Flywheel/joml/Matrix2dc.java
PepperCode1 a42c027b6f Scheme-a-version
- Fix Resources not being closed properly
- Change versioning scheme to match Create
- Add LICENSE to built jar
- Fix mods.toml version sync
- Move JOML code to non-src directory
- Update Gradle
- Organize imports
2022-07-15 00:00:54 -07:00

725 lines
26 KiB
Java

/*
* The MIT License
*
* Copyright (c) 2020-2021 JOML
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.jozufozu.flywheel.repack.joml;
import java.nio.ByteBuffer;
import java.nio.DoubleBuffer;
import java.util.*;
/**
* Interface to a read-only view of a 2x2 matrix of double-precision floats.
*
* @author Joseph Burton
*/
public interface Matrix2dc {
/**
* Return the value of the matrix element at column 0 and row 0.
*
* @return the value of the matrix element
*/
double m00();
/**
* Return the value of the matrix element at column 0 and row 1.
*
* @return the value of the matrix element
*/
double m01();
/**
* Return the value of the matrix element at column 1 and row 0.
*
* @return the value of the matrix element
*/
double m10();
/**
* Return the value of the matrix element at column 1 and row 1.
*
* @return the value of the matrix element
*/
double m11();
/**
* Multiply this matrix by the supplied <code>right</code> matrix and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* transformation of the right matrix will be applied first!
*
* @param right
* the right operand of the matrix multiplication
* @param dest
* will hold the result
* @return dest
*/
Matrix2d mul(Matrix2dc right, Matrix2d dest);
/**
* Multiply this matrix by the supplied <code>right</code> matrix and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* transformation of the right matrix will be applied first!
*
* @param right
* the right operand of the matrix multiplication
* @param dest
* will hold the result
* @return dest
*/
Matrix2d mul(Matrix2fc right, Matrix2d dest);
/**
* Pre-multiply this matrix by the supplied <code>left</code> matrix and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the <code>left</code> matrix,
* then the new matrix will be <code>L * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>L * M * v</code>, the
* transformation of <code>this</code> matrix will be applied first!
*
* @param left
* the left operand of the matrix multiplication
* @param dest
* the destination matrix, which will hold the result
* @return dest
*/
Matrix2d mulLocal(Matrix2dc left, Matrix2d dest);
/**
* Return the determinant of this matrix.
*
* @return the determinant
*/
double determinant();
/**
* Invert the <code>this</code> matrix and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix2d invert(Matrix2d dest);
/**
* Transpose <code>this</code> matrix and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix2d transpose(Matrix2d dest);
/**
* Get the current values of <code>this</code> matrix and store them into
* <code>dest</code>.
*
* @param dest
* the destination matrix
* @return the passed in destination
*/
Matrix2d get(Matrix2d dest);
/**
* Get the current values of <code>this</code> matrix and store them as
* the rotational component of <code>dest</code>. All other values of <code>dest</code> will
* be set to 0.
*
* @see Matrix3x2d#set(Matrix2dc)
*
* @param dest
* the destination matrix
* @return the passed in destination
*/
Matrix3x2d get(Matrix3x2d dest);
/**
* Get the current values of <code>this</code> matrix and store them as
* the rotational component of <code>dest</code>. All other values of <code>dest</code> will
* be set to identity.
*
* @see Matrix3d#set(Matrix2dc)
*
* @param dest
* the destination matrix
* @return the passed in destination
*/
Matrix3d get(Matrix3d dest);
/**
* Get the angle of the rotation component of <code>this</code> matrix.
* <p>
* This method assumes that there is a valid rotation to be returned, i.e. that
* <code>atan2(-m10, m00) == atan2(m01, m11)</code>.
*
* @return the angle
*/
double getRotation();
/**
* Store this matrix in column-major order into the supplied {@link DoubleBuffer} at the current
* buffer {@link DoubleBuffer#position() position}.
* <p>
* This method will not increment the position of the given DoubleBuffer.
* <p>
* In order to specify the offset into the DoubleBuffer at which
* the matrix is stored, use {@link #get(int, DoubleBuffer)}, taking
* the absolute position as parameter.
*
* @see #get(int, DoubleBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
DoubleBuffer get(DoubleBuffer buffer);
/**
* Store this matrix in column-major order into the supplied {@link DoubleBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given DoubleBuffer.
*
* @param index
* the absolute position into the DoubleBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
DoubleBuffer get(int index, DoubleBuffer buffer);
/**
* Store this matrix in column-major order into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the matrix is stored, use {@link #get(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @see #get(int, ByteBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
ByteBuffer get(ByteBuffer buffer);
/**
* Store this matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
ByteBuffer get(int index, ByteBuffer buffer);
/**
* Store the transpose of this matrix in column-major order into the supplied {@link DoubleBuffer} at the current
* buffer {@link DoubleBuffer#position() position}.
* <p>
* This method will not increment the position of the given DoubleBuffer.
* <p>
* In order to specify the offset into the DoubleBuffer at which
* the matrix is stored, use {@link #getTransposed(int, DoubleBuffer)}, taking
* the absolute position as parameter.
*
* @see #getTransposed(int, DoubleBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
DoubleBuffer getTransposed(DoubleBuffer buffer);
/**
* Store the transpose of this matrix in column-major order into the supplied {@link DoubleBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given DoubleBuffer.
*
* @param index
* the absolute position into the DoubleBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
DoubleBuffer getTransposed(int index, DoubleBuffer buffer);
/**
* Store the transpose of this matrix in column-major order into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the matrix is stored, use {@link #getTransposed(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @see #getTransposed(int, ByteBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
ByteBuffer getTransposed(ByteBuffer buffer);
/**
* Store the transpose of this matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
ByteBuffer getTransposed(int index, ByteBuffer buffer);
/**
* Store this matrix in column-major order at the given off-heap address.
* <p>
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
* <p>
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
*
* @param address
* the off-heap address where to store this matrix
* @return this
*/
Matrix2dc getToAddress(long address);
/**
* Store this matrix into the supplied double array in column-major order at the given offset.
*
* @param arr
* the array to write the matrix values into
* @param offset
* the offset into the array
* @return the passed in array
*/
double[] get(double[] arr, int offset);
/**
* Store this matrix into the supplied double array in column-major order.
* <p>
* In order to specify an explicit offset into the array, use the method {@link #get(double[], int)}.
*
* @see #get(double[], int)
*
* @param arr
* the array to write the matrix values into
* @return the passed in array
*/
double[] get(double[] arr);
/**
* Apply scaling to <code>this</code> matrix by scaling the base axes by the given <code>xy.x</code> and
* <code>xy.y</code> factors, respectively and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
* , the scaling will be applied first!
*
* @param xy
* the factors of the x and y component, respectively
* @param dest
* will hold the result
* @return dest
*/
Matrix2d scale(Vector2dc xy, Matrix2d dest);
/**
* Apply scaling to this matrix by scaling the base axes by the given x and
* y factors and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
* , the scaling will be applied first!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @param dest
* will hold the result
* @return dest
*/
Matrix2d scale(double x, double y, Matrix2d dest);
/**
* Apply scaling to this matrix by uniformly scaling all base axes by the given <code>xy</code> factor
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
* , the scaling will be applied first!
*
* @see #scale(double, double, Matrix2d)
*
* @param xy
* the factor for all components
* @param dest
* will hold the result
* @return dest
*/
Matrix2d scale(double xy, Matrix2d dest);
/**
* Pre-multiply scaling to <code>this</code> matrix by scaling the base axes by the given x and
* y factors and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>S * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>
* , the scaling will be applied last!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @param dest
* will hold the result
* @return dest
*/
Matrix2d scaleLocal(double x, double y, Matrix2d dest);
/**
* Transform the given vector by this matrix.
*
* @param v
* the vector to transform
* @return v
*/
Vector2d transform(Vector2d v);
/**
* Transform the given vector by this matrix and store the result in <code>dest</code>.
*
* @param v
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector2d transform(Vector2dc v, Vector2d dest);
/**
* Transform the vector <code>(x, y)</code> by this matrix and store the result in <code>dest</code>.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector2d transform(double x, double y, Vector2d dest);
/**
* Transform the given vector by the transpose of this matrix.
*
* @param v
* the vector to transform
* @return v
*/
Vector2d transformTranspose(Vector2d v);
/**
* Transform the given vector by the transpose of this matrix and store the result in <code>dest</code>.
*
* @param v
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector2d transformTranspose(Vector2dc v, Vector2d dest);
/**
* Transform the vector <code>(x, y)</code> by the transpose of this matrix and store the result in <code>dest</code>.
*
* @param x
* the x coordinate of the vector to transform
* @param y
* the y coordinate of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector2d transformTranspose(double x, double y, Vector2d dest);
/**
* Apply rotation to this matrix by rotating the given amount of radians
* and store the result in <code>dest</code>.
* <p>
* The produced rotation will rotate a vector counter-clockwise around the origin.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>
* , the rotation will be applied first!
* <p>
* Reference: <a href="https://en.wikipedia.org/wiki/Rotation_matrix#In_two_dimensions">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Matrix2d rotate(double ang, Matrix2d dest);
/**
* Pre-multiply a rotation to this matrix by rotating the given amount of radians
* and store the result in <code>dest</code>.
* <p>
* The produced rotation will rotate a vector counter-clockwise around the origin.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>R * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
* rotation will be applied last!
* <p>
* Reference: <a href="https://en.wikipedia.org/wiki/Rotation_matrix#In_two_dimensions">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Matrix2d rotateLocal(double ang, Matrix2d dest);
/**
* Get the row at the given <code>row</code> index, starting with <code>0</code>.
*
* @param row
* the row index in <code>[0..1]</code>
* @param dest
* will hold the row components
* @return the passed in destination
* @throws IndexOutOfBoundsException if <code>row</code> is not in <code>[0..1]</code>
*/
Vector2d getRow(int row, Vector2d dest) throws IndexOutOfBoundsException;
/**
* Get the column at the given <code>column</code> index, starting with <code>0</code>.
*
* @param column
* the column index in <code>[0..1]</code>
* @param dest
* will hold the column components
* @return the passed in destination
* @throws IndexOutOfBoundsException if <code>column</code> is not in <code>[0..1]</code>
*/
Vector2d getColumn(int column, Vector2d dest) throws IndexOutOfBoundsException;
/**
* Get the matrix element value at the given column and row.
*
* @param column
* the colum index in <code>[0..1]</code>
* @param row
* the row index in <code>[0..1]</code>
* @return the element value
*/
double get(int column, int row);
/**
* Compute a normal matrix from <code>this</code> matrix and store it into <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix2d normal(Matrix2d dest);
/**
* Get the scaling factors of <code>this</code> matrix for the three base axes.
*
* @param dest
* will hold the scaling factors for <code>x</code> and <code>y</code>
* @return dest
*/
Vector2d getScale(Vector2d dest);
/**
* Obtain the direction of <code>+X</code> before the transformation represented by <code>this</code> matrix is applied.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix2d inv = new Matrix2d(this).invert();
* inv.transform(dir.set(1, 0)).normalize();
* </pre>
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveX(Vector2d)} instead.
*
* @param dest
* will hold the direction of <code>+X</code>
* @return dest
*/
Vector2d positiveX(Vector2d dest);
/**
* Obtain the direction of <code>+X</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix2d inv = new Matrix2d(this).transpose();
* inv.transform(dir.set(1, 0));
* </pre>
*
* @param dest
* will hold the direction of <code>+X</code>
* @return dest
*/
Vector2d normalizedPositiveX(Vector2d dest);
/**
* Obtain the direction of <code>+Y</code> before the transformation represented by <code>this</code> matrix is applied.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix2d inv = new Matrix2d(this).invert();
* inv.transform(dir.set(0, 1)).normalize();
* </pre>
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveY(Vector2d)} instead.
*
* @param dest
* will hold the direction of <code>+Y</code>
* @return dest
*/
Vector2d positiveY(Vector2d dest);
/**
* Obtain the direction of <code>+Y</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix2d inv = new Matrix2d(this).transpose();
* inv.transform(dir.set(0, 1));
* </pre>
*
* @param dest
* will hold the direction of <code>+Y</code>
* @return dest
*/
Vector2d normalizedPositiveY(Vector2d dest);
/**
* Component-wise add <code>this</code> and <code>other</code> and store the result in <code>dest</code>.
*
* @param other
* the other addend
* @param dest
* will hold the result
* @return dest
*/
Matrix2d add(Matrix2dc other, Matrix2d dest);
/**
* Component-wise subtract <code>subtrahend</code> from <code>this</code> and store the result in <code>dest</code>.
*
* @param subtrahend
* the subtrahend
* @param dest
* will hold the result
* @return dest
*/
Matrix2d sub(Matrix2dc subtrahend, Matrix2d dest);
/**
* Component-wise multiply <code>this</code> by <code>other</code> and store the result in <code>dest</code>.
*
* @param other
* the other matrix
* @param dest
* will hold the result
* @return dest
*/
Matrix2d mulComponentWise(Matrix2dc other, Matrix2d dest);
/**
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
* then the result is <code>other</code>.
*
* @param other
* the other matrix
* @param t
* the interpolation factor between 0.0 and 1.0
* @param dest
* will hold the result
* @return dest
*/
Matrix2d lerp(Matrix2dc other, double t, Matrix2d dest);
/**
* Compare the matrix elements of <code>this</code> matrix with the given matrix using the given <code>delta</code>
* and return whether all of them are equal within a maximum difference of <code>delta</code>.
* <p>
* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap}
* and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those
* data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods.
*
* @param m
* the other matrix
* @param delta
* the allowed maximum difference
* @return <code>true</code> whether all of the matrix elements are equal; <code>false</code> otherwise
*/
boolean equals(Matrix2dc m, double delta);
/**
* Determine whether all matrix elements are finite floating-point values, that
* is, they are not {@link Double#isNaN() NaN} and not
* {@link Double#isInfinite() infinity}.
*
* @return {@code true} if all components are finite floating-point values;
* {@code false} otherwise
*/
boolean isFinite();
}