mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2025-01-27 21:37:56 +01:00
dd18300b70
- Fix Resources not being closed properly - Change versioning scheme to match Create - Add LICENSE to built jar - Fix mods.toml version sync - Move JOML code to non-src directory - Update Gradle - Organize imports
2613 lines
83 KiB
Java
2613 lines
83 KiB
Java
/*
|
||
* The MIT License
|
||
*
|
||
* Copyright (c) 2015-2021 Richard Greenlees
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
* of this software and associated documentation files (the "Software"), to deal
|
||
* in the Software without restriction, including without limitation the rights
|
||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
* copies of the Software, and to permit persons to whom the Software is
|
||
* furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice shall be included in
|
||
* all copies or substantial portions of the Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
* THE SOFTWARE.
|
||
*/
|
||
package com.jozufozu.flywheel.repack.joml;
|
||
|
||
import java.io.Externalizable;
|
||
import java.io.IOException;
|
||
import java.io.ObjectInput;
|
||
import java.io.ObjectOutput;
|
||
import java.nio.*;
|
||
import java.text.DecimalFormat;
|
||
import java.text.NumberFormat;
|
||
|
||
/**
|
||
* Contains the definition of a Vector comprising 3 doubles and associated
|
||
* transformations.
|
||
*
|
||
* @author Richard Greenlees
|
||
* @author Kai Burjack
|
||
* @author F. Neurath
|
||
*/
|
||
public class Vector3d implements Externalizable, Cloneable, Vector3dc {
|
||
|
||
private static final long serialVersionUID = 1L;
|
||
|
||
/**
|
||
* The x component of the vector.
|
||
*/
|
||
public double x;
|
||
/**
|
||
* The y component of the vector.
|
||
*/
|
||
public double y;
|
||
/**
|
||
* The z component of the vector.
|
||
*/
|
||
public double z;
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} with all components set to zero.
|
||
*/
|
||
public Vector3d() {
|
||
}
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} and initialize all three components with the given value.
|
||
*
|
||
* @param d
|
||
* the value of all three components
|
||
*/
|
||
public Vector3d(double d) {
|
||
this.x = d;
|
||
this.y = d;
|
||
this.z = d;
|
||
}
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} with the given component values.
|
||
*
|
||
* @param x
|
||
* the value of x
|
||
* @param y
|
||
* the value of y
|
||
* @param z
|
||
* the value of z
|
||
*/
|
||
public Vector3d(double x, double y, double z) {
|
||
this.x = x;
|
||
this.y = y;
|
||
this.z = z;
|
||
}
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} whose values will be copied from the given vector.
|
||
*
|
||
* @param v
|
||
* provides the initial values for the new vector
|
||
*/
|
||
public Vector3d(Vector3fc v) {
|
||
this.x = v.x();
|
||
this.y = v.y();
|
||
this.z = v.z();
|
||
}
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} whose values will be copied from the given vector.
|
||
*
|
||
* @param v
|
||
* provides the initial values for the new vector
|
||
*/
|
||
public Vector3d(Vector3ic v) {
|
||
this.x = v.x();
|
||
this.y = v.y();
|
||
this.z = v.z();
|
||
}
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} with the first two components from the
|
||
* given <code>v</code> and the given <code>z</code>
|
||
*
|
||
* @param v
|
||
* the {@link Vector2fc} to copy the values from
|
||
* @param z
|
||
* the z component
|
||
*/
|
||
public Vector3d(Vector2fc v, double z) {
|
||
this.x = v.x();
|
||
this.y = v.y();
|
||
this.z = z;
|
||
}
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} with the first two components from the
|
||
* given <code>v</code> and the given <code>z</code>
|
||
*
|
||
* @param v
|
||
* the {@link Vector2ic} to copy the values from
|
||
* @param z
|
||
* the z component
|
||
*/
|
||
public Vector3d(Vector2ic v, double z) {
|
||
this.x = v.x();
|
||
this.y = v.y();
|
||
this.z = z;
|
||
}
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} whose values will be copied from the given vector.
|
||
*
|
||
* @param v
|
||
* provides the initial values for the new vector
|
||
*/
|
||
public Vector3d(Vector3dc v) {
|
||
this.x = v.x();
|
||
this.y = v.y();
|
||
this.z = v.z();
|
||
}
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} with the first two components from the
|
||
* given <code>v</code> and the given <code>z</code>
|
||
*
|
||
* @param v
|
||
* the {@link Vector2d} to copy the values from
|
||
* @param z
|
||
* the z component
|
||
*/
|
||
public Vector3d(Vector2dc v, double z) {
|
||
this.x = v.x();
|
||
this.y = v.y();
|
||
this.z = z;
|
||
}
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} and initialize its three components from the first
|
||
* three elements of the given array.
|
||
*
|
||
* @param xyz
|
||
* the array containing at least three elements
|
||
*/
|
||
public Vector3d(double[] xyz) {
|
||
this.x = xyz[0];
|
||
this.y = xyz[1];
|
||
this.z = xyz[2];
|
||
}
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} and initialize its three components from the first
|
||
* three elements of the given array.
|
||
*
|
||
* @param xyz
|
||
* the array containing at least three elements
|
||
*/
|
||
public Vector3d(float[] xyz) {
|
||
this.x = xyz[0];
|
||
this.y = xyz[1];
|
||
this.z = xyz[2];
|
||
}
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} and read this vector from the supplied {@link ByteBuffer}
|
||
* at the current buffer {@link ByteBuffer#position() position}.
|
||
* <p>
|
||
* This method will not increment the position of the given ByteBuffer.
|
||
* <p>
|
||
* In order to specify the offset into the ByteBuffer at which
|
||
* the vector is read, use {@link #Vector3d(int, ByteBuffer)}, taking
|
||
* the absolute position as parameter.
|
||
*
|
||
* @param buffer values will be read in <code>x, y, z</code> order
|
||
* @see #Vector3d(int, ByteBuffer)
|
||
*/
|
||
public Vector3d(ByteBuffer buffer) {
|
||
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
|
||
}
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} and read this vector from the supplied {@link ByteBuffer}
|
||
* starting at the specified absolute buffer position/index.
|
||
* <p>
|
||
* This method will not increment the position of the given ByteBuffer.
|
||
*
|
||
* @param index the absolute position into the ByteBuffer
|
||
* @param buffer values will be read in <code>x, y, z</code> order
|
||
*/
|
||
public Vector3d(int index, ByteBuffer buffer) {
|
||
MemUtil.INSTANCE.get(this, index, buffer);
|
||
}
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} and read this vector from the supplied {@link DoubleBuffer}
|
||
* at the current buffer {@link DoubleBuffer#position() position}.
|
||
* <p>
|
||
* This method will not increment the position of the given DoubleBuffer.
|
||
* <p>
|
||
* In order to specify the offset into the DoubleBuffer at which
|
||
* the vector is read, use {@link #Vector3d(int, DoubleBuffer)}, taking
|
||
* the absolute position as parameter.
|
||
*
|
||
* @param buffer values will be read in <code>x, y, z</code> order
|
||
* @see #Vector3d(int, DoubleBuffer)
|
||
*/
|
||
public Vector3d(DoubleBuffer buffer) {
|
||
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
|
||
}
|
||
|
||
/**
|
||
* Create a new {@link Vector3d} and read this vector from the supplied {@link DoubleBuffer}
|
||
* starting at the specified absolute buffer position/index.
|
||
* <p>
|
||
* This method will not increment the position of the given DoubleBuffer.
|
||
*
|
||
* @param index the absolute position into the DoubleBuffer
|
||
* @param buffer values will be read in <code>x, y, z</code> order
|
||
*/
|
||
public Vector3d(int index, DoubleBuffer buffer) {
|
||
MemUtil.INSTANCE.get(this, index, buffer);
|
||
}
|
||
|
||
public double x() {
|
||
return this.x;
|
||
}
|
||
|
||
public double y() {
|
||
return this.y;
|
||
}
|
||
|
||
public double z() {
|
||
return this.z;
|
||
}
|
||
|
||
/**
|
||
* Set the x, y and z components to match the supplied vector.
|
||
*
|
||
* @param v
|
||
* the vector to set this vector's components from
|
||
* @return this
|
||
*/
|
||
public Vector3d set(Vector3dc v) {
|
||
this.x = v.x();
|
||
this.y = v.y();
|
||
this.z = v.z();
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Set the x, y and z components to match the supplied vector.
|
||
*
|
||
* @param v
|
||
* the vector to set this vector's components from
|
||
* @return this
|
||
*/
|
||
public Vector3d set(Vector3ic v) {
|
||
this.x = v.x();
|
||
this.y = v.y();
|
||
this.z = v.z();
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Set the first two components from the given <code>v</code>
|
||
* and the z component from the given <code>z</code>
|
||
*
|
||
* @param v
|
||
* the {@link Vector2dc} to copy the values from
|
||
* @param z
|
||
* the z component
|
||
* @return this
|
||
*/
|
||
public Vector3d set(Vector2dc v, double z) {
|
||
this.x = v.x();
|
||
this.y = v.y();
|
||
this.z = z;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Set the first two components from the given <code>v</code>
|
||
* and the z component from the given <code>z</code>
|
||
*
|
||
* @param v
|
||
* the {@link Vector2ic} to copy the values from
|
||
* @param z
|
||
* the z component
|
||
* @return this
|
||
*/
|
||
public Vector3d set(Vector2ic v, double z) {
|
||
this.x = v.x();
|
||
this.y = v.y();
|
||
this.z = z;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Set the x, y and z components to match the supplied vector.
|
||
*
|
||
* @param v
|
||
* the vector to set this vector's components from
|
||
* @return this
|
||
*/
|
||
public Vector3d set(Vector3fc v) {
|
||
this.x = v.x();
|
||
this.y = v.y();
|
||
this.z = v.z();
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Set the first two components from the given <code>v</code>
|
||
* and the z component from the given <code>z</code>
|
||
*
|
||
* @param v
|
||
* the {@link Vector2fc} to copy the values from
|
||
* @param z
|
||
* the z component
|
||
* @return this
|
||
*/
|
||
public Vector3d set(Vector2fc v, double z) {
|
||
this.x = v.x();
|
||
this.y = v.y();
|
||
this.z = z;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Set the x, y, and z components to the supplied value.
|
||
*
|
||
* @param d
|
||
* the value of all three components
|
||
* @return this
|
||
*/
|
||
public Vector3d set(double d) {
|
||
this.x = d;
|
||
this.y = d;
|
||
this.z = d;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Set the x, y and z components to the supplied values.
|
||
*
|
||
* @param x
|
||
* the x component
|
||
* @param y
|
||
* the y component
|
||
* @param z
|
||
* the z component
|
||
* @return this
|
||
*/
|
||
public Vector3d set(double x, double y, double z) {
|
||
this.x = x;
|
||
this.y = y;
|
||
this.z = z;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Set the three components of this vector to the first three elements of the given array.
|
||
*
|
||
* @param xyz
|
||
* the array containing at least three elements
|
||
* @return this
|
||
*/
|
||
public Vector3d set(double[] xyz) {
|
||
this.x = xyz[0];
|
||
this.y = xyz[1];
|
||
this.z = xyz[2];
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Set the three components of this vector to the first three elements of the given array.
|
||
*
|
||
* @param xyz
|
||
* the array containing at least three elements
|
||
* @return this
|
||
*/
|
||
public Vector3d set(float[] xyz) {
|
||
this.x = xyz[0];
|
||
this.y = xyz[1];
|
||
this.z = xyz[2];
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Read this vector from the supplied {@link ByteBuffer} at the current
|
||
* buffer {@link ByteBuffer#position() position}.
|
||
* <p>
|
||
* This method will not increment the position of the given ByteBuffer.
|
||
* <p>
|
||
* In order to specify the offset into the ByteBuffer at which
|
||
* the vector is read, use {@link #set(int, ByteBuffer)}, taking
|
||
* the absolute position as parameter.
|
||
*
|
||
* @param buffer
|
||
* values will be read in <code>x, y, z</code> order
|
||
* @return this
|
||
* @see #set(int, ByteBuffer)
|
||
*/
|
||
public Vector3d set(ByteBuffer buffer) {
|
||
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Read this vector from the supplied {@link ByteBuffer} starting at the specified
|
||
* absolute buffer position/index.
|
||
* <p>
|
||
* This method will not increment the position of the given ByteBuffer.
|
||
*
|
||
* @param index
|
||
* the absolute position into the ByteBuffer
|
||
* @param buffer
|
||
* values will be read in <code>x, y, z</code> order
|
||
* @return this
|
||
*/
|
||
public Vector3d set(int index, ByteBuffer buffer) {
|
||
MemUtil.INSTANCE.get(this, index, buffer);
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Read this vector from the supplied {@link DoubleBuffer} at the current
|
||
* buffer {@link DoubleBuffer#position() position}.
|
||
* <p>
|
||
* This method will not increment the position of the given DoubleBuffer.
|
||
* <p>
|
||
* In order to specify the offset into the DoubleBuffer at which
|
||
* the vector is read, use {@link #set(int, DoubleBuffer)}, taking
|
||
* the absolute position as parameter.
|
||
*
|
||
* @param buffer
|
||
* values will be read in <code>x, y, z</code> order
|
||
* @return this
|
||
* @see #set(int, DoubleBuffer)
|
||
*/
|
||
public Vector3d set(DoubleBuffer buffer) {
|
||
MemUtil.INSTANCE.get(this, buffer.position(), buffer);
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Read this vector from the supplied {@link DoubleBuffer} starting at the specified
|
||
* absolute buffer position/index.
|
||
* <p>
|
||
* This method will not increment the position of the given DoubleBuffer.
|
||
*
|
||
* @param index
|
||
* the absolute position into the DoubleBuffer
|
||
* @param buffer
|
||
* values will be read in <code>x, y, z</code> order
|
||
* @return this
|
||
*/
|
||
public Vector3d set(int index, DoubleBuffer buffer) {
|
||
MemUtil.INSTANCE.get(this, index, buffer);
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Set the values of this vector by reading 3 double values from off-heap memory,
|
||
* starting at the given address.
|
||
* <p>
|
||
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
|
||
* <p>
|
||
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
|
||
*
|
||
* @param address
|
||
* the off-heap memory address to read the vector values from
|
||
* @return this
|
||
*/
|
||
public Vector3d setFromAddress(long address) {
|
||
if (Options.NO_UNSAFE)
|
||
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
|
||
MemUtil.MemUtilUnsafe.get(this, address);
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Set the value of the specified component of this vector.
|
||
*
|
||
* @param component
|
||
* the component whose value to set, within <code>[0..2]</code>
|
||
* @param value
|
||
* the value to set
|
||
* @return this
|
||
* @throws IllegalArgumentException if <code>component</code> is not within <code>[0..2]</code>
|
||
*/
|
||
public Vector3d setComponent(int component, double value) throws IllegalArgumentException {
|
||
switch (component) {
|
||
case 0:
|
||
x = value;
|
||
break;
|
||
case 1:
|
||
y = value;
|
||
break;
|
||
case 2:
|
||
z = value;
|
||
break;
|
||
default:
|
||
throw new IllegalArgumentException();
|
||
}
|
||
return this;
|
||
}
|
||
|
||
public ByteBuffer get(ByteBuffer buffer) {
|
||
MemUtil.INSTANCE.put(this, buffer.position(), buffer);
|
||
return buffer;
|
||
}
|
||
|
||
public ByteBuffer get(int index, ByteBuffer buffer) {
|
||
MemUtil.INSTANCE.put(this, index, buffer);
|
||
return buffer;
|
||
}
|
||
|
||
public DoubleBuffer get(DoubleBuffer buffer) {
|
||
MemUtil.INSTANCE.put(this, buffer.position(), buffer);
|
||
return buffer;
|
||
}
|
||
|
||
public DoubleBuffer get(int index, DoubleBuffer buffer) {
|
||
MemUtil.INSTANCE.put(this, index, buffer);
|
||
return buffer;
|
||
}
|
||
|
||
public ByteBuffer getf(ByteBuffer buffer) {
|
||
MemUtil.INSTANCE.putf(this, buffer.position(), buffer);
|
||
return buffer;
|
||
}
|
||
|
||
public ByteBuffer getf(int index, ByteBuffer buffer) {
|
||
MemUtil.INSTANCE.putf(this, index, buffer);
|
||
return buffer;
|
||
}
|
||
|
||
public FloatBuffer get(FloatBuffer buffer) {
|
||
MemUtil.INSTANCE.put(this, buffer.position(), buffer);
|
||
return buffer;
|
||
}
|
||
|
||
public FloatBuffer get(int index, FloatBuffer buffer) {
|
||
MemUtil.INSTANCE.put(this, index, buffer);
|
||
return buffer;
|
||
}
|
||
|
||
public Vector3dc getToAddress(long address) {
|
||
if (Options.NO_UNSAFE)
|
||
throw new UnsupportedOperationException("Not supported when using joml.nounsafe");
|
||
MemUtil.MemUtilUnsafe.put(this, address);
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Subtract the supplied vector from this one.
|
||
*
|
||
* @param v
|
||
* the vector to subtract from this
|
||
* @return this
|
||
*/
|
||
public Vector3d sub(Vector3dc v) {
|
||
this.x = x - v.x();
|
||
this.y = y - v.y();
|
||
this.z = z - v.z();
|
||
return this;
|
||
}
|
||
|
||
public Vector3d sub(Vector3dc v, Vector3d dest) {
|
||
dest.x = x - v.x();
|
||
dest.y = y - v.y();
|
||
dest.z = z - v.z();
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Subtract the supplied vector from this one.
|
||
*
|
||
* @param v
|
||
* the vector to subtract from this
|
||
* @return this
|
||
*/
|
||
public Vector3d sub(Vector3fc v) {
|
||
this.x = x - v.x();
|
||
this.y = y - v.y();
|
||
this.z = z - v.z();
|
||
return this;
|
||
}
|
||
|
||
public Vector3d sub(Vector3fc v, Vector3d dest) {
|
||
dest.x = x - v.x();
|
||
dest.y = y - v.y();
|
||
dest.z = z - v.z();
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Subtract <code>(x, y, z)</code> from this vector.
|
||
*
|
||
* @param x
|
||
* the x component to subtract
|
||
* @param y
|
||
* the y component to subtract
|
||
* @param z
|
||
* the z component to subtract
|
||
* @return this
|
||
*/
|
||
public Vector3d sub(double x, double y, double z) {
|
||
this.x = this.x - x;
|
||
this.y = this.y - y;
|
||
this.z = this.z - z;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d sub(double x, double y, double z, Vector3d dest) {
|
||
dest.x = this.x - x;
|
||
dest.y = this.y - y;
|
||
dest.z = this.z - z;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Add the supplied vector to this one.
|
||
*
|
||
* @param v
|
||
* the vector to add
|
||
* @return this
|
||
*/
|
||
public Vector3d add(Vector3dc v) {
|
||
this.x = x + v.x();
|
||
this.y = y + v.y();
|
||
this.z = z + v.z();
|
||
return this;
|
||
}
|
||
|
||
public Vector3d add(Vector3dc v, Vector3d dest) {
|
||
dest.x = x + v.x();
|
||
dest.y = y + v.y();
|
||
dest.z = z + v.z();
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Add the supplied vector to this one.
|
||
*
|
||
* @param v
|
||
* the vector to add
|
||
* @return this
|
||
*/
|
||
public Vector3d add(Vector3fc v) {
|
||
this.x = x + v.x();
|
||
this.y = y + v.y();
|
||
this.z = z + v.z();
|
||
return this;
|
||
}
|
||
|
||
public Vector3d add(Vector3fc v, Vector3d dest) {
|
||
dest.x = x + v.x();
|
||
dest.y = y + v.y();
|
||
dest.z = z + v.z();
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Increment the components of this vector by the given values.
|
||
*
|
||
* @param x
|
||
* the x component to add
|
||
* @param y
|
||
* the y component to add
|
||
* @param z
|
||
* the z component to add
|
||
* @return this
|
||
*/
|
||
public Vector3d add(double x, double y, double z) {
|
||
this.x = this.x + x;
|
||
this.y = this.y + y;
|
||
this.z = this.z + z;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d add(double x, double y, double z, Vector3d dest) {
|
||
dest.x = this.x + x;
|
||
dest.y = this.y + y;
|
||
dest.z = this.z + z;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Add the component-wise multiplication of <code>a * b</code> to this vector.
|
||
*
|
||
* @param a
|
||
* the first multiplicand
|
||
* @param b
|
||
* the second multiplicand
|
||
* @return this
|
||
*/
|
||
public Vector3d fma(Vector3dc a, Vector3dc b) {
|
||
this.x = Math.fma(a.x(), b.x(), x);
|
||
this.y = Math.fma(a.y(), b.y(), y);
|
||
this.z = Math.fma(a.z(), b.z(), z);
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Add the component-wise multiplication of <code>a * b</code> to this vector.
|
||
*
|
||
* @param a
|
||
* the first multiplicand
|
||
* @param b
|
||
* the second multiplicand
|
||
* @return this
|
||
*/
|
||
public Vector3d fma(double a, Vector3dc b) {
|
||
this.x = Math.fma(a, b.x(), x);
|
||
this.y = Math.fma(a, b.y(), y);
|
||
this.z = Math.fma(a, b.z(), z);
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Add the component-wise multiplication of <code>a * b</code> to this vector.
|
||
*
|
||
* @param a
|
||
* the first multiplicand
|
||
* @param b
|
||
* the second multiplicand
|
||
* @return this
|
||
*/
|
||
public Vector3d fma(Vector3fc a, Vector3fc b) {
|
||
this.x = Math.fma(a.x(), b.x(), x);
|
||
this.y = Math.fma(a.y(), b.y(), y);
|
||
this.z = Math.fma(a.z(), b.z(), z);
|
||
return this;
|
||
}
|
||
|
||
public Vector3d fma(Vector3fc a, Vector3fc b, Vector3d dest) {
|
||
dest.x = Math.fma(a.x(), b.x(), x);
|
||
dest.y = Math.fma(a.y(), b.y(), y);
|
||
dest.z = Math.fma(a.z(), b.z(), z);
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Add the component-wise multiplication of <code>a * b</code> to this vector.
|
||
*
|
||
* @param a
|
||
* the first multiplicand
|
||
* @param b
|
||
* the second multiplicand
|
||
* @return this
|
||
*/
|
||
public Vector3d fma(double a, Vector3fc b) {
|
||
this.x = Math.fma(a, b.x(), x);
|
||
this.y = Math.fma(a, b.y(), y);
|
||
this.z = Math.fma(a, b.z(), z);
|
||
return this;
|
||
}
|
||
|
||
public Vector3d fma(Vector3dc a, Vector3dc b, Vector3d dest) {
|
||
dest.x = Math.fma(a.x(), b.x(), x);
|
||
dest.y = Math.fma(a.y(), b.y(), y);
|
||
dest.z = Math.fma(a.z(), b.z(), z);
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d fma(double a, Vector3dc b, Vector3d dest) {
|
||
dest.x = Math.fma(a, b.x(), x);
|
||
dest.y = Math.fma(a, b.y(), y);
|
||
dest.z = Math.fma(a, b.z(), z);
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d fma(Vector3dc a, Vector3fc b, Vector3d dest) {
|
||
dest.x = Math.fma(a.x(), b.x(), x);
|
||
dest.y = Math.fma(a.y(), b.y(), y);
|
||
dest.z = Math.fma(a.z(), b.z(), z);
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d fma(double a, Vector3fc b, Vector3d dest) {
|
||
dest.x = Math.fma(a, b.x(), x);
|
||
dest.y = Math.fma(a, b.y(), y);
|
||
dest.z = Math.fma(a, b.z(), z);
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Add the component-wise multiplication of <code>this * a</code> to <code>b</code>
|
||
* and store the result in <code>this</code>.
|
||
*
|
||
* @param a
|
||
* the multiplicand
|
||
* @param b
|
||
* the addend
|
||
* @return this
|
||
*/
|
||
public Vector3d mulAdd(Vector3dc a, Vector3dc b) {
|
||
this.x = Math.fma(x, a.x(), b.x());
|
||
this.y = Math.fma(y, a.y(), b.y());
|
||
this.z = Math.fma(z, a.z(), b.z());
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Add the component-wise multiplication of <code>this * a</code> to <code>b</code>
|
||
* and store the result in <code>this</code>.
|
||
*
|
||
* @param a
|
||
* the multiplicand
|
||
* @param b
|
||
* the addend
|
||
* @return this
|
||
*/
|
||
public Vector3d mulAdd(double a, Vector3dc b) {
|
||
this.x = Math.fma(x, a, b.x());
|
||
this.y = Math.fma(y, a, b.y());
|
||
this.z = Math.fma(z, a, b.z());
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mulAdd(Vector3dc a, Vector3dc b, Vector3d dest) {
|
||
dest.x = Math.fma(x, a.x(), b.x());
|
||
dest.y = Math.fma(y, a.y(), b.y());
|
||
dest.z = Math.fma(z, a.z(), b.z());
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d mulAdd(double a, Vector3dc b, Vector3d dest) {
|
||
dest.x = Math.fma(x, a, b.x());
|
||
dest.y = Math.fma(y, a, b.y());
|
||
dest.z = Math.fma(z, a, b.z());
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d mulAdd(Vector3fc a, Vector3dc b, Vector3d dest) {
|
||
dest.x = Math.fma(x, a.x(), b.x());
|
||
dest.y = Math.fma(y, a.y(), b.y());
|
||
dest.z = Math.fma(z, a.z(), b.z());
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply this Vector3d component-wise by another Vector3dc.
|
||
*
|
||
* @param v
|
||
* the vector to multiply by
|
||
* @return this
|
||
*/
|
||
public Vector3d mul(Vector3dc v) {
|
||
this.x = x * v.x();
|
||
this.y = y * v.y();
|
||
this.z = z * v.z();
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Multiply this Vector3d component-wise by another Vector3fc.
|
||
*
|
||
* @param v
|
||
* the vector to multiply by
|
||
* @return this
|
||
*/
|
||
public Vector3d mul(Vector3fc v) {
|
||
this.x = x * v.x();
|
||
this.y = y * v.y();
|
||
this.z = z * v.z();
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mul(Vector3fc v, Vector3d dest) {
|
||
dest.x = x * v.x();
|
||
dest.y = y * v.y();
|
||
dest.z = z * v.z();
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d mul(Vector3dc v, Vector3d dest) {
|
||
dest.x = x * v.x();
|
||
dest.y = y * v.y();
|
||
dest.z = z * v.z();
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Divide this Vector3d component-wise by another Vector3dc.
|
||
*
|
||
* @param v
|
||
* the vector to divide by
|
||
* @return this
|
||
*/
|
||
public Vector3d div(Vector3d v) {
|
||
this.x = x / v.x();
|
||
this.y = y / v.y();
|
||
this.z = z / v.z();
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Divide this Vector3d component-wise by another Vector3fc.
|
||
*
|
||
* @param v
|
||
* the vector to divide by
|
||
* @return this
|
||
*/
|
||
public Vector3d div(Vector3fc v) {
|
||
this.x = x / v.x();
|
||
this.y = y / v.y();
|
||
this.z = z / v.z();
|
||
return this;
|
||
}
|
||
|
||
public Vector3d div(Vector3fc v, Vector3d dest) {
|
||
dest.x = x / v.x();
|
||
dest.y = y / v.y();
|
||
dest.z = z / v.z();
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d div(Vector3dc v, Vector3d dest) {
|
||
dest.x = x / v.x();
|
||
dest.y = y / v.y();
|
||
dest.z = z / v.z();
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d mulProject(Matrix4dc mat, double w, Vector3d dest) {
|
||
double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33() * w)));
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30() * w))) * invW;
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31() * w))) * invW;
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32() * w))) * invW;
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d mulProject(Matrix4dc mat, Vector3d dest) {
|
||
double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))) * invW;
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))) * invW;
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))) * invW;
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given matrix <code>mat</code> this Vector3d, perform perspective division.
|
||
* <p>
|
||
* This method uses <code>w=1.0</code> as the fourth vector component.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mulProject(Matrix4dc mat) {
|
||
double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30()))) * invW;
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31()))) * invW;
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32()))) * invW;
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mulProject(Matrix4fc mat, Vector3d dest) {
|
||
double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
|
||
double rx = (mat.m00() * x + mat.m10() * y + mat.m20() * z + mat.m30()) * invW;
|
||
double ry = (mat.m01() * x + mat.m11() * y + mat.m21() * z + mat.m31()) * invW;
|
||
double rz = (mat.m02() * x + mat.m12() * y + mat.m22() * z + mat.m32()) * invW;
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given matrix <code>mat</code> with this Vector3d, perform perspective division.
|
||
* <p>
|
||
* This method uses <code>w=1.0</code> as the fourth vector component.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mulProject(Matrix4fc mat) {
|
||
double invW = 1.0 / Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
|
||
double rx = (mat.m00() * x + mat.m10() * y + mat.m20() * z + mat.m30()) * invW;
|
||
double ry = (mat.m01() * x + mat.m11() * y + mat.m21() * z + mat.m31()) * invW;
|
||
double rz = (mat.m02() * x + mat.m12() * y + mat.m22() * z + mat.m32()) * invW;
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given matrix <code>mat</code> with this Vector3d.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mul(Matrix3fc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given matrix <code>mat</code> with this Vector3d.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mul(Matrix3dc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mul(Matrix3dc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
public Vector3f mul(Matrix3dc mat, Vector3f dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
|
||
dest.x = (float) rx;
|
||
dest.y = (float) ry;
|
||
dest.z = (float) rz;
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d mul(Matrix3fc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given matrix with this Vector3d by assuming a third row in the matrix of <code>(0, 0, 1)</code>
|
||
* and store the result in <code>this</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix
|
||
* @return this
|
||
*/
|
||
public Vector3d mul(Matrix3x2dc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mul(Matrix3x2dc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = z;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given matrix with this Vector3d by assuming a third row in the matrix of <code>(0, 0, 1)</code>
|
||
* and store the result in <code>this</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix
|
||
* @return this
|
||
*/
|
||
public Vector3d mul(Matrix3x2fc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mul(Matrix3x2fc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = z;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply the transpose of the given matrix with this Vector3d and store the result in <code>this</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix
|
||
* @return this
|
||
*/
|
||
public Vector3d mulTranspose(Matrix3dc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
|
||
double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
|
||
double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mulTranspose(Matrix3dc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
|
||
double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
|
||
double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply the transpose of the given matrix with this Vector3d and store the result in <code>this</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix
|
||
* @return this
|
||
*/
|
||
public Vector3d mulTranspose(Matrix3fc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
|
||
double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
|
||
double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mulTranspose(Matrix3fc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
|
||
double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
|
||
double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mulPosition(Matrix4fc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mulPosition(Matrix4dc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mulPosition(Matrix4x3dc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mulPosition(Matrix4x3fc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mulPosition(Matrix4dc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d mulPosition(Matrix4fc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d mulPosition(Matrix4x3dc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d mulPosition(Matrix4x3fc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix whose transpose to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mulTransposePosition(Matrix4dc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03())));
|
||
double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13())));
|
||
double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23())));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mulTransposePosition(Matrix4dc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03())));
|
||
double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13())));
|
||
double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23())));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix whose transpose to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mulTransposePosition(Matrix4fc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03())));
|
||
double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13())));
|
||
double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23())));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mulTransposePosition(Matrix4fc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, Math.fma(mat.m02(), z, mat.m03())));
|
||
double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, Math.fma(mat.m12(), z, mat.m13())));
|
||
double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, Math.fma(mat.m22(), z, mat.m23())));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and return the <i>w</i> component
|
||
* of the resulting 4D vector.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @return the <i>w</i> component of the resulting 4D vector after multiplication
|
||
*/
|
||
public double mulPositionW(Matrix4fc mat) {
|
||
double w = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return w;
|
||
}
|
||
|
||
public double mulPositionW(Matrix4fc mat, Vector3d dest) {
|
||
double w = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return w;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and return the <i>w</i> component
|
||
* of the resulting 4D vector.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @return the <i>w</i> component of the resulting 4D vector after multiplication
|
||
*/
|
||
public double mulPositionW(Matrix4dc mat) {
|
||
double w = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return w;
|
||
}
|
||
|
||
public double mulPositionW(Matrix4dc mat, Vector3d dest) {
|
||
double w = Math.fma(mat.m03(), x, Math.fma(mat.m13(), y, Math.fma(mat.m23(), z, mat.m33())));
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, Math.fma(mat.m20(), z, mat.m30())));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, Math.fma(mat.m21(), z, mat.m31())));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, Math.fma(mat.m22(), z, mat.m32())));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return w;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mulDirection(Matrix4fc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mulDirection(Matrix4dc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mulDirection(Matrix4x3dc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mulDirection(Matrix4x3fc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mulDirection(Matrix4dc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d mulDirection(Matrix4fc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d mulDirection(Matrix4x3dc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d mulDirection(Matrix4x3fc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m10(), y, mat.m20() * z));
|
||
double ry = Math.fma(mat.m01(), x, Math.fma(mat.m11(), y, mat.m21() * z));
|
||
double rz = Math.fma(mat.m02(), x, Math.fma(mat.m12(), y, mat.m22() * z));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix whose transpose to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mulTransposeDirection(Matrix4dc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
|
||
double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
|
||
double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mulTransposeDirection(Matrix4dc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
|
||
double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
|
||
double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix whose transpose to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mulTransposeDirection(Matrix4fc mat) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
|
||
double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
|
||
double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mulTransposeDirection(Matrix4fc mat, Vector3d dest) {
|
||
double rx = Math.fma(mat.m00(), x, Math.fma(mat.m01(), y, mat.m02() * z));
|
||
double ry = Math.fma(mat.m10(), x, Math.fma(mat.m11(), y, mat.m12() * z));
|
||
double rz = Math.fma(mat.m20(), x, Math.fma(mat.m21(), y, mat.m22() * z));
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply this Vector3d by the given scalar value.
|
||
*
|
||
* @param scalar
|
||
* the scalar to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mul(double scalar) {
|
||
this.x = x * scalar;
|
||
this.y = y * scalar;
|
||
this.z = z * scalar;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mul(double scalar, Vector3d dest) {
|
||
dest.x = x * scalar;
|
||
dest.y = y * scalar;
|
||
dest.z = z * scalar;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Multiply the components of this Vector3d by the given scalar values and store the result in <code>this</code>.
|
||
*
|
||
* @param x
|
||
* the x component to multiply this vector by
|
||
* @param y
|
||
* the y component to multiply this vector by
|
||
* @param z
|
||
* the z component to multiply this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d mul(double x, double y, double z) {
|
||
this.x = this.x * x;
|
||
this.y = this.y * y;
|
||
this.z = this.z * z;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d mul(double x, double y, double z, Vector3d dest) {
|
||
dest.x = this.x * x;
|
||
dest.y = this.y * y;
|
||
dest.z = this.z * z;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Rotate this vector by the given quaternion <code>quat</code> and store the result in <code>this</code>.
|
||
*
|
||
* @see Quaterniond#transform(Vector3d)
|
||
*
|
||
* @param quat
|
||
* the quaternion to rotate this vector
|
||
* @return this
|
||
*/
|
||
public Vector3d rotate(Quaterniondc quat) {
|
||
return quat.transform(this, this);
|
||
}
|
||
|
||
public Vector3d rotate(Quaterniondc quat, Vector3d dest) {
|
||
return quat.transform(this, dest);
|
||
}
|
||
|
||
public Quaterniond rotationTo(Vector3dc toDir, Quaterniond dest) {
|
||
return dest.rotationTo(this, toDir);
|
||
}
|
||
|
||
public Quaterniond rotationTo(double toDirX, double toDirY, double toDirZ, Quaterniond dest) {
|
||
return dest.rotationTo(x, y, z, toDirX, toDirY, toDirZ);
|
||
}
|
||
|
||
/**
|
||
* Rotate this vector the specified radians around the given rotation axis.
|
||
*
|
||
* @param angle
|
||
* the angle in radians
|
||
* @param x
|
||
* the x component of the rotation axis
|
||
* @param y
|
||
* the y component of the rotation axis
|
||
* @param z
|
||
* the z component of the rotation axis
|
||
* @return this
|
||
*/
|
||
public Vector3d rotateAxis(double angle, double x, double y, double z) {
|
||
if (y == 0.0 && z == 0.0 && Math.absEqualsOne(x))
|
||
return rotateX(x * angle, this);
|
||
else if (x == 0.0 && z == 0.0 && Math.absEqualsOne(y))
|
||
return rotateY(y * angle, this);
|
||
else if (x == 0.0 && y == 0.0 && Math.absEqualsOne(z))
|
||
return rotateZ(z * angle, this);
|
||
return rotateAxisInternal(angle, x, y, z, this);
|
||
}
|
||
|
||
public Vector3d rotateAxis(double angle, double aX, double aY, double aZ, Vector3d dest) {
|
||
if (aY == 0.0 && aZ == 0.0 && Math.absEqualsOne(aX))
|
||
return rotateX(aX * angle, dest);
|
||
else if (aX == 0.0 && aZ == 0.0 && Math.absEqualsOne(aY))
|
||
return rotateY(aY * angle, dest);
|
||
else if (aX == 0.0 && aY == 0.0 && Math.absEqualsOne(aZ))
|
||
return rotateZ(aZ * angle, dest);
|
||
return rotateAxisInternal(angle, aX, aY, aZ, dest);
|
||
}
|
||
|
||
private Vector3d rotateAxisInternal(double angle, double aX, double aY, double aZ, Vector3d dest) {
|
||
double hangle = angle * 0.5;
|
||
double sinAngle = Math.sin(hangle);
|
||
double qx = aX * sinAngle, qy = aY * sinAngle, qz = aZ * sinAngle;
|
||
double qw = Math.cosFromSin(sinAngle, hangle);
|
||
double w2 = qw * qw, x2 = qx * qx, y2 = qy * qy, z2 = qz * qz, zw = qz * qw;
|
||
double xy = qx * qy, xz = qx * qz, yw = qy * qw, yz = qy * qz, xw = qx * qw;
|
||
double nx = (w2 + x2 - z2 - y2) * x + (-zw + xy - zw + xy) * y + (yw + xz + xz + yw) * z;
|
||
double ny = (xy + zw + zw + xy) * x + ( y2 - z2 + w2 - x2) * y + (yz + yz - xw - xw) * z;
|
||
double nz = (xz - yw + xz - yw) * x + ( yz + yz + xw + xw) * y + (z2 - y2 - x2 + w2) * z;
|
||
dest.x = nx;
|
||
dest.y = ny;
|
||
dest.z = nz;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Rotate this vector the specified radians around the X axis.
|
||
*
|
||
* @param angle
|
||
* the angle in radians
|
||
* @return this
|
||
*/
|
||
public Vector3d rotateX(double angle) {
|
||
double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
|
||
double y = this.y * cos - this.z * sin;
|
||
double z = this.y * sin + this.z * cos;
|
||
this.y = y;
|
||
this.z = z;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d rotateX(double angle, Vector3d dest) {
|
||
double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
|
||
double y = this.y * cos - this.z * sin;
|
||
double z = this.y * sin + this.z * cos;
|
||
dest.x = this.x;
|
||
dest.y = y;
|
||
dest.z = z;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Rotate this vector the specified radians around the Y axis.
|
||
*
|
||
* @param angle
|
||
* the angle in radians
|
||
* @return this
|
||
*/
|
||
public Vector3d rotateY(double angle) {
|
||
double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
|
||
double x = this.x * cos + this.z * sin;
|
||
double z = -this.x * sin + this.z * cos;
|
||
this.x = x;
|
||
this.z = z;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d rotateY(double angle, Vector3d dest) {
|
||
double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
|
||
double x = this.x * cos + this.z * sin;
|
||
double z = -this.x * sin + this.z * cos;
|
||
dest.x = x;
|
||
dest.y = this.y;
|
||
dest.z = z;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Rotate this vector the specified radians around the Z axis.
|
||
*
|
||
* @param angle
|
||
* the angle in radians
|
||
* @return this
|
||
*/
|
||
public Vector3d rotateZ(double angle) {
|
||
double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
|
||
double x = this.x * cos - this.y * sin;
|
||
double y = this.x * sin + this.y * cos;
|
||
this.x = x;
|
||
this.y = y;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d rotateZ(double angle, Vector3d dest) {
|
||
double sin = Math.sin(angle), cos = Math.cosFromSin(sin, angle);
|
||
double x = this.x * cos - this.y * sin;
|
||
double y = this.x * sin + this.y * cos;
|
||
dest.x = x;
|
||
dest.y = y;
|
||
dest.z = this.z;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Divide this Vector3d by the given scalar value.
|
||
*
|
||
* @param scalar
|
||
* the scalar to divide this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d div(double scalar) {
|
||
double inv = 1.0 / scalar;
|
||
this.x = x * inv;
|
||
this.y = y * inv;
|
||
this.z = z * inv;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d div(double scalar, Vector3d dest) {
|
||
double inv = 1.0 / scalar;
|
||
dest.x = x * inv;
|
||
dest.y = y * inv;
|
||
dest.z = z * inv;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Divide the components of this Vector3d by the given scalar values and store the result in <code>this</code>.
|
||
*
|
||
* @param x
|
||
* the x component to divide this vector by
|
||
* @param y
|
||
* the y component to divide this vector by
|
||
* @param z
|
||
* the z component to divide this vector by
|
||
* @return this
|
||
*/
|
||
public Vector3d div(double x, double y, double z) {
|
||
this.x = this.x / x;
|
||
this.y = this.y / y;
|
||
this.z = this.z / z;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d div(double x, double y, double z, Vector3d dest) {
|
||
dest.x = this.x / x;
|
||
dest.y = this.y / y;
|
||
dest.z = this.z / z;
|
||
return dest;
|
||
}
|
||
|
||
public double lengthSquared() {
|
||
return Math.fma(x, x, Math.fma(y, y, z * z));
|
||
}
|
||
|
||
/**
|
||
* Get the length squared of a 3-dimensional double-precision vector.
|
||
*
|
||
* @param x The vector's x component
|
||
* @param y The vector's y component
|
||
* @param z The vector's z component
|
||
*
|
||
* @return the length squared of the given vector
|
||
*
|
||
* @author F. Neurath
|
||
*/
|
||
public static double lengthSquared(double x, double y, double z) {
|
||
return Math.fma(x, x, Math.fma(y, y, z * z));
|
||
}
|
||
|
||
public double length() {
|
||
return Math.sqrt(Math.fma(x, x, Math.fma(y, y, z * z)));
|
||
}
|
||
|
||
/**
|
||
* Get the length of a 3-dimensional double-precision vector.
|
||
*
|
||
* @param x The vector's x component
|
||
* @param y The vector's y component
|
||
* @param z The vector's z component
|
||
*
|
||
* @return the length of the given vector
|
||
*
|
||
* @author F. Neurath
|
||
*/
|
||
public static double length(double x, double y, double z) {
|
||
return Math.sqrt(Math.fma(x, x, Math.fma(y, y, z * z)));
|
||
}
|
||
|
||
/**
|
||
* Normalize this vector.
|
||
*
|
||
* @return this
|
||
*/
|
||
public Vector3d normalize() {
|
||
double invLength = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z)));
|
||
this.x = x * invLength;
|
||
this.y = y * invLength;
|
||
this.z = z * invLength;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d normalize(Vector3d dest) {
|
||
double invLength = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z)));
|
||
dest.x = x * invLength;
|
||
dest.y = y * invLength;
|
||
dest.z = z * invLength;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Scale this vector to have the given length.
|
||
*
|
||
* @param length
|
||
* the desired length
|
||
* @return this
|
||
*/
|
||
public Vector3d normalize(double length) {
|
||
double invLength = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))) * length;
|
||
this.x = x * invLength;
|
||
this.y = y * invLength;
|
||
this.z = z * invLength;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d normalize(double length, Vector3d dest) {
|
||
double invLength = Math.invsqrt(Math.fma(x, x, Math.fma(y, y, z * z))) * length;
|
||
dest.x = x * invLength;
|
||
dest.y = y * invLength;
|
||
dest.z = z * invLength;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Set this vector to be the cross product of this and v2.
|
||
*
|
||
* @param v
|
||
* the other vector
|
||
* @return this
|
||
*/
|
||
public Vector3d cross(Vector3dc v) {
|
||
double rx = Math.fma(y, v.z(), -z * v.y());
|
||
double ry = Math.fma(z, v.x(), -x * v.z());
|
||
double rz = Math.fma(x, v.y(), -y * v.x());
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Set this vector to be the cross product of itself and <code>(x, y, z)</code>.
|
||
*
|
||
* @param x
|
||
* the x component of the other vector
|
||
* @param y
|
||
* the y component of the other vector
|
||
* @param z
|
||
* the z component of the other vector
|
||
* @return this
|
||
*/
|
||
public Vector3d cross(double x, double y, double z) {
|
||
double rx = Math.fma(this.y, z, -this.z * y);
|
||
double ry = Math.fma(this.z, x, -this.x * z);
|
||
double rz = Math.fma(this.x, y, -this.y * x);
|
||
this.x = rx;
|
||
this.y = ry;
|
||
this.z = rz;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d cross(Vector3dc v, Vector3d dest) {
|
||
double rx = Math.fma(y, v.z(), -z * v.y());
|
||
double ry = Math.fma(z, v.x(), -x * v.z());
|
||
double rz = Math.fma(x, v.y(), -y * v.x());
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d cross(double x, double y, double z, Vector3d dest) {
|
||
double rx = Math.fma(this.y, z, -this.z * y);
|
||
double ry = Math.fma(this.z, x, -this.x * z);
|
||
double rz = Math.fma(this.x, y, -this.y * x);
|
||
dest.x = rx;
|
||
dest.y = ry;
|
||
dest.z = rz;
|
||
return dest;
|
||
}
|
||
|
||
public double distance(Vector3dc v) {
|
||
double dx = this.x - v.x();
|
||
double dy = this.y - v.y();
|
||
double dz = this.z - v.z();
|
||
return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, dz * dz)));
|
||
}
|
||
|
||
public double distance(double x, double y, double z) {
|
||
double dx = this.x - x;
|
||
double dy = this.y - y;
|
||
double dz = this.z - z;
|
||
return Math.sqrt(Math.fma(dx, dx, Math.fma(dy, dy, dz * dz)));
|
||
}
|
||
|
||
public double distanceSquared(Vector3dc v) {
|
||
double dx = this.x - v.x();
|
||
double dy = this.y - v.y();
|
||
double dz = this.z - v.z();
|
||
return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz));
|
||
}
|
||
|
||
public double distanceSquared(double x, double y, double z) {
|
||
double dx = this.x - x;
|
||
double dy = this.y - y;
|
||
double dz = this.z - z;
|
||
return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz));
|
||
}
|
||
|
||
/**
|
||
* Return the distance between <code>(x1, y1, z1)</code> and <code>(x2, y2, z2)</code>.
|
||
*
|
||
* @param x1
|
||
* the x component of the first vector
|
||
* @param y1
|
||
* the y component of the first vector
|
||
* @param z1
|
||
* the z component of the first vector
|
||
* @param x2
|
||
* the x component of the second vector
|
||
* @param y2
|
||
* the y component of the second vector
|
||
* @param z2
|
||
* the z component of the second vector
|
||
* @return the euclidean distance
|
||
*/
|
||
public static double distance(double x1, double y1, double z1, double x2, double y2, double z2) {
|
||
return Math.sqrt(distanceSquared(x1, y1, z1, x2, y2, z2));
|
||
}
|
||
|
||
/**
|
||
* Return the squared distance between <code>(x1, y1, z1)</code> and <code>(x2, y2, z2)</code>.
|
||
*
|
||
* @param x1
|
||
* the x component of the first vector
|
||
* @param y1
|
||
* the y component of the first vector
|
||
* @param z1
|
||
* the z component of the first vector
|
||
* @param x2
|
||
* the x component of the second vector
|
||
* @param y2
|
||
* the y component of the second vector
|
||
* @param z2
|
||
* the z component of the second vector
|
||
* @return the euclidean distance squared
|
||
*/
|
||
public static double distanceSquared(double x1, double y1, double z1, double x2, double y2, double z2) {
|
||
double dx = x1 - x2;
|
||
double dy = y1 - y2;
|
||
double dz = z1 - z2;
|
||
return Math.fma(dx, dx, Math.fma(dy, dy, dz * dz));
|
||
}
|
||
|
||
public double dot(Vector3dc v) {
|
||
return Math.fma(this.x, v.x(), Math.fma(this.y, v.y(), this.z * v.z()));
|
||
}
|
||
|
||
public double dot(double x, double y, double z) {
|
||
return Math.fma(this.x, x, Math.fma(this.y, y, this.z * z));
|
||
}
|
||
|
||
public double angleCos(Vector3dc v) {
|
||
double length1Squared = Math.fma(x, x, Math.fma(y, y, z * z));
|
||
double length2Squared = Math.fma(v.x(), v.x(), Math.fma(v.y(), v.y(), v.z() * v.z()));
|
||
double dot = Math.fma(x, v.x(), Math.fma(y, v.y(), z * v.z()));
|
||
return dot / Math.sqrt(length1Squared * length2Squared);
|
||
}
|
||
|
||
public double angle(Vector3dc v) {
|
||
double cos = angleCos(v);
|
||
// This is because sometimes cos goes above 1 or below -1 because of lost precision
|
||
cos = cos < 1 ? cos : 1;
|
||
cos = cos > -1 ? cos : -1;
|
||
return Math.acos(cos);
|
||
}
|
||
|
||
public double angleSigned(Vector3dc v, Vector3dc n) {
|
||
double x = v.x();
|
||
double y = v.y();
|
||
double z = v.z();
|
||
return Math.atan2(
|
||
(this.y * z - this.z * y) * n.x() + (this.z * x - this.x * z) * n.y() + (this.x * y - this.y * x) * n.z(),
|
||
this.x * x + this.y * y + this.z * z);
|
||
}
|
||
|
||
public double angleSigned(double x, double y, double z, double nx, double ny, double nz) {
|
||
return Math.atan2(
|
||
(this.y * z - this.z * y) * nx + (this.z * x - this.x * z) * ny + (this.x * y - this.y * x) * nz,
|
||
this.x * x + this.y * y + this.z * z);
|
||
}
|
||
|
||
/**
|
||
* Set the components of this vector to be the component-wise minimum of this and the other vector.
|
||
*
|
||
* @param v
|
||
* the other vector
|
||
* @return this
|
||
*/
|
||
public Vector3d min(Vector3dc v) {
|
||
this.x = x < v.x() ? x : v.x();
|
||
this.y = y < v.y() ? y : v.y();
|
||
this.z = z < v.z() ? z : v.z();
|
||
return this;
|
||
}
|
||
|
||
public Vector3d min(Vector3dc v, Vector3d dest) {
|
||
dest.x = x < v.x() ? x : v.x();
|
||
dest.y = y < v.y() ? y : v.y();
|
||
dest.z = z < v.z() ? z : v.z();
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Set the components of this vector to be the component-wise maximum of this and the other vector.
|
||
*
|
||
* @param v
|
||
* the other vector
|
||
* @return this
|
||
*/
|
||
public Vector3d max(Vector3dc v) {
|
||
this.x = x > v.x() ? x : v.x();
|
||
this.y = y > v.y() ? y : v.y();
|
||
this.z = z > v.z() ? z : v.z();
|
||
return this;
|
||
}
|
||
|
||
public Vector3d max(Vector3dc v, Vector3d dest) {
|
||
dest.x = x > v.x() ? x : v.x();
|
||
dest.y = y > v.y() ? y : v.y();
|
||
dest.z = z > v.z() ? z : v.z();
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Set all components to zero.
|
||
*
|
||
* @return this
|
||
*/
|
||
public Vector3d zero() {
|
||
this.x = 0;
|
||
this.y = 0;
|
||
this.z = 0;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Return a string representation of this vector.
|
||
* <p>
|
||
* This method creates a new {@link DecimalFormat} on every invocation with the format string "<code>0.000E0;-</code>".
|
||
*
|
||
* @return the string representation
|
||
*/
|
||
public String toString() {
|
||
return Runtime.formatNumbers(toString(Options.NUMBER_FORMAT));
|
||
}
|
||
|
||
/**
|
||
* Return a string representation of this vector by formatting the vector components with the given {@link NumberFormat}.
|
||
*
|
||
* @param formatter
|
||
* the {@link NumberFormat} used to format the vector components with
|
||
* @return the string representation
|
||
*/
|
||
public String toString(NumberFormat formatter) {
|
||
return "(" + Runtime.format(x, formatter) + " " + Runtime.format(y, formatter) + " " + Runtime.format(z, formatter) + ")";
|
||
}
|
||
|
||
public void writeExternal(ObjectOutput out) throws IOException {
|
||
out.writeDouble(x);
|
||
out.writeDouble(y);
|
||
out.writeDouble(z);
|
||
}
|
||
|
||
public void readExternal(ObjectInput in) throws IOException,
|
||
ClassNotFoundException {
|
||
x = in.readDouble();
|
||
y = in.readDouble();
|
||
z = in.readDouble();
|
||
}
|
||
|
||
/**
|
||
* Negate this vector.
|
||
*
|
||
* @return this
|
||
*/
|
||
public Vector3d negate() {
|
||
this.x = -x;
|
||
this.y = -y;
|
||
this.z = -z;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d negate(Vector3d dest) {
|
||
dest.x = -x;
|
||
dest.y = -y;
|
||
dest.z = -z;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Set <code>this</code> vector's components to their respective absolute values.
|
||
*
|
||
* @return this
|
||
*/
|
||
public Vector3d absolute() {
|
||
this.x = Math.abs(this.x);
|
||
this.y = Math.abs(this.y);
|
||
this.z = Math.abs(this.z);
|
||
return this;
|
||
}
|
||
|
||
public Vector3d absolute(Vector3d dest) {
|
||
dest.x = Math.abs(this.x);
|
||
dest.y = Math.abs(this.y);
|
||
dest.z = Math.abs(this.z);
|
||
return dest;
|
||
}
|
||
|
||
public int hashCode() {
|
||
final int prime = 31;
|
||
int result = 1;
|
||
long temp;
|
||
temp = Double.doubleToLongBits(x);
|
||
result = prime * result + (int) (temp ^ (temp >>> 32));
|
||
temp = Double.doubleToLongBits(y);
|
||
result = prime * result + (int) (temp ^ (temp >>> 32));
|
||
temp = Double.doubleToLongBits(z);
|
||
result = prime * result + (int) (temp ^ (temp >>> 32));
|
||
return result;
|
||
}
|
||
|
||
public boolean equals(Object obj) {
|
||
if (this == obj)
|
||
return true;
|
||
if (obj == null)
|
||
return false;
|
||
if (getClass() != obj.getClass())
|
||
return false;
|
||
Vector3d other = (Vector3d) obj;
|
||
if (Double.doubleToLongBits(x) != Double.doubleToLongBits(other.x))
|
||
return false;
|
||
if (Double.doubleToLongBits(y) != Double.doubleToLongBits(other.y))
|
||
return false;
|
||
if (Double.doubleToLongBits(z) != Double.doubleToLongBits(other.z))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
public boolean equals(Vector3dc v, double delta) {
|
||
if (this == v)
|
||
return true;
|
||
if (v == null)
|
||
return false;
|
||
if (!(v instanceof Vector3dc))
|
||
return false;
|
||
if (!Runtime.equals(x, v.x(), delta))
|
||
return false;
|
||
if (!Runtime.equals(y, v.y(), delta))
|
||
return false;
|
||
if (!Runtime.equals(z, v.z(), delta))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
public boolean equals(double x, double y, double z) {
|
||
if (Double.doubleToLongBits(this.x) != Double.doubleToLongBits(x))
|
||
return false;
|
||
if (Double.doubleToLongBits(this.y) != Double.doubleToLongBits(y))
|
||
return false;
|
||
if (Double.doubleToLongBits(this.z) != Double.doubleToLongBits(z))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/**
|
||
* Reflect this vector about the given normal vector.
|
||
*
|
||
* @param normal
|
||
* the vector to reflect about
|
||
* @return this
|
||
*/
|
||
public Vector3d reflect(Vector3dc normal) {
|
||
double x = normal.x();
|
||
double y = normal.y();
|
||
double z = normal.z();
|
||
double dot = Math.fma(this.x, x, Math.fma(this.y, y, this.z * z));
|
||
this.x = this.x - (dot + dot) * x;
|
||
this.y = this.y - (dot + dot) * y;
|
||
this.z = this.z - (dot + dot) * z;
|
||
return this;
|
||
}
|
||
|
||
/**
|
||
* Reflect this vector about the given normal vector.
|
||
*
|
||
* @param x
|
||
* the x component of the normal
|
||
* @param y
|
||
* the y component of the normal
|
||
* @param z
|
||
* the z component of the normal
|
||
* @return this
|
||
*/
|
||
public Vector3d reflect(double x, double y, double z) {
|
||
double dot = Math.fma(this.x, x, Math.fma(this.y, y, this.z * z));
|
||
this.x = this.x - (dot + dot) * x;
|
||
this.y = this.y - (dot + dot) * y;
|
||
this.z = this.z - (dot + dot) * z;
|
||
return this;
|
||
}
|
||
|
||
public Vector3d reflect(Vector3dc normal, Vector3d dest) {
|
||
double x = normal.x();
|
||
double y = normal.y();
|
||
double z = normal.z();
|
||
double dot = Math.fma(this.x, x, Math.fma(this.y, y, this.z * z));
|
||
dest.x = this.x - (dot + dot) * x;
|
||
dest.y = this.y - (dot + dot) * y;
|
||
dest.z = this.z - (dot + dot) * z;
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d reflect(double x, double y, double z, Vector3d dest) {
|
||
double dot = Math.fma(this.x, x, Math.fma(this.y, y, this.z * z));
|
||
dest.x = this.x - (dot + dot) * x;
|
||
dest.y = this.y - (dot + dot) * y;
|
||
dest.z = this.z - (dot + dot) * z;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Compute the half vector between this and the other vector.
|
||
*
|
||
* @param other
|
||
* the other vector
|
||
* @return this
|
||
*/
|
||
public Vector3d half(Vector3dc other) {
|
||
return this.set(this).add(other.x(), other.y(), other.z()).normalize();
|
||
}
|
||
|
||
/**
|
||
* Compute the half vector between this and the vector <code>(x, y, z)</code>.
|
||
*
|
||
* @param x
|
||
* the x component of the other vector
|
||
* @param y
|
||
* the y component of the other vector
|
||
* @param z
|
||
* the z component of the other vector
|
||
* @return this
|
||
*/
|
||
public Vector3d half(double x, double y, double z) {
|
||
return this.set(this).add(x, y, z).normalize();
|
||
}
|
||
|
||
public Vector3d half(Vector3dc other, Vector3d dest) {
|
||
return dest.set(this).add(other.x(), other.y(), other.z()).normalize();
|
||
}
|
||
|
||
public Vector3d half(double x, double y, double z, Vector3d dest) {
|
||
return dest.set(this).add(x, y, z).normalize();
|
||
}
|
||
|
||
public Vector3d smoothStep(Vector3dc v, double t, Vector3d dest) {
|
||
double t2 = t * t;
|
||
double t3 = t2 * t;
|
||
dest.x = (x + x - v.x() - v.x()) * t3 + (3.0 * v.x() - 3.0 * x) * t2 + x * t + x;
|
||
dest.y = (y + y - v.y() - v.y()) * t3 + (3.0 * v.y() - 3.0 * y) * t2 + y * t + y;
|
||
dest.z = (z + z - v.z() - v.z()) * t3 + (3.0 * v.z() - 3.0 * z) * t2 + z * t + z;
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d hermite(Vector3dc t0, Vector3dc v1, Vector3dc t1, double t, Vector3d dest) {
|
||
double t2 = t * t;
|
||
double t3 = t2 * t;
|
||
dest.x = (x + x - v1.x() - v1.x() + t1.x() + t0.x()) * t3 + (3.0 * v1.x() - 3.0 * x - t0.x() - t0.x() - t1.x()) * t2 + x * t + x;
|
||
dest.y = (y + y - v1.y() - v1.y() + t1.y() + t0.y()) * t3 + (3.0 * v1.y() - 3.0 * y - t0.y() - t0.y() - t1.y()) * t2 + y * t + y;
|
||
dest.z = (z + z - v1.z() - v1.z() + t1.z() + t0.z()) * t3 + (3.0 * v1.z() - 3.0 * z - t0.z() - t0.z() - t1.z()) * t2 + z * t + z;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
|
||
* and store the result in <code>this</code>.
|
||
* <p>
|
||
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
|
||
* then the result is <code>other</code>.
|
||
*
|
||
* @param other
|
||
* the other vector
|
||
* @param t
|
||
* the interpolation factor between 0.0 and 1.0
|
||
* @return this
|
||
*/
|
||
public Vector3d lerp(Vector3dc other, double t) {
|
||
this.x = Math.fma(other.x() - x, t, x);
|
||
this.y = Math.fma(other.y() - y, t, y);
|
||
this.z = Math.fma(other.z() - z, t, z);
|
||
return this;
|
||
}
|
||
|
||
public Vector3d lerp(Vector3dc other, double t, Vector3d dest) {
|
||
dest.x = Math.fma(other.x() - x, t, x);
|
||
dest.y = Math.fma(other.y() - y, t, y);
|
||
dest.z = Math.fma(other.z() - z, t, z);
|
||
return dest;
|
||
}
|
||
|
||
public double get(int component) throws IllegalArgumentException {
|
||
switch (component) {
|
||
case 0:
|
||
return x;
|
||
case 1:
|
||
return y;
|
||
case 2:
|
||
return z;
|
||
default:
|
||
throw new IllegalArgumentException();
|
||
}
|
||
}
|
||
|
||
public Vector3i get(int mode, Vector3i dest) {
|
||
dest.x = Math.roundUsing(this.x(), mode);
|
||
dest.y = Math.roundUsing(this.y(), mode);
|
||
dest.z = Math.roundUsing(this.z(), mode);
|
||
return dest;
|
||
}
|
||
|
||
public Vector3f get(Vector3f dest) {
|
||
dest.x = (float) this.x();
|
||
dest.y = (float) this.y();
|
||
dest.z = (float) this.z();
|
||
return dest;
|
||
}
|
||
|
||
public Vector3d get(Vector3d dest) {
|
||
dest.x = this.x();
|
||
dest.y = this.y();
|
||
dest.z = this.z();
|
||
return dest;
|
||
}
|
||
|
||
public int maxComponent() {
|
||
double absX = Math.abs(x);
|
||
double absY = Math.abs(y);
|
||
double absZ = Math.abs(z);
|
||
if (absX >= absY && absX >= absZ) {
|
||
return 0;
|
||
} else if (absY >= absZ) {
|
||
return 1;
|
||
}
|
||
return 2;
|
||
}
|
||
|
||
public int minComponent() {
|
||
double absX = Math.abs(x);
|
||
double absY = Math.abs(y);
|
||
double absZ = Math.abs(z);
|
||
if (absX < absY && absX < absZ) {
|
||
return 0;
|
||
} else if (absY < absZ) {
|
||
return 1;
|
||
}
|
||
return 2;
|
||
}
|
||
|
||
public Vector3d orthogonalize(Vector3dc v, Vector3d dest) {
|
||
/*
|
||
* http://lolengine.net/blog/2013/09/21/picking-orthogonal-vector-combing-coconuts
|
||
*/
|
||
double rx, ry, rz;
|
||
if (Math.abs(v.x()) > Math.abs(v.z())) {
|
||
rx = -v.y();
|
||
ry = v.x();
|
||
rz = 0.0;
|
||
} else {
|
||
rx = 0.0;
|
||
ry = -v.z();
|
||
rz = v.y();
|
||
}
|
||
double invLen = Math.invsqrt(rx * rx + ry * ry + rz * rz);
|
||
dest.x = rx * invLen;
|
||
dest.y = ry * invLen;
|
||
dest.z = rz * invLen;
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Transform <code>this</code> vector so that it is orthogonal to the given vector <code>v</code> and normalize the result.
|
||
* <p>
|
||
* Reference: <a href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">Gram–Schmidt process</a>
|
||
*
|
||
* @param v
|
||
* the reference vector which the result should be orthogonal to
|
||
* @return this
|
||
*/
|
||
public Vector3d orthogonalize(Vector3dc v) {
|
||
return orthogonalize(v, this);
|
||
}
|
||
|
||
public Vector3d orthogonalizeUnit(Vector3dc v, Vector3d dest) {
|
||
return orthogonalize(v, dest);
|
||
}
|
||
|
||
/**
|
||
* Transform <code>this</code> vector so that it is orthogonal to the given unit vector <code>v</code> and normalize the result.
|
||
* <p>
|
||
* The vector <code>v</code> is assumed to be a {@link #normalize() unit} vector.
|
||
* <p>
|
||
* Reference: <a href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">Gram–Schmidt process</a>
|
||
*
|
||
* @param v
|
||
* the reference unit vector which the result should be orthogonal to
|
||
* @return this
|
||
*/
|
||
public Vector3d orthogonalizeUnit(Vector3dc v) {
|
||
return orthogonalizeUnit(v, this);
|
||
}
|
||
|
||
/**
|
||
* Set each component of this vector to the largest (closest to positive
|
||
* infinity) {@code double} value that is less than or equal to that
|
||
* component and is equal to a mathematical integer.
|
||
*
|
||
* @return this
|
||
*/
|
||
public Vector3d floor() {
|
||
this.x = Math.floor(x);
|
||
this.y = Math.floor(y);
|
||
this.z = Math.floor(z);
|
||
return this;
|
||
}
|
||
|
||
public Vector3d floor(Vector3d dest) {
|
||
dest.x = Math.floor(x);
|
||
dest.y = Math.floor(y);
|
||
dest.z = Math.floor(z);
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Set each component of this vector to the smallest (closest to negative
|
||
* infinity) {@code double} value that is greater than or equal to that
|
||
* component and is equal to a mathematical integer.
|
||
*
|
||
* @return this
|
||
*/
|
||
public Vector3d ceil() {
|
||
this.x = Math.ceil(x);
|
||
this.y = Math.ceil(y);
|
||
this.z = Math.ceil(z);
|
||
return this;
|
||
}
|
||
|
||
public Vector3d ceil(Vector3d dest) {
|
||
dest.x = Math.ceil(x);
|
||
dest.y = Math.ceil(y);
|
||
dest.z = Math.ceil(z);
|
||
return dest;
|
||
}
|
||
|
||
/**
|
||
* Set each component of this vector to the closest double that is equal to
|
||
* a mathematical integer, with ties rounding to positive infinity.
|
||
*
|
||
* @return this
|
||
*/
|
||
public Vector3d round() {
|
||
this.x = Math.round(x);
|
||
this.y = Math.round(y);
|
||
this.z = Math.round(z);
|
||
return this;
|
||
}
|
||
|
||
public Vector3d round(Vector3d dest) {
|
||
dest.x = Math.round(x);
|
||
dest.y = Math.round(y);
|
||
dest.z = Math.round(z);
|
||
return dest;
|
||
}
|
||
|
||
public boolean isFinite() {
|
||
return Math.isFinite(x) && Math.isFinite(y) && Math.isFinite(z);
|
||
}
|
||
|
||
public Object clone() throws CloneNotSupportedException {
|
||
return super.clone();
|
||
}
|
||
|
||
}
|