
m10 = q01;
|
|
m11 = 1.0 - q00;
|
|
m12 = q03;
|
|
m20 = q13;
|
|
m21 = -q03;
|
|
m22 = 1.0 - q11 - q00;
|
|
m30 = objPos.x();
|
|
m31 = objPos.y();
|
|
m32 = objPos.z();
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
public int hashCode() {
|
|
final int prime = 31;
|
|
int result = 1;
|
|
long temp;
|
|
temp = Double.doubleToLongBits(m00);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
temp = Double.doubleToLongBits(m01);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
temp = Double.doubleToLongBits(m02);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
temp = Double.doubleToLongBits(m10);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
temp = Double.doubleToLongBits(m11);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
temp = Double.doubleToLongBits(m12);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
temp = Double.doubleToLongBits(m20);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
temp = Double.doubleToLongBits(m21);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
temp = Double.doubleToLongBits(m22);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
temp = Double.doubleToLongBits(m30);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
temp = Double.doubleToLongBits(m31);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
temp = Double.doubleToLongBits(m32);
|
|
result = prime * result + (int) (temp ^ (temp >>> 32));
|
|
return result;
|
|
}
|
|
|
|
public boolean equals(Object obj) {
|
|
if (this == obj)
|
|
return true;
|
|
if (obj == null)
|
|
return false;
|
|
if (!(obj instanceof Matrix4x3d))
|
|
return false;
|
|
Matrix4x3d other = (Matrix4x3d) obj;
|
|
if (Double.doubleToLongBits(m00) != Double.doubleToLongBits(other.m00))
|
|
return false;
|
|
if (Double.doubleToLongBits(m01) != Double.doubleToLongBits(other.m01))
|
|
return false;
|
|
if (Double.doubleToLongBits(m02) != Double.doubleToLongBits(other.m02))
|
|
return false;
|
|
if (Double.doubleToLongBits(m10) != Double.doubleToLongBits(other.m10))
|
|
return false;
|
|
if (Double.doubleToLongBits(m11) != Double.doubleToLongBits(other.m11))
|
|
return false;
|
|
if (Double.doubleToLongBits(m12) != Double.doubleToLongBits(other.m12))
|
|
return false;
|
|
if (Double.doubleToLongBits(m20) != Double.doubleToLongBits(other.m20))
|
|
return false;
|
|
if (Double.doubleToLongBits(m21) != Double.doubleToLongBits(other.m21))
|
|
return false;
|
|
if (Double.doubleToLongBits(m22) != Double.doubleToLongBits(other.m22))
|
|
return false;
|
|
if (Double.doubleToLongBits(m30) != Double.doubleToLongBits(other.m30))
|
|
return false;
|
|
if (Double.doubleToLongBits(m31) != Double.doubleToLongBits(other.m31))
|
|
return false;
|
|
if (Double.doubleToLongBits(m32) != Double.doubleToLongBits(other.m32))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
public boolean equals(Matrix4x3dc m, double delta) {
|
|
if (this == m)
|
|
return true;
|
|
if (m == null)
|
|
return false;
|
|
if (!(m instanceof Matrix4x3d))
|
|
return false;
|
|
if (!Runtime.equals(m00, m.m00(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m01, m.m01(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m02, m.m02(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m10, m.m10(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m11, m.m11(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m12, m.m12(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m20, m.m20(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m21, m.m21(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m22, m.m22(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m30, m.m30(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m31, m.m31(), delta))
|
|
return false;
|
|
if (!Runtime.equals(m32, m.m32(), delta))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
public Matrix4x3d pick(double x, double y, double width, double height, int[] viewport, Matrix4x3d dest) {
|
|
double sx = viewport[2] / width;
|
|
double sy = viewport[3] / height;
|
|
double tx = (viewport[2] + 2.0 * (viewport[0] - x)) / width;
|
|
double ty = (viewport[3] + 2.0 * (viewport[1] - y)) / height;
|
|
dest.m30 = m00 * tx + m10 * ty + m30;
|
|
dest.m31 = m01 * tx + m11 * ty + m31;
|
|
dest.m32 = m02 * tx + m12 * ty + m32;
|
|
dest.m00 = m00 * sx;
|
|
dest.m01 = m01 * sx;
|
|
dest.m02 = m02 * sx;
|
|
dest.m10 = m10 * sy;
|
|
dest.m11 = m11 * sy;
|
|
dest.m12 = m12 * sy;
|
|
dest.properties = 0;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply a picking transformation to this matrix using the given window coordinates <code>(x, y)</code> as the pick center
|
|
* and the given <code>(width, height)</code> as the size of the picking region in window coordinates.
|
|
*
|
|
* @param x
|
|
* the x coordinate of the picking region center in window coordinates
|
|
* @param y
|
|
* the y coordinate of the picking region center in window coordinates
|
|
* @param width
|
|
* the width of the picking region in window coordinates
|
|
* @param height
|
|
* the height of the picking region in window coordinates
|
|
* @param viewport
|
|
* the viewport described by <code>[x, y, width, height]</code>
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d pick(double x, double y, double width, double height, int[] viewport) {
|
|
return pick(x, y, width, height, viewport, this);
|
|
}
|
|
|
|
/**
|
|
* Exchange the values of <code>this</code> matrix with the given <code>other</code> matrix.
|
|
*
|
|
* @param other
|
|
* the other matrix to exchange the values with
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d swap(Matrix4x3d other) {
|
|
double tmp;
|
|
tmp = m00; m00 = other.m00; other.m00 = tmp;
|
|
tmp = m01; m01 = other.m01; other.m01 = tmp;
|
|
tmp = m02; m02 = other.m02; other.m02 = tmp;
|
|
tmp = m10; m10 = other.m10; other.m10 = tmp;
|
|
tmp = m11; m11 = other.m11; other.m11 = tmp;
|
|
tmp = m12; m12 = other.m12; other.m12 = tmp;
|
|
tmp = m20; m20 = other.m20; other.m20 = tmp;
|
|
tmp = m21; m21 = other.m21; other.m21 = tmp;
|
|
tmp = m22; m22 = other.m22; other.m22 = tmp;
|
|
tmp = m30; m30 = other.m30; other.m30 = tmp;
|
|
tmp = m31; m31 = other.m31; other.m31 = tmp;
|
|
tmp = m32; m32 = other.m32; other.m32 = tmp;
|
|
int props = properties;
|
|
this.properties = other.properties;
|
|
other.properties = props;
|
|
return this;
|
|
}
|
|
|
|
public Matrix4x3d arcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY, Matrix4x3d dest) {
|
|
double m30 = m20 * -radius + this.m30;
|
|
double m31 = m21 * -radius + this.m31;
|
|
double m32 = m22 * -radius + this.m32;
|
|
double sin = Math.sin(angleX);
|
|
double cos = Math.cosFromSin(sin, angleX);
|
|
double nm10 = m10 * cos + m20 * sin;
|
|
double nm11 = m11 * cos + m21 * sin;
|
|
double nm12 = m12 * cos + m22 * sin;
|
|
double m20 = this.m20 * cos - m10 * sin;
|
|
double m21 = this.m21 * cos - m11 * sin;
|
|
double m22 = this.m22 * cos - m12 * sin;
|
|
sin = Math.sin(angleY);
|
|
cos = Math.cosFromSin(sin, angleY);
|
|
double nm00 = m00 * cos - m20 * sin;
|
|
double nm01 = m01 * cos - m21 * sin;
|
|
double nm02 = m02 * cos - m22 * sin;
|
|
double nm20 = m00 * sin + m20 * cos;
|
|
double nm21 = m01 * sin + m21 * cos;
|
|
double nm22 = m02 * sin + m22 * cos;
|
|
dest.m30 = -nm00 * centerX - nm10 * centerY - nm20 * centerZ + m30;
|
|
dest.m31 = -nm01 * centerX - nm11 * centerY - nm21 * centerZ + m31;
|
|
dest.m32 = -nm02 * centerX - nm12 * centerY - nm22 * centerZ + m32;
|
|
dest.m20 = nm20;
|
|
dest.m21 = nm21;
|
|
dest.m22 = nm22;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
public Matrix4x3d arcball(double radius, Vector3dc center, double angleX, double angleY, Matrix4x3d dest) {
|
|
return arcball(radius, center.x(), center.y(), center.z(), angleX, angleY, dest);
|
|
}
|
|
|
|
/**
|
|
* Apply an arcball view transformation to this matrix with the given <code>radius</code> and center <code>(centerX, centerY, centerZ)</code>
|
|
* position of the arcball and the specified X and Y rotation angles.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)</code>
|
|
*
|
|
* @param radius
|
|
* the arcball radius
|
|
* @param centerX
|
|
* the x coordinate of the center position of the arcball
|
|
* @param centerY
|
|
* the y coordinate of the center position of the arcball
|
|
* @param centerZ
|
|
* the z coordinate of the center position of the arcball
|
|
* @param angleX
|
|
* the rotation angle around the X axis in radians
|
|
* @param angleY
|
|
* the rotation angle around the Y axis in radians
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d arcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY) {
|
|
return arcball(radius, centerX, centerY, centerZ, angleX, angleY, this);
|
|
}
|
|
|
|
/**
|
|
* Apply an arcball view transformation to this matrix with the given <code>radius</code> and <code>center</code>
|
|
* position of the arcball and the specified X and Y rotation angles.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)</code>
|
|
*
|
|
* @param radius
|
|
* the arcball radius
|
|
* @param center
|
|
* the center position of the arcball
|
|
* @param angleX
|
|
* the rotation angle around the X axis in radians
|
|
* @param angleY
|
|
* the rotation angle around the Y axis in radians
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d arcball(double radius, Vector3dc center, double angleX, double angleY) {
|
|
return arcball(radius, center.x(), center.y(), center.z(), angleX, angleY, this);
|
|
}
|
|
|
|
public Matrix4x3d transformAab(double minX, double minY, double minZ, double maxX, double maxY, double maxZ, Vector3d outMin, Vector3d outMax) {
|
|
double xax = m00 * minX, xay = m01 * minX, xaz = m02 * minX;
|
|
double xbx = m00 * maxX, xby = m01 * maxX, xbz = m02 * maxX;
|
|
double yax = m10 * minY, yay = m11 * minY, yaz = m12 * minY;
|
|
double ybx = m10 * maxY, yby = m11 * maxY, ybz = m12 * maxY;
|
|
double zax = m20 * minZ, zay = m21 * minZ, zaz = m22 * minZ;
|
|
double zbx = m20 * maxZ, zby = m21 * maxZ, zbz = m22 * maxZ;
|
|
double xminx, xminy, xminz, yminx, yminy, yminz, zminx, zminy, zminz;
|
|
double xmaxx, xmaxy, xmaxz, ymaxx, ymaxy, ymaxz, zmaxx, zmaxy, zmaxz;
|
|
if (xax < xbx) {
|
|
xminx = xax;
|
|
xmaxx = xbx;
|
|
} else {
|
|
xminx = xbx;
|
|
xmaxx = xax;
|
|
}
|
|
if (xay < xby) {
|
|
xminy = xay;
|
|
xmaxy = xby;
|
|
} else {
|
|
xminy = xby;
|
|
xmaxy = xay;
|
|
}
|
|
if (xaz < xbz) {
|
|
xminz = xaz;
|
|
xmaxz = xbz;
|
|
} else {
|
|
xminz = xbz;
|
|
xmaxz = xaz;
|
|
}
|
|
if (yax < ybx) {
|
|
yminx = yax;
|
|
ymaxx = ybx;
|
|
} else {
|
|
yminx = ybx;
|
|
ymaxx = yax;
|
|
}
|
|
if (yay < yby) {
|
|
yminy = yay;
|
|
ymaxy = yby;
|
|
} else {
|
|
yminy = yby;
|
|
ymaxy = yay;
|
|
}
|
|
if (yaz < ybz) {
|
|
yminz = yaz;
|
|
ymaxz = ybz;
|
|
} else {
|
|
yminz = ybz;
|
|
ymaxz = yaz;
|
|
}
|
|
if (zax < zbx) {
|
|
zminx = zax;
|
|
zmaxx = zbx;
|
|
} else {
|
|
zminx = zbx;
|
|
zmaxx = zax;
|
|
}
|
|
if (zay < zby) {
|
|
zminy = zay;
|
|
zmaxy = zby;
|
|
} else {
|
|
zminy = zby;
|
|
zmaxy = zay;
|
|
}
|
|
if (zaz < zbz) {
|
|
zminz = zaz;
|
|
zmaxz = zbz;
|
|
} else {
|
|
zminz = zbz;
|
|
zmaxz = zaz;
|
|
}
|
|
outMin.x = xminx + yminx + zminx + m30;
|
|
outMin.y = xminy + yminy + zminy + m31;
|
|
outMin.z = xminz + yminz + zminz + m32;
|
|
outMax.x = xmaxx + ymaxx + zmaxx + m30;
|
|
outMax.y = xmaxy + ymaxy + zmaxy + m31;
|
|
outMax.z = xmaxz + ymaxz + zmaxz + m32;
|
|
return this;
|
|
}
|
|
|
|
public Matrix4x3d transformAab(Vector3dc min, Vector3dc max, Vector3d outMin, Vector3d outMax) {
|
|
return transformAab(min.x(), min.y(), min.z(), max.x(), max.y(), max.z(), outMin, outMax);
|
|
}
|
|
|
|
/**
|
|
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
|
|
* and store the result in <code>this</code>.
|
|
* <p>
|
|
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
|
|
* then the result is <code>other</code>.
|
|
*
|
|
* @param other
|
|
* the other matrix
|
|
* @param t
|
|
* the interpolation factor between 0.0 and 1.0
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d lerp(Matrix4x3dc other, double t) {
|
|
return lerp(other, t, this);
|
|
}
|
|
|
|
public Matrix4x3d lerp(Matrix4x3dc other, double t, Matrix4x3d dest) {
|
|
dest.m00 = Math.fma(other.m00() - m00, t, m00);
|
|
dest.m01 = Math.fma(other.m01() - m01, t, m01);
|
|
dest.m02 = Math.fma(other.m02() - m02, t, m02);
|
|
dest.m10 = Math.fma(other.m10() - m10, t, m10);
|
|
dest.m11 = Math.fma(other.m11() - m11, t, m11);
|
|
dest.m12 = Math.fma(other.m12() - m12, t, m12);
|
|
dest.m20 = Math.fma(other.m20() - m20, t, m20);
|
|
dest.m21 = Math.fma(other.m21() - m21, t, m21);
|
|
dest.m22 = Math.fma(other.m22() - m22, t, m22);
|
|
dest.m30 = Math.fma(other.m30() - m30, t, m30);
|
|
dest.m31 = Math.fma(other.m31() - m31, t, m31);
|
|
dest.m32 = Math.fma(other.m32() - m32, t, m32);
|
|
dest.properties = properties & other.properties();
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply a model transformation to this matrix for a right-handed coordinate system,
|
|
* that aligns the local <code>+Z</code> axis with <code>dir</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying it,
|
|
* use {@link #rotationTowards(Vector3dc, Vector3dc) rotationTowards()}.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>mul(new Matrix4x3d().lookAt(new Vector3d(), new Vector3d(dir).negate(), up).invert(), dest)</code>
|
|
*
|
|
* @see #rotateTowards(double, double, double, double, double, double, Matrix4x3d)
|
|
* @see #rotationTowards(Vector3dc, Vector3dc)
|
|
*
|
|
* @param dir
|
|
* the direction to rotate towards
|
|
* @param up
|
|
* the up vector
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotateTowards(Vector3dc dir, Vector3dc up, Matrix4x3d dest) {
|
|
return rotateTowards(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), dest);
|
|
}
|
|
|
|
/**
|
|
* Apply a model transformation to this matrix for a right-handed coordinate system,
|
|
* that aligns the local <code>+Z</code> axis with <code>dir</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying it,
|
|
* use {@link #rotationTowards(Vector3dc, Vector3dc) rotationTowards()}.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>mul(new Matrix4x3d().lookAt(new Vector3d(), new Vector3d(dir).negate(), up).invert())</code>
|
|
*
|
|
* @see #rotateTowards(double, double, double, double, double, double)
|
|
* @see #rotationTowards(Vector3dc, Vector3dc)
|
|
*
|
|
* @param dir
|
|
* the direction to orient towards
|
|
* @param up
|
|
* the up vector
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateTowards(Vector3dc dir, Vector3dc up) {
|
|
return rotateTowards(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z(), this);
|
|
}
|
|
|
|
/**
|
|
* Apply a model transformation to this matrix for a right-handed coordinate system,
|
|
* that aligns the local <code>+Z</code> axis with <code>(dirX, dirY, dirZ)</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying it,
|
|
* use {@link #rotationTowards(double, double, double, double, double, double) rotationTowards()}.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>mul(new Matrix4x3d().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert())</code>
|
|
*
|
|
* @see #rotateTowards(Vector3dc, Vector3dc)
|
|
* @see #rotationTowards(double, double, double, double, double, double)
|
|
*
|
|
* @param dirX
|
|
* the x-coordinate of the direction to rotate towards
|
|
* @param dirY
|
|
* the y-coordinate of the direction to rotate towards
|
|
* @param dirZ
|
|
* the z-coordinate of the direction to rotate towards
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ) {
|
|
return rotateTowards(dirX, dirY, dirZ, upX, upY, upZ, this);
|
|
}
|
|
|
|
/**
|
|
* Apply a model transformation to this matrix for a right-handed coordinate system,
|
|
* that aligns the local <code>+Z</code> axis with <code>(dirX, dirY, dirZ)</code>
|
|
* and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
|
|
* then the new matrix will be <code>M * L</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
|
|
* the lookat transformation will be applied first!
|
|
* <p>
|
|
* In order to set the matrix to a rotation transformation without post-multiplying it,
|
|
* use {@link #rotationTowards(double, double, double, double, double, double) rotationTowards()}.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>mul(new Matrix4x3d().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)</code>
|
|
*
|
|
* @see #rotateTowards(Vector3dc, Vector3dc)
|
|
* @see #rotationTowards(double, double, double, double, double, double)
|
|
*
|
|
* @param dirX
|
|
* the x-coordinate of the direction to rotate towards
|
|
* @param dirY
|
|
* the y-coordinate of the direction to rotate towards
|
|
* @param dirZ
|
|
* the z-coordinate of the direction to rotate towards
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest) {
|
|
// Normalize direction
|
|
double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
|
|
double ndirX = dirX * invDirLength;
|
|
double ndirY = dirY * invDirLength;
|
|
double ndirZ = dirZ * invDirLength;
|
|
// left = up x direction
|
|
double leftX, leftY, leftZ;
|
|
leftX = upY * ndirZ - upZ * ndirY;
|
|
leftY = upZ * ndirX - upX * ndirZ;
|
|
leftZ = upX * ndirY - upY * ndirX;
|
|
// normalize left
|
|
double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
|
|
leftX *= invLeftLength;
|
|
leftY *= invLeftLength;
|
|
leftZ *= invLeftLength;
|
|
// up = direction x left
|
|
double upnX = ndirY * leftZ - ndirZ * leftY;
|
|
double upnY = ndirZ * leftX - ndirX * leftZ;
|
|
double upnZ = ndirX * leftY - ndirY * leftX;
|
|
double rm00 = leftX;
|
|
double rm01 = leftY;
|
|
double rm02 = leftZ;
|
|
double rm10 = upnX;
|
|
double rm11 = upnY;
|
|
double rm12 = upnZ;
|
|
double rm20 = ndirX;
|
|
double rm21 = ndirY;
|
|
double rm22 = ndirZ;
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
double nm00 = m00 * rm00 + m10 * rm01 + m20 * rm02;
|
|
double nm01 = m01 * rm00 + m11 * rm01 + m21 * rm02;
|
|
double nm02 = m02 * rm00 + m12 * rm01 + m22 * rm02;
|
|
double nm10 = m00 * rm10 + m10 * rm11 + m20 * rm12;
|
|
double nm11 = m01 * rm10 + m11 * rm11 + m21 * rm12;
|
|
double nm12 = m02 * rm10 + m12 * rm11 + m22 * rm12;
|
|
dest.m20 = m00 * rm20 + m10 * rm21 + m20 * rm22;
|
|
dest.m21 = m01 * rm20 + m11 * rm21 + m21 * rm22;
|
|
dest.m22 = m02 * rm20 + m12 * rm21 + m22 * rm22;
|
|
dest.m00 = nm00;
|
|
dest.m01 = nm01;
|
|
dest.m02 = nm02;
|
|
dest.m10 = nm10;
|
|
dest.m11 = nm11;
|
|
dest.m12 = nm12;
|
|
dest.properties = properties & ~(PROPERTY_IDENTITY | PROPERTY_TRANSLATION);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a model transformation for a right-handed coordinate system,
|
|
* that aligns the local <code>-z</code> axis with <code>dir</code>.
|
|
* <p>
|
|
* In order to apply the rotation transformation to a previous existing transformation,
|
|
* use {@link #rotateTowards(double, double, double, double, double, double) rotateTowards}.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>setLookAt(new Vector3d(), new Vector3d(dir).negate(), up).invert()</code>
|
|
*
|
|
* @see #rotationTowards(Vector3dc, Vector3dc)
|
|
* @see #rotateTowards(double, double, double, double, double, double)
|
|
*
|
|
* @param dir
|
|
* the direction to orient the local -z axis towards
|
|
* @param up
|
|
* the up vector
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotationTowards(Vector3dc dir, Vector3dc up) {
|
|
return rotationTowards(dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z());
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a model transformation for a right-handed coordinate system,
|
|
* that aligns the local <code>-z</code> axis with <code>(dirX, dirY, dirZ)</code>.
|
|
* <p>
|
|
* In order to apply the rotation transformation to a previous existing transformation,
|
|
* use {@link #rotateTowards(double, double, double, double, double, double) rotateTowards}.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>setLookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert()</code>
|
|
*
|
|
* @see #rotateTowards(Vector3dc, Vector3dc)
|
|
* @see #rotationTowards(double, double, double, double, double, double)
|
|
*
|
|
* @param dirX
|
|
* the x-coordinate of the direction to rotate towards
|
|
* @param dirY
|
|
* the y-coordinate of the direction to rotate towards
|
|
* @param dirZ
|
|
* the z-coordinate of the direction to rotate towards
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d rotationTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ) {
|
|
// Normalize direction
|
|
double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
|
|
double ndirX = dirX * invDirLength;
|
|
double ndirY = dirY * invDirLength;
|
|
double ndirZ = dirZ * invDirLength;
|
|
// left = up x direction
|
|
double leftX, leftY, leftZ;
|
|
leftX = upY * ndirZ - upZ * ndirY;
|
|
leftY = upZ * ndirX - upX * ndirZ;
|
|
leftZ = upX * ndirY - upY * ndirX;
|
|
// normalize left
|
|
double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
|
|
leftX *= invLeftLength;
|
|
leftY *= invLeftLength;
|
|
leftZ *= invLeftLength;
|
|
// up = direction x left
|
|
double upnX = ndirY * leftZ - ndirZ * leftY;
|
|
double upnY = ndirZ * leftX - ndirX * leftZ;
|
|
double upnZ = ndirX * leftY - ndirY * leftX;
|
|
this.m00 = leftX;
|
|
this.m01 = leftY;
|
|
this.m02 = leftZ;
|
|
this.m10 = upnX;
|
|
this.m11 = upnY;
|
|
this.m12 = upnZ;
|
|
this.m20 = ndirX;
|
|
this.m21 = ndirY;
|
|
this.m22 = ndirZ;
|
|
this.m30 = 0.0;
|
|
this.m31 = 0.0;
|
|
this.m32 = 0.0;
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a model transformation for a right-handed coordinate system,
|
|
* that translates to the given <code>pos</code> and aligns the local <code>-z</code>
|
|
* axis with <code>dir</code>.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translation(pos).rotateTowards(dir, up)</code>
|
|
*
|
|
* @see #translation(Vector3dc)
|
|
* @see #rotateTowards(Vector3dc, Vector3dc)
|
|
*
|
|
* @param pos
|
|
* the position to translate to
|
|
* @param dir
|
|
* the direction to rotate towards
|
|
* @param up
|
|
* the up vector
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translationRotateTowards(Vector3dc pos, Vector3dc dir, Vector3dc up) {
|
|
return translationRotateTowards(pos.x(), pos.y(), pos.z(), dir.x(), dir.y(), dir.z(), up.x(), up.y(), up.z());
|
|
}
|
|
|
|
/**
|
|
* Set this matrix to a model transformation for a right-handed coordinate system,
|
|
* that translates to the given <code>(posX, posY, posZ)</code> and aligns the local <code>-z</code>
|
|
* axis with <code>(dirX, dirY, dirZ)</code>.
|
|
* <p>
|
|
* This method is equivalent to calling: <code>translation(posX, posY, posZ).rotateTowards(dirX, dirY, dirZ, upX, upY, upZ)</code>
|
|
*
|
|
* @see #translation(double, double, double)
|
|
* @see #rotateTowards(double, double, double, double, double, double)
|
|
*
|
|
* @param posX
|
|
* the x-coordinate of the position to translate to
|
|
* @param posY
|
|
* the y-coordinate of the position to translate to
|
|
* @param posZ
|
|
* the z-coordinate of the position to translate to
|
|
* @param dirX
|
|
* the x-coordinate of the direction to rotate towards
|
|
* @param dirY
|
|
* the y-coordinate of the direction to rotate towards
|
|
* @param dirZ
|
|
* the z-coordinate of the direction to rotate towards
|
|
* @param upX
|
|
* the x-coordinate of the up vector
|
|
* @param upY
|
|
* the y-coordinate of the up vector
|
|
* @param upZ
|
|
* the z-coordinate of the up vector
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d translationRotateTowards(double posX, double posY, double posZ, double dirX, double dirY, double dirZ, double upX, double upY, double upZ) {
|
|
// Normalize direction
|
|
double invDirLength = Math.invsqrt(dirX * dirX + dirY * dirY + dirZ * dirZ);
|
|
double ndirX = dirX * invDirLength;
|
|
double ndirY = dirY * invDirLength;
|
|
double ndirZ = dirZ * invDirLength;
|
|
// left = up x direction
|
|
double leftX, leftY, leftZ;
|
|
leftX = upY * ndirZ - upZ * ndirY;
|
|
leftY = upZ * ndirX - upX * ndirZ;
|
|
leftZ = upX * ndirY - upY * ndirX;
|
|
// normalize left
|
|
double invLeftLength = Math.invsqrt(leftX * leftX + leftY * leftY + leftZ * leftZ);
|
|
leftX *= invLeftLength;
|
|
leftY *= invLeftLength;
|
|
leftZ *= invLeftLength;
|
|
// up = direction x left
|
|
double upnX = ndirY * leftZ - ndirZ * leftY;
|
|
double upnY = ndirZ * leftX - ndirX * leftZ;
|
|
double upnZ = ndirX * leftY - ndirY * leftX;
|
|
this.m00 = leftX;
|
|
this.m01 = leftY;
|
|
this.m02 = leftZ;
|
|
this.m10 = upnX;
|
|
this.m11 = upnY;
|
|
this.m12 = upnZ;
|
|
this.m20 = ndirX;
|
|
this.m21 = ndirY;
|
|
this.m22 = ndirZ;
|
|
this.m30 = posX;
|
|
this.m31 = posY;
|
|
this.m32 = posZ;
|
|
properties = PROPERTY_ORTHONORMAL;
|
|
return this;
|
|
}
|
|
|
|
public Vector3d getEulerAnglesZYX(Vector3d dest) {
|
|
dest.x = Math.atan2(m12, m22);
|
|
dest.y = Math.atan2(-m02, Math.sqrt(1.0 - m02 * m02));
|
|
dest.z = Math.atan2(m01, m00);
|
|
return dest;
|
|
}
|
|
|
|
public Vector3d getEulerAnglesXYZ(Vector3d dest) {
|
|
dest.x = Math.atan2(-m21, m22);
|
|
dest.y = Math.atan2(m20, Math.sqrt(1.0 - m20 * m20));
|
|
dest.z = Math.atan2(-m10, m00);
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Apply an oblique projection transformation to this matrix with the given values for <code>a</code> and
|
|
* <code>b</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the oblique transformation matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* oblique transformation will be applied first!
|
|
* <p>
|
|
* The oblique transformation is defined as:
|
|
* <pre>
|
|
* x' = x + a*z
|
|
* y' = y + a*z
|
|
* z' = z
|
|
* </pre>
|
|
* or in matrix form:
|
|
* <pre>
|
|
* 1 0 a 0
|
|
* 0 1 b 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
*
|
|
* @param a
|
|
* the value for the z factor that applies to x
|
|
* @param b
|
|
* the value for the z factor that applies to y
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d obliqueZ(double a, double b) {
|
|
this.m20 = m00 * a + m10 * b + m20;
|
|
this.m21 = m01 * a + m11 * b + m21;
|
|
this.m22 = m02 * a + m12 * b + m22;
|
|
this.properties = 0;
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Apply an oblique projection transformation to this matrix with the given values for <code>a</code> and
|
|
* <code>b</code> and store the result in <code>dest</code>.
|
|
* <p>
|
|
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the oblique transformation matrix,
|
|
* then the new matrix will be <code>M * O</code>. So when transforming a
|
|
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
|
|
* oblique transformation will be applied first!
|
|
* <p>
|
|
* The oblique transformation is defined as:
|
|
* <pre>
|
|
* x' = x + a*z
|
|
* y' = y + a*z
|
|
* z' = z
|
|
* </pre>
|
|
* or in matrix form:
|
|
* <pre>
|
|
* 1 0 a 0
|
|
* 0 1 b 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
*
|
|
* @param a
|
|
* the value for the z factor that applies to x
|
|
* @param b
|
|
* the value for the z factor that applies to y
|
|
* @param dest
|
|
* will hold the result
|
|
* @return dest
|
|
*/
|
|
public Matrix4x3d obliqueZ(double a, double b, Matrix4x3d dest) {
|
|
dest.m00 = m00;
|
|
dest.m01 = m01;
|
|
dest.m02 = m02;
|
|
dest.m10 = m10;
|
|
dest.m11 = m11;
|
|
dest.m12 = m12;
|
|
dest.m20 = m00 * a + m10 * b + m20;
|
|
dest.m21 = m01 * a + m11 * b + m21;
|
|
dest.m22 = m02 * a + m12 * b + m22;
|
|
dest.m30 = m30;
|
|
dest.m31 = m31;
|
|
dest.m32 = m32;
|
|
dest.properties = 0;
|
|
return dest;
|
|
}
|
|
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 1 0 0 0
|
|
* 0 0 1 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapXZY() {
|
|
return mapXZY(this);
|
|
}
|
|
public Matrix4x3d mapXZY(Matrix4x3d dest) {
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(m00)._m01(m01)._m02(m02)._m10(m20)._m11(m21)._m12(m22)._m20(m10)._m21(m11)._m22(m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 1 0 0 0
|
|
* 0 0 -1 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapXZnY() {
|
|
return mapXZnY(this);
|
|
}
|
|
public Matrix4x3d mapXZnY(Matrix4x3d dest) {
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(m00)._m01(m01)._m02(m02)._m10(m20)._m11(m21)._m12(m22)._m20(-m10)._m21(-m11)._m22(-m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 1 0 0 0
|
|
* 0 -1 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapXnYnZ() {
|
|
return mapXnYnZ(this);
|
|
}
|
|
public Matrix4x3d mapXnYnZ(Matrix4x3d dest) {
|
|
return dest._m00(m00)._m01(m01)._m02(m02)._m10(-m10)._m11(-m11)._m12(-m12)._m20(-m20)._m21(-m21)._m22(-m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 1 0 0 0
|
|
* 0 0 1 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapXnZY() {
|
|
return mapXnZY(this);
|
|
}
|
|
public Matrix4x3d mapXnZY(Matrix4x3d dest) {
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(m00)._m01(m01)._m02(m02)._m10(-m20)._m11(-m21)._m12(-m22)._m20(m10)._m21(m11)._m22(m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 1 0 0 0
|
|
* 0 0 -1 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapXnZnY() {
|
|
return mapXnZnY(this);
|
|
}
|
|
public Matrix4x3d mapXnZnY(Matrix4x3d dest) {
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(m00)._m01(m01)._m02(m02)._m10(-m20)._m11(-m21)._m12(-m22)._m20(-m10)._m21(-m11)._m22(-m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* 1 0 0 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapYXZ() {
|
|
return mapYXZ(this);
|
|
}
|
|
public Matrix4x3d mapYXZ(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(m10)._m01(m11)._m02(m12)._m10(m00)._m11(m01)._m12(m02)._m20(m20)._m21(m21)._m22(m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* 1 0 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapYXnZ() {
|
|
return mapYXnZ(this);
|
|
}
|
|
public Matrix4x3d mapYXnZ(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(m10)._m01(m11)._m02(m12)._m10(m00)._m11(m01)._m12(m02)._m20(-m20)._m21(-m21)._m22(-m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* 1 0 0 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapYZX() {
|
|
return mapYZX(this);
|
|
}
|
|
public Matrix4x3d mapYZX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(m10)._m01(m11)._m02(m12)._m10(m20)._m11(m21)._m12(m22)._m20(m00)._m21(m01)._m22(m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* 1 0 0 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapYZnX() {
|
|
return mapYZnX(this);
|
|
}
|
|
public Matrix4x3d mapYZnX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(m10)._m01(m11)._m02(m12)._m10(m20)._m11(m21)._m12(m22)._m20(-m00)._m21(-m01)._m22(-m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* 1 0 0 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapYnXZ() {
|
|
return mapYnXZ(this);
|
|
}
|
|
public Matrix4x3d mapYnXZ(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(m10)._m01(m11)._m02(m12)._m10(-m00)._m11(-m01)._m12(-m02)._m20(m20)._m21(m21)._m22(m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* 1 0 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapYnXnZ() {
|
|
return mapYnXnZ(this);
|
|
}
|
|
public Matrix4x3d mapYnXnZ(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(m10)._m01(m11)._m02(m12)._m10(-m00)._m11(-m01)._m12(-m02)._m20(-m20)._m21(-m21)._m22(-m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* 1 0 0 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapYnZX() {
|
|
return mapYnZX(this);
|
|
}
|
|
public Matrix4x3d mapYnZX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(m10)._m01(m11)._m02(m12)._m10(-m20)._m11(-m21)._m12(-m22)._m20(m00)._m21(m01)._m22(m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* 1 0 0 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapYnZnX() {
|
|
return mapYnZnX(this);
|
|
}
|
|
public Matrix4x3d mapYnZnX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(m10)._m01(m11)._m02(m12)._m10(-m20)._m11(-m21)._m12(-m22)._m20(-m00)._m21(-m01)._m22(-m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* 0 0 1 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapZXY() {
|
|
return mapZXY(this);
|
|
}
|
|
public Matrix4x3d mapZXY(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(m20)._m01(m21)._m02(m22)._m10(m00)._m11(m01)._m12(m02)._m20(m10)._m21(m11)._m22(m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* 0 0 -1 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapZXnY() {
|
|
return mapZXnY(this);
|
|
}
|
|
public Matrix4x3d mapZXnY(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(m20)._m01(m21)._m02(m22)._m10(m00)._m11(m01)._m12(m02)._m20(-m10)._m21(-m11)._m22(-m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* 0 1 0 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapZYX() {
|
|
return mapZYX(this);
|
|
}
|
|
public Matrix4x3d mapZYX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(m20)._m01(m21)._m02(m22)._m10(m10)._m11(m11)._m12(m12)._m20(m00)._m21(m01)._m22(m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* 0 1 0 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapZYnX() {
|
|
return mapZYnX(this);
|
|
}
|
|
public Matrix4x3d mapZYnX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(m20)._m01(m21)._m02(m22)._m10(m10)._m11(m11)._m12(m12)._m20(-m00)._m21(-m01)._m22(-m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* 0 0 1 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapZnXY() {
|
|
return mapZnXY(this);
|
|
}
|
|
public Matrix4x3d mapZnXY(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(m20)._m01(m21)._m02(m22)._m10(-m00)._m11(-m01)._m12(-m02)._m20(m10)._m21(m11)._m22(m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* 0 0 -1 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapZnXnY() {
|
|
return mapZnXnY(this);
|
|
}
|
|
public Matrix4x3d mapZnXnY(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(m20)._m01(m21)._m02(m22)._m10(-m00)._m11(-m01)._m12(-m02)._m20(-m10)._m21(-m11)._m22(-m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* 0 -1 0 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapZnYX() {
|
|
return mapZnYX(this);
|
|
}
|
|
public Matrix4x3d mapZnYX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(m20)._m01(m21)._m02(m22)._m10(-m10)._m11(-m11)._m12(-m12)._m20(m00)._m21(m01)._m22(m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* 0 -1 0 0
|
|
* 1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapZnYnX() {
|
|
return mapZnYnX(this);
|
|
}
|
|
public Matrix4x3d mapZnYnX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(m20)._m01(m21)._m02(m22)._m10(-m10)._m11(-m11)._m12(-m12)._m20(-m00)._m21(-m01)._m22(-m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 1 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnXYnZ() {
|
|
return mapnXYnZ(this);
|
|
}
|
|
public Matrix4x3d mapnXYnZ(Matrix4x3d dest) {
|
|
return dest._m00(-m00)._m01(-m01)._m02(-m02)._m10(m10)._m11(m11)._m12(m12)._m20(-m20)._m21(-m21)._m22(-m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 0 1 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnXZY() {
|
|
return mapnXZY(this);
|
|
}
|
|
public Matrix4x3d mapnXZY(Matrix4x3d dest) {
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(-m00)._m01(-m01)._m02(-m02)._m10(m20)._m11(m21)._m12(m22)._m20(m10)._m21(m11)._m22(m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 0 -1 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnXZnY() {
|
|
return mapnXZnY(this);
|
|
}
|
|
public Matrix4x3d mapnXZnY(Matrix4x3d dest) {
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(-m00)._m01(-m01)._m02(-m02)._m10(m20)._m11(m21)._m12(m22)._m20(-m10)._m21(-m11)._m22(-m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 -1 0 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnXnYZ() {
|
|
return mapnXnYZ(this);
|
|
}
|
|
public Matrix4x3d mapnXnYZ(Matrix4x3d dest) {
|
|
return dest._m00(-m00)._m01(-m01)._m02(-m02)._m10(-m10)._m11(-m11)._m12(-m12)._m20(m20)._m21(m21)._m22(m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 -1 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnXnYnZ() {
|
|
return mapnXnYnZ(this);
|
|
}
|
|
public Matrix4x3d mapnXnYnZ(Matrix4x3d dest) {
|
|
return dest._m00(-m00)._m01(-m01)._m02(-m02)._m10(-m10)._m11(-m11)._m12(-m12)._m20(-m20)._m21(-m21)._m22(-m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 0 1 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnXnZY() {
|
|
return mapnXnZY(this);
|
|
}
|
|
public Matrix4x3d mapnXnZY(Matrix4x3d dest) {
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(-m00)._m01(-m01)._m02(-m02)._m10(-m20)._m11(-m21)._m12(-m22)._m20(m10)._m21(m11)._m22(m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 0 -1 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnXnZnY() {
|
|
return mapnXnZnY(this);
|
|
}
|
|
public Matrix4x3d mapnXnZnY(Matrix4x3d dest) {
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(-m00)._m01(-m01)._m02(-m02)._m10(-m20)._m11(-m21)._m12(-m22)._m20(-m10)._m21(-m11)._m22(-m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* -1 0 0 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnYXZ() {
|
|
return mapnYXZ(this);
|
|
}
|
|
public Matrix4x3d mapnYXZ(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(-m10)._m01(-m11)._m02(-m12)._m10(m00)._m11(m01)._m12(m02)._m20(m20)._m21(m21)._m22(m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* -1 0 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnYXnZ() {
|
|
return mapnYXnZ(this);
|
|
}
|
|
public Matrix4x3d mapnYXnZ(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(-m10)._m01(-m11)._m02(-m12)._m10(m00)._m11(m01)._m12(m02)._m20(-m20)._m21(-m21)._m22(-m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* -1 0 0 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnYZX() {
|
|
return mapnYZX(this);
|
|
}
|
|
public Matrix4x3d mapnYZX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(-m10)._m01(-m11)._m02(-m12)._m10(m20)._m11(m21)._m12(m22)._m20(m00)._m21(m01)._m22(m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* -1 0 0 0
|
|
* 0 1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnYZnX() {
|
|
return mapnYZnX(this);
|
|
}
|
|
public Matrix4x3d mapnYZnX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(-m10)._m01(-m11)._m02(-m12)._m10(m20)._m11(m21)._m12(m22)._m20(-m00)._m21(-m01)._m22(-m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* -1 0 0 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnYnXZ() {
|
|
return mapnYnXZ(this);
|
|
}
|
|
public Matrix4x3d mapnYnXZ(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(-m10)._m01(-m11)._m02(-m12)._m10(-m00)._m11(-m01)._m12(-m02)._m20(m20)._m21(m21)._m22(m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* -1 0 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnYnXnZ() {
|
|
return mapnYnXnZ(this);
|
|
}
|
|
public Matrix4x3d mapnYnXnZ(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(-m10)._m01(-m11)._m02(-m12)._m10(-m00)._m11(-m01)._m12(-m02)._m20(-m20)._m21(-m21)._m22(-m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* -1 0 0 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnYnZX() {
|
|
return mapnYnZX(this);
|
|
}
|
|
public Matrix4x3d mapnYnZX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(-m10)._m01(-m11)._m02(-m12)._m10(-m20)._m11(-m21)._m12(-m22)._m20(m00)._m21(m01)._m22(m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* -1 0 0 0
|
|
* 0 -1 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnYnZnX() {
|
|
return mapnYnZnX(this);
|
|
}
|
|
public Matrix4x3d mapnYnZnX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(-m10)._m01(-m11)._m02(-m12)._m10(-m20)._m11(-m21)._m12(-m22)._m20(-m00)._m21(-m01)._m22(-m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* 0 0 1 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnZXY() {
|
|
return mapnZXY(this);
|
|
}
|
|
public Matrix4x3d mapnZXY(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(-m20)._m01(-m21)._m02(-m22)._m10(m00)._m11(m01)._m12(m02)._m20(m10)._m21(m11)._m22(m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 1 0 0
|
|
* 0 0 -1 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnZXnY() {
|
|
return mapnZXnY(this);
|
|
}
|
|
public Matrix4x3d mapnZXnY(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(-m20)._m01(-m21)._m02(-m22)._m10(m00)._m11(m01)._m12(m02)._m20(-m10)._m21(-m11)._m22(-m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* 0 1 0 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnZYX() {
|
|
return mapnZYX(this);
|
|
}
|
|
public Matrix4x3d mapnZYX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(-m20)._m01(-m21)._m02(-m22)._m10(m10)._m11(m11)._m12(m12)._m20(m00)._m21(m01)._m22(m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* 0 1 0 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnZYnX() {
|
|
return mapnZYnX(this);
|
|
}
|
|
public Matrix4x3d mapnZYnX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(-m20)._m01(-m21)._m02(-m22)._m10(m10)._m11(m11)._m12(m12)._m20(-m00)._m21(-m01)._m22(-m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* 0 0 1 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnZnXY() {
|
|
return mapnZnXY(this);
|
|
}
|
|
public Matrix4x3d mapnZnXY(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(-m20)._m01(-m21)._m02(-m22)._m10(-m00)._m11(-m01)._m12(-m02)._m20(m10)._m21(m11)._m22(m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 -1 0 0
|
|
* 0 0 -1 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnZnXnY() {
|
|
return mapnZnXnY(this);
|
|
}
|
|
public Matrix4x3d mapnZnXnY(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
double m10 = this.m10, m11 = this.m11, m12 = this.m12;
|
|
return dest._m00(-m20)._m01(-m21)._m02(-m22)._m10(-m00)._m11(-m01)._m12(-m02)._m20(-m10)._m21(-m11)._m22(-m12)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 1 0
|
|
* 0 -1 0 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnZnYX() {
|
|
return mapnZnYX(this);
|
|
}
|
|
public Matrix4x3d mapnZnYX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(-m20)._m01(-m21)._m02(-m22)._m10(-m10)._m11(-m11)._m12(-m12)._m20(m00)._m21(m01)._m22(m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 0 0 -1 0
|
|
* 0 -1 0 0
|
|
* -1 0 0 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d mapnZnYnX() {
|
|
return mapnZnYnX(this);
|
|
}
|
|
public Matrix4x3d mapnZnYnX(Matrix4x3d dest) {
|
|
double m00 = this.m00, m01 = this.m01, m02 = this.m02;
|
|
return dest._m00(-m20)._m01(-m21)._m02(-m22)._m10(-m10)._m11(-m11)._m12(-m12)._m20(-m00)._m21(-m01)._m22(-m02)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* -1 0 0 0
|
|
* 0 1 0 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d negateX() {
|
|
return _m00(-m00)._m01(-m01)._m02(-m02)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
public Matrix4x3d negateX(Matrix4x3d dest) {
|
|
return dest._m00(-m00)._m01(-m01)._m02(-m02)._m10(m10)._m11(m11)._m12(m12)._m20(m20)._m21(m21)._m22(m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 1 0 0 0
|
|
* 0 -1 0 0
|
|
* 0 0 1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d negateY() {
|
|
return _m10(-m10)._m11(-m11)._m12(-m12)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
public Matrix4x3d negateY(Matrix4x3d dest) {
|
|
return dest._m00(m00)._m01(m01)._m02(m02)._m10(-m10)._m11(-m11)._m12(-m12)._m20(m20)._m21(m21)._m22(m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
|
|
/**
|
|
* Multiply <code>this</code> by the matrix
|
|
* <pre>
|
|
* 1 0 0 0
|
|
* 0 1 0 0
|
|
* 0 0 -1 0
|
|
* </pre>
|
|
*
|
|
* @return this
|
|
*/
|
|
public Matrix4x3d negateZ() {
|
|
return _m20(-m20)._m21(-m21)._m22(-m22)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
public Matrix4x3d negateZ(Matrix4x3d dest) {
|
|
return dest._m00(m00)._m01(m01)._m02(m02)._m10(m10)._m11(m11)._m12(m12)._m20(-m20)._m21(-m21)._m22(-m22)._m30(m30)._m31(m31)._m32(m32)._properties(properties & PROPERTY_ORTHONORMAL);
|
|
}
|
|
|
|
public boolean isFinite() {
|
|
return Math.isFinite(m00) && Math.isFinite(m01) && Math.isFinite(m02) &&
|
|
Math.isFinite(m10) && Math.isFinite(m11) && Math.isFinite(m12) &&
|
|
Math.isFinite(m20) && Math.isFinite(m21) && Math.isFinite(m22) &&
|
|
Math.isFinite(m30) && Math.isFinite(m31) && Math.isFinite(m32);
|
|
}
|
|
|
|
public Object clone() throws CloneNotSupportedException {
|
|
return super.clone();
|
|
}
|
|
|
|
}
|