Flywheel/joml/Matrix4x3fc.java
PepperCode1 a42c027b6f Scheme-a-version
- Fix Resources not being closed properly
- Change versioning scheme to match Create
- Add LICENSE to built jar
- Fix mods.toml version sync
- Move JOML code to non-src directory
- Update Gradle
- Organize imports
2022-07-15 00:00:54 -07:00

3544 lines
137 KiB
Java

/*
* The MIT License
*
* Copyright (c) 2016-2021 JOML
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.jozufozu.flywheel.repack.joml;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.util.*;
/**
* Interface to a read-only view of a 4x3 matrix of single-precision floats.
*
* @author Kai Burjack
*/
public interface Matrix4x3fc {
/**
* Argument to the first parameter of {@link #frustumPlane(int, Vector4f)}
* identifying the plane with equation <code>x=-1</code> when using the identity matrix.
*/
int PLANE_NX = 0;
/**
* Argument to the first parameter of {@link #frustumPlane(int, Vector4f)}
* identifying the plane with equation <code>x=1</code> when using the identity matrix.
*/
int PLANE_PX = 1;
/**
* Argument to the first parameter of {@link #frustumPlane(int, Vector4f)}
* identifying the plane with equation <code>y=-1</code> when using the identity matrix.
*/
int PLANE_NY = 2;
/**
* Argument to the first parameter of {@link #frustumPlane(int, Vector4f)}
* identifying the plane with equation <code>y=1</code> when using the identity matrix.
*/
int PLANE_PY = 3;
/**
* Argument to the first parameter of {@link #frustumPlane(int, Vector4f)}
* identifying the plane with equation <code>z=-1</code> when using the identity matrix.
*/
int PLANE_NZ = 4;
/**
* Argument to the first parameter of {@link #frustumPlane(int, Vector4f)}
* identifying the plane with equation <code>z=1</code> when using the identity matrix.
*/
int PLANE_PZ = 5;
/**
* Bit returned by {@link #properties()} to indicate that the matrix represents the identity transformation.
*/
byte PROPERTY_IDENTITY = 1<<2;
/**
* Bit returned by {@link #properties()} to indicate that the matrix represents a pure translation transformation.
*/
byte PROPERTY_TRANSLATION = 1<<3;
/**
* Bit returned by {@link #properties()} to indicate that the left 3x3 submatrix represents an orthogonal
* matrix (i.e. orthonormal basis).
*/
byte PROPERTY_ORTHONORMAL = 1<<4;
/**
* @return the properties of the matrix
*/
int properties();
/**
* Return the value of the matrix element at column 0 and row 0.
*
* @return the value of the matrix element
*/
float m00();
/**
* Return the value of the matrix element at column 0 and row 1.
*
* @return the value of the matrix element
*/
float m01();
/**
* Return the value of the matrix element at column 0 and row 2.
*
* @return the value of the matrix element
*/
float m02();
/**
* Return the value of the matrix element at column 1 and row 0.
*
* @return the value of the matrix element
*/
float m10();
/**
* Return the value of the matrix element at column 1 and row 1.
*
* @return the value of the matrix element
*/
float m11();
/**
* Return the value of the matrix element at column 1 and row 2.
*
* @return the value of the matrix element
*/
float m12();
/**
* Return the value of the matrix element at column 2 and row 0.
*
* @return the value of the matrix element
*/
float m20();
/**
* Return the value of the matrix element at column 2 and row 1.
*
* @return the value of the matrix element
*/
float m21();
/**
* Return the value of the matrix element at column 2 and row 2.
*
* @return the value of the matrix element
*/
float m22();
/**
* Return the value of the matrix element at column 3 and row 0.
*
* @return the value of the matrix element
*/
float m30();
/**
* Return the value of the matrix element at column 3 and row 1.
*
* @return the value of the matrix element
*/
float m31();
/**
* Return the value of the matrix element at column 3 and row 2.
*
* @return the value of the matrix element
*/
float m32();
/**
* Get the current values of <code>this</code> matrix and store them into the upper 4x3 submatrix of <code>dest</code>.
* <p>
* The other elements of <code>dest</code> will not be modified.
*
* @see Matrix4f#set4x3(Matrix4x3fc)
*
* @param dest
* the destination matrix
* @return dest
*/
Matrix4f get(Matrix4f dest);
/**
* Get the current values of <code>this</code> matrix and store them into the upper 4x3 submatrix of <code>dest</code>.
* <p>
* The other elements of <code>dest</code> will not be modified.
*
* @see Matrix4d#set4x3(Matrix4x3fc)
*
* @param dest
* the destination matrix
* @return dest
*/
Matrix4d get(Matrix4d dest);
/**
* Multiply this matrix by the supplied <code>right</code> matrix and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* transformation of the right matrix will be applied first!
*
* @param right
* the right operand of the matrix multiplication
* @param dest
* the destination matrix, which will hold the result
* @return dest
*/
Matrix4x3f mul(Matrix4x3fc right, Matrix4x3f dest);
/**
* Multiply this matrix, which is assumed to only contain a translation, by the supplied <code>right</code> matrix and store the result in <code>dest</code>.
* <p>
* This method assumes that <code>this</code> matrix only contains a translation.
* <p>
* This method will not modify either the last row of <code>this</code> or the last row of <code>right</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* transformation of the right matrix will be applied first!
*
* @param right
* the right operand of the matrix multiplication
* @param dest
* the destination matrix, which will hold the result
* @return dest
*/
Matrix4x3f mulTranslation(Matrix4x3fc right, Matrix4x3f dest);
/**
* Multiply <code>this</code> orthographic projection matrix by the supplied <code>view</code> matrix
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>V</code> the <code>view</code> matrix,
* then the new matrix will be <code>M * V</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * V * v</code>, the
* transformation of the <code>view</code> matrix will be applied first!
*
* @param view
* the matrix which to multiply <code>this</code> with
* @param dest
* the destination matrix, which will hold the result
* @return dest
*/
Matrix4x3f mulOrtho(Matrix4x3fc view, Matrix4x3f dest);
/**
* Multiply <code>this</code> by the 4x3 matrix with the column vectors <code>(rm00, rm01, rm02)</code>,
* <code>(rm10, rm11, rm12)</code>, <code>(rm20, rm21, rm22)</code> and <code>(0, 0, 0)</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the specified matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* transformation of the <code>R</code> matrix will be applied first!
*
* @param rm00
* the value of the m00 element
* @param rm01
* the value of the m01 element
* @param rm02
* the value of the m02 element
* @param rm10
* the value of the m10 element
* @param rm11
* the value of the m11 element
* @param rm12
* the value of the m12 element
* @param rm20
* the value of the m20 element
* @param rm21
* the value of the m21 element
* @param rm22
* the value of the m22 element
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mul3x3(float rm00, float rm01, float rm02, float rm10, float rm11, float rm12, float rm20, float rm21, float rm22, Matrix4x3f dest);
/**
* Component-wise add <code>this</code> and <code>other</code>
* by first multiplying each component of <code>other</code> by <code>otherFactor</code>,
* adding that to <code>this</code> and storing the final result in <code>dest</code>.
* <p>
* The other components of <code>dest</code> will be set to the ones of <code>this</code>.
* <p>
* The matrices <code>this</code> and <code>other</code> will not be changed.
*
* @param other
* the other matrix
* @param otherFactor
* the factor to multiply each of the other matrix's components
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f fma(Matrix4x3fc other, float otherFactor, Matrix4x3f dest);
/**
* Component-wise add <code>this</code> and <code>other</code> and store the result in <code>dest</code>.
*
* @param other
* the other addend
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f add(Matrix4x3fc other, Matrix4x3f dest);
/**
* Component-wise subtract <code>subtrahend</code> from <code>this</code> and store the result in <code>dest</code>.
*
* @param subtrahend
* the subtrahend
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f sub(Matrix4x3fc subtrahend, Matrix4x3f dest);
/**
* Component-wise multiply <code>this</code> by <code>other</code> and store the result in <code>dest</code>.
*
* @param other
* the other matrix
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mulComponentWise(Matrix4x3fc other, Matrix4x3f dest);
/**
* Return the determinant of this matrix.
*
* @return the determinant
*/
float determinant();
/**
* Invert this matrix and write the result into <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f invert(Matrix4x3f dest);
/**
* Invert this matrix and write the result as the top 4x3 matrix into <code>dest</code>
* and set all other values of <code>dest</code> to identity..
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4f invert(Matrix4f dest);
/**
* Invert <code>this</code> orthographic projection matrix and store the result into the given <code>dest</code>.
* <p>
* This method can be used to quickly obtain the inverse of an orthographic projection matrix.
*
* @param dest
* will hold the inverse of <code>this</code>
* @return dest
*/
Matrix4x3f invertOrtho(Matrix4x3f dest);
/**
* Transpose only the left 3x3 submatrix of this matrix and store the result in <code>dest</code>.
* <p>
* All other matrix elements are left unchanged.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f transpose3x3(Matrix4x3f dest);
/**
* Transpose only the left 3x3 submatrix of this matrix and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f transpose3x3(Matrix3f dest);
/**
* Get only the translation components <code>(m30, m31, m32)</code> of this matrix and store them in the given vector <code>xyz</code>.
*
* @param dest
* will hold the translation components of this matrix
* @return dest
*/
Vector3f getTranslation(Vector3f dest);
/**
* Get the scaling factors of <code>this</code> matrix for the three base axes.
*
* @param dest
* will hold the scaling factors for <code>x</code>, <code>y</code> and <code>z</code>
* @return dest
*/
Vector3f getScale(Vector3f dest);
/**
* Get the current values of <code>this</code> matrix and store them into
* <code>dest</code>.
*
* @param dest
* the destination matrix
* @return the passed in destination
*/
Matrix4x3f get(Matrix4x3f dest);
/**
* Get the current values of <code>this</code> matrix and store them into
* <code>dest</code>.
*
* @param dest
* the destination matrix
* @return the passed in destination
*/
Matrix4x3d get(Matrix4x3d dest);
/**
* Get the rotational component of <code>this</code> matrix and store the represented rotation
* into the given {@link AxisAngle4f}.
*
* @see AxisAngle4f#set(Matrix4x3fc)
*
* @param dest
* the destination {@link AxisAngle4f}
* @return the passed in destination
*/
AxisAngle4f getRotation(AxisAngle4f dest);
/**
* Get the rotational component of <code>this</code> matrix and store the represented rotation
* into the given {@link AxisAngle4d}.
*
* @see AxisAngle4f#set(Matrix4x3fc)
*
* @param dest
* the destination {@link AxisAngle4d}
* @return the passed in destination
*/
AxisAngle4d getRotation(AxisAngle4d dest);
/**
* Get the current values of <code>this</code> matrix and store the represented rotation
* into the given {@link Quaternionf}.
* <p>
* This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and
* thus allows to ignore any additional scaling factor that is applied to the matrix.
*
* @see Quaternionf#setFromUnnormalized(Matrix4x3fc)
*
* @param dest
* the destination {@link Quaternionf}
* @return the passed in destination
*/
Quaternionf getUnnormalizedRotation(Quaternionf dest);
/**
* Get the current values of <code>this</code> matrix and store the represented rotation
* into the given {@link Quaternionf}.
* <p>
* This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.
*
* @see Quaternionf#setFromNormalized(Matrix4x3fc)
*
* @param dest
* the destination {@link Quaternionf}
* @return the passed in destination
*/
Quaternionf getNormalizedRotation(Quaternionf dest);
/**
* Get the current values of <code>this</code> matrix and store the represented rotation
* into the given {@link Quaterniond}.
* <p>
* This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and
* thus allows to ignore any additional scaling factor that is applied to the matrix.
*
* @see Quaterniond#setFromUnnormalized(Matrix4x3fc)
*
* @param dest
* the destination {@link Quaterniond}
* @return the passed in destination
*/
Quaterniond getUnnormalizedRotation(Quaterniond dest);
/**
* Get the current values of <code>this</code> matrix and store the represented rotation
* into the given {@link Quaterniond}.
* <p>
* This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.
*
* @see Quaterniond#setFromNormalized(Matrix4x3fc)
*
* @param dest
* the destination {@link Quaterniond}
* @return the passed in destination
*/
Quaterniond getNormalizedRotation(Quaterniond dest);
/**
* Store this matrix in column-major order into the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the matrix is stored, use {@link #get(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @see #get(int, FloatBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
FloatBuffer get(FloatBuffer buffer);
/**
* Store this matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
FloatBuffer get(int index, FloatBuffer buffer);
/**
* Store this matrix in column-major order into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the matrix is stored, use {@link #get(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @see #get(int, ByteBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
ByteBuffer get(ByteBuffer buffer);
/**
* Store this matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
ByteBuffer get(int index, ByteBuffer buffer);
/**
* Store this matrix in column-major order at the given off-heap address.
* <p>
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
* <p>
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
*
* @param address
* the off-heap address where to store this matrix
* @return this
*/
Matrix4x3fc getToAddress(long address);
/**
* Store this matrix into the supplied float array in column-major order at the given offset.
*
* @param arr
* the array to write the matrix values into
* @param offset
* the offset into the array
* @return the passed in array
*/
float[] get(float[] arr, int offset);
/**
* Store this matrix into the supplied float array in column-major order.
* <p>
* In order to specify an explicit offset into the array, use the method {@link #get(float[], int)}.
*
* @see #get(float[], int)
*
* @param arr
* the array to write the matrix values into
* @return the passed in array
*/
float[] get(float[] arr);
/**
* Store a 4x4 matrix in column-major order into the supplied array at the given offset,
* where the upper 4x3 submatrix is <code>this</code> and the last row is <code>(0, 0, 0, 1)</code>.
*
* @param arr
* the array to write the matrix values into
* @param offset
* the offset into the array
* @return the passed in array
*/
float[] get4x4(float[] arr, int offset);
/**
* Store a 4x4 matrix in column-major order into the supplied array,
* where the upper 4x3 submatrix is <code>this</code> and the last row is <code>(0, 0, 0, 1)</code>.
* <p>
* In order to specify an explicit offset into the array, use the method {@link #get4x4(float[], int)}.
*
* @see #get4x4(float[], int)
*
* @param arr
* the array to write the matrix values into
* @return the passed in array
*/
float[] get4x4(float[] arr);
/**
* Store a 4x4 matrix in column-major order into the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}, where the upper 4x3 submatrix is <code>this</code> and the last row is <code>(0, 0, 0, 1)</code>.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the matrix is stored, use {@link #get4x4(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @see #get4x4(int, FloatBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
FloatBuffer get4x4(FloatBuffer buffer);
/**
* Store a 4x4 matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index, where the upper 4x3 submatrix is <code>this</code> and the last row is <code>(0, 0, 0, 1)</code>.
* <p>
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
FloatBuffer get4x4(int index, FloatBuffer buffer);
/**
* Store a 4x4 matrix in column-major order into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}, where the upper 4x3 submatrix is <code>this</code> and the last row is <code>(0, 0, 0, 1)</code>.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the matrix is stored, use {@link #get4x4(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @see #get4x4(int, ByteBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
ByteBuffer get4x4(ByteBuffer buffer);
/**
* Store a 4x4 matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index, where the upper 4x3 submatrix is <code>this</code> and the last row is <code>(0, 0, 0, 1)</code>.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
ByteBuffer get4x4(int index, ByteBuffer buffer);
/**
* Store the left 3x3 submatrix as 3x4 matrix in column-major order into the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}, with the m03, m13 and m23 components being zero.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the matrix is stored, use {@link #get3x4(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @see #get3x4(int, FloatBuffer)
*
* @param buffer
* will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order at its current position
* @return the passed in buffer
*/
FloatBuffer get3x4(FloatBuffer buffer);
/**
* Store the left 3x3 submatrix as 3x4 matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index, with the m03, m13 and m23 components being zero.
* <p>
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order
* @return the passed in buffer
*/
FloatBuffer get3x4(int index, FloatBuffer buffer);
/**
* Store the left 3x3 submatrix as 3x4 matrix in column-major order into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}, with the m03, m13 and m23 components being zero.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the matrix is stored, use {@link #get3x4(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @see #get3x4(int, ByteBuffer)
*
* @param buffer
* will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order at its current position
* @return the passed in buffer
*/
ByteBuffer get3x4(ByteBuffer buffer);
/**
* Store the left 3x3 submatrix as 3x4 matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index, with the m03, m13 and m23 components being zero.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of the left 3x3 submatrix as 3x4 matrix in column-major order
* @return the passed in buffer
*/
ByteBuffer get3x4(int index, ByteBuffer buffer);
/**
* Store this matrix in row-major order into the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the matrix is stored, use {@link #getTransposed(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @see #getTransposed(int, FloatBuffer)
*
* @param buffer
* will receive the values of this matrix in row-major order at its current position
* @return the passed in buffer
*/
FloatBuffer getTransposed(FloatBuffer buffer);
/**
* Store this matrix in row-major order into the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* will receive the values of this matrix in row-major order
* @return the passed in buffer
*/
FloatBuffer getTransposed(int index, FloatBuffer buffer);
/**
* Store this matrix in row-major order into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the matrix is stored, use {@link #getTransposed(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @see #getTransposed(int, ByteBuffer)
*
* @param buffer
* will receive the values of this matrix in row-major order at its current position
* @return the passed in buffer
*/
ByteBuffer getTransposed(ByteBuffer buffer);
/**
* Store this matrix in row-major order into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this matrix in row-major order
* @return the passed in buffer
*/
ByteBuffer getTransposed(int index, ByteBuffer buffer);
/**
* Store this matrix into the supplied float array in row-major order at the given offset.
*
* @param arr
* the array to write the matrix values into
* @param offset
* the offset into the array
* @return the passed in array
*/
float[] getTransposed(float[] arr, int offset);
/**
* Store this matrix into the supplied float array in row-major order.
* <p>
* In order to specify an explicit offset into the array, use the method {@link #getTransposed(float[], int)}.
*
* @see #getTransposed(float[], int)
*
* @param arr
* the array to write the matrix values into
* @return the passed in array
*/
float[] getTransposed(float[] arr);
/**
* Transform/multiply the given vector by this matrix and store the result in that vector.
*
* @see Vector4f#mul(Matrix4x3fc)
*
* @param v
* the vector to transform and to hold the final result
* @return v
*/
Vector4f transform(Vector4f v);
/**
* Transform/multiply the given vector by this matrix and store the result in <code>dest</code>.
*
* @see Vector4f#mul(Matrix4x3fc, Vector4f)
*
* @param v
* the vector to transform
* @param dest
* will contain the result
* @return dest
*/
Vector4f transform(Vector4fc v, Vector4f dest);
/**
* Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by
* this matrix and store the result in that vector.
* <p>
* The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it
* will represent a position/location in 3D-space rather than a direction.
* <p>
* In order to store the result in another vector, use {@link #transformPosition(Vector3fc, Vector3f)}.
*
* @see #transformPosition(Vector3fc, Vector3f)
* @see #transform(Vector4f)
*
* @param v
* the vector to transform and to hold the final result
* @return v
*/
Vector3f transformPosition(Vector3f v);
/**
* Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by
* this matrix and store the result in <code>dest</code>.
* <p>
* The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it
* will represent a position/location in 3D-space rather than a direction.
* <p>
* In order to store the result in the same vector, use {@link #transformPosition(Vector3f)}.
*
* @see #transformPosition(Vector3f)
* @see #transform(Vector4fc, Vector4f)
*
* @param v
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformPosition(Vector3fc v, Vector3f dest);
/**
* Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by
* this matrix and store the result in that vector.
* <p>
* The given 3D-vector is treated as a 4D-vector with its w-component being <code>0.0</code>, so it
* will represent a direction in 3D-space rather than a position. This method will therefore
* not take the translation part of the matrix into account.
* <p>
* In order to store the result in another vector, use {@link #transformDirection(Vector3fc, Vector3f)}.
*
* @see #transformDirection(Vector3fc, Vector3f)
*
* @param v
* the vector to transform and to hold the final result
* @return v
*/
Vector3f transformDirection(Vector3f v);
/**
* Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by
* this matrix and store the result in <code>dest</code>.
* <p>
* The given 3D-vector is treated as a 4D-vector with its w-component being <code>0.0</code>, so it
* will represent a direction in 3D-space rather than a position. This method will therefore
* not take the translation part of the matrix into account.
* <p>
* In order to store the result in the same vector, use {@link #transformDirection(Vector3f)}.
*
* @see #transformDirection(Vector3f)
*
* @param v
* the vector to transform and to hold the final result
* @param dest
* will hold the result
* @return dest
*/
Vector3f transformDirection(Vector3fc v, Vector3f dest);
/**
* Apply scaling to <code>this</code> matrix by scaling the base axes by the given <code>xyz.x</code>,
* <code>xyz.y</code> and <code>xyz.z</code> factors, respectively and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
* , the scaling will be applied first!
*
* @param xyz
* the factors of the x, y and z component, respectively
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f scale(Vector3fc xyz, Matrix4x3f dest);
/**
* Apply scaling to this matrix by uniformly scaling all base axes by the given <code>xyz</code> factor
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
* scaling will be applied first!
* <p>
* Individual scaling of all three axes can be applied using {@link #scale(float, float, float, Matrix4x3f)}.
*
* @see #scale(float, float, float, Matrix4x3f)
*
* @param xyz
* the factor for all components
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f scale(float xyz, Matrix4x3f dest);
/**
* Apply scaling to this matrix by by scaling the X axis by <code>x</code> and the Y axis by <code>y</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
* scaling will be applied first!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f scaleXY(float x, float y, Matrix4x3f dest);
/**
* Apply scaling to <code>this</code> matrix by scaling the base axes by the given sx,
* sy and sz factors while using <code>(ox, oy, oz)</code> as the scaling origin,
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
* , the scaling will be applied first!
* <p>
* This method is equivalent to calling: <code>translate(ox, oy, oz, dest).scale(sx, sy, sz).translate(-ox, -oy, -oz)</code>
*
* @param sx
* the scaling factor of the x component
* @param sy
* the scaling factor of the y component
* @param sz
* the scaling factor of the z component
* @param ox
* the x coordinate of the scaling origin
* @param oy
* the y coordinate of the scaling origin
* @param oz
* the z coordinate of the scaling origin
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f scaleAround(float sx, float sy, float sz, float ox, float oy, float oz, Matrix4x3f dest);
/**
* Apply scaling to this matrix by scaling all three base axes by the given <code>factor</code>
* while using <code>(ox, oy, oz)</code> as the scaling origin,
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
* scaling will be applied first!
* <p>
* This method is equivalent to calling: <code>translate(ox, oy, oz, dest).scale(factor).translate(-ox, -oy, -oz)</code>
*
* @param factor
* the scaling factor for all three axes
* @param ox
* the x coordinate of the scaling origin
* @param oy
* the y coordinate of the scaling origin
* @param oz
* the z coordinate of the scaling origin
* @param dest
* will hold the result
* @return this
*/
Matrix4x3f scaleAround(float factor, float ox, float oy, float oz, Matrix4x3f dest);
/**
* Apply scaling to <code>this</code> matrix by scaling the base axes by the given x,
* y and z factors and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
* , the scaling will be applied first!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @param z
* the factor of the z component
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f scale(float x, float y, float z, Matrix4x3f dest);
/**
* Pre-multiply scaling to <code>this</code> matrix by scaling the base axes by the given x,
* y and z factors and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>S * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>
* , the scaling will be applied last!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @param z
* the factor of the z component
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f scaleLocal(float x, float y, float z, Matrix4x3f dest);
/**
* Apply rotation about the X axis to this matrix by rotating the given amount of radians
* and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotateX(float ang, Matrix4x3f dest);
/**
* Apply rotation about the Y axis to this matrix by rotating the given amount of radians
* and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotateY(float ang, Matrix4x3f dest);
/**
* Apply rotation about the Z axis to this matrix by rotating the given amount of radians
* and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotateZ(float ang, Matrix4x3f dest);
/**
* Apply rotation of <code>angleX</code> radians about the X axis, followed by a rotation of <code>angleY</code> radians about the Y axis and
* followed by a rotation of <code>angleZ</code> radians about the Z axis and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* rotation will be applied first!
* <p>
* This method is equivalent to calling: <code>rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)</code>
*
* @param angleX
* the angle to rotate about X
* @param angleY
* the angle to rotate about Y
* @param angleZ
* the angle to rotate about Z
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotateXYZ(float angleX, float angleY, float angleZ, Matrix4x3f dest);
/**
* Apply rotation of <code>angleZ</code> radians about the Z axis, followed by a rotation of <code>angleY</code> radians about the Y axis and
* followed by a rotation of <code>angleX</code> radians about the X axis and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* rotation will be applied first!
* <p>
* This method is equivalent to calling: <code>rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)</code>
*
* @param angleZ
* the angle to rotate about Z
* @param angleY
* the angle to rotate about Y
* @param angleX
* the angle to rotate about X
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotateZYX(float angleZ, float angleY, float angleX, Matrix4x3f dest);
/**
* Apply rotation of <code>angleY</code> radians about the Y axis, followed by a rotation of <code>angleX</code> radians about the X axis and
* followed by a rotation of <code>angleZ</code> radians about the Z axis and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* rotation will be applied first!
* <p>
* This method is equivalent to calling: <code>rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)</code>
*
* @param angleY
* the angle to rotate about Y
* @param angleX
* the angle to rotate about X
* @param angleZ
* the angle to rotate about Z
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotateYXZ(float angleY, float angleX, float angleZ, Matrix4x3f dest);
/**
* Apply rotation to this matrix by rotating the given amount of radians
* about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>.
* <p>
* The axis described by the three components needs to be a unit vector.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians
* @param x
* the x component of the axis
* @param y
* the y component of the axis
* @param z
* the z component of the axis
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotate(float ang, float x, float y, float z, Matrix4x3f dest);
/**
* Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians
* about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>.
* <p>
* This method assumes <code>this</code> to only contain a translation.
* <p>
* The axis described by the three components needs to be a unit vector.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians
* @param x
* the x component of the axis
* @param y
* the y component of the axis
* @param z
* the z component of the axis
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotateTranslation(float ang, float x, float y, float z, Matrix4x3f dest);
/**
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix while using <code>(ox, oy, oz)</code> as the rotation origin,
* and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
* then the new matrix will be <code>M * Q</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
* the quaternion rotation will be applied first!
* <p>
* This method is equivalent to calling: <code>translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)</code>
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
*
* @param quat
* the {@link Quaternionfc}
* @param ox
* the x coordinate of the rotation origin
* @param oy
* the y coordinate of the rotation origin
* @param oz
* the z coordinate of the rotation origin
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotateAround(Quaternionfc quat, float ox, float oy, float oz, Matrix4x3f dest);
/**
* Pre-multiply a rotation to this matrix by rotating the given amount of radians
* about the specified <code>(x, y, z)</code> axis and store the result in <code>dest</code>.
* <p>
* The axis described by the three components needs to be a unit vector.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>R * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
* rotation will be applied last!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians
* @param x
* the x component of the axis
* @param y
* the y component of the axis
* @param z
* the z component of the axis
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotateLocal(float ang, float x, float y, float z, Matrix4x3f dest);
/**
* Apply a translation to this matrix by translating by the given number of
* units in x, y and z and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
* matrix, then the new matrix will be <code>M * T</code>. So when
* transforming a vector <code>v</code> with the new matrix by using
* <code>M * T * v</code>, the translation will be applied first!
*
* @param offset
* the number of units in x, y and z by which to translate
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f translate(Vector3fc offset, Matrix4x3f dest);
/**
* Apply a translation to this matrix by translating by the given number of
* units in x, y and z and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
* matrix, then the new matrix will be <code>M * T</code>. So when
* transforming a vector <code>v</code> with the new matrix by using
* <code>M * T * v</code>, the translation will be applied first!
*
* @param x
* the offset to translate in x
* @param y
* the offset to translate in y
* @param z
* the offset to translate in z
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f translate(float x, float y, float z, Matrix4x3f dest);
/**
* Pre-multiply a translation to this matrix by translating by the given number of
* units in x, y and z and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
* matrix, then the new matrix will be <code>T * M</code>. So when
* transforming a vector <code>v</code> with the new matrix by using
* <code>T * M * v</code>, the translation will be applied last!
*
* @param offset
* the number of units in x, y and z by which to translate
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f translateLocal(Vector3fc offset, Matrix4x3f dest);
/**
* Pre-multiply a translation to this matrix by translating by the given number of
* units in x, y and z and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
* matrix, then the new matrix will be <code>T * M</code>. So when
* transforming a vector <code>v</code> with the new matrix by using
* <code>T * M * v</code>, the translation will be applied last!
*
* @param x
* the offset to translate in x
* @param y
* the offset to translate in y
* @param z
* the offset to translate in z
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f translateLocal(float x, float y, float z, Matrix4x3f dest);
/**
* Apply an orthographic projection transformation for a right-handed coordinate system
* using the given NDC z range to this matrix and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
* then the new matrix will be <code>M * O</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
* orthographic projection transformation will be applied first!
* <p>
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest);
/**
* Apply an orthographic projection transformation for a right-handed coordinate system
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
* then the new matrix will be <code>M * O</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
* orthographic projection transformation will be applied first!
* <p>
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f ortho(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest);
/**
* Apply an orthographic projection transformation for a left-handed coordiante system
* using the given NDC z range to this matrix and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
* then the new matrix will be <code>M * O</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
* orthographic projection transformation will be applied first!
* <p>
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest);
/**
* Apply an orthographic projection transformation for a left-handed coordiante system
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
* then the new matrix will be <code>M * O</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
* orthographic projection transformation will be applied first!
* <p>
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f orthoLH(float left, float right, float bottom, float top, float zNear, float zFar, Matrix4x3f dest);
/**
* Apply a symmetric orthographic projection transformation for a right-handed coordinate system
* using the given NDC z range to this matrix and store the result in <code>dest</code>.
* <p>
* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float, boolean, Matrix4x3f) ortho()} with
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
* then the new matrix will be <code>M * O</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
* orthographic projection transformation will be applied first!
* <p>
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param dest
* will hold the result
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
* @return dest
*/
Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest);
/**
* Apply a symmetric orthographic projection transformation for a right-handed coordinate system
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>.
* <p>
* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float, Matrix4x3f) ortho()} with
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
* then the new matrix will be <code>M * O</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
* orthographic projection transformation will be applied first!
* <p>
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f orthoSymmetric(float width, float height, float zNear, float zFar, Matrix4x3f dest);
/**
* Apply a symmetric orthographic projection transformation for a left-handed coordinate system
* using the given NDC z range to this matrix and store the result in <code>dest</code>.
* <p>
* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float, boolean, Matrix4x3f) orthoLH()} with
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
* then the new matrix will be <code>M * O</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
* orthographic projection transformation will be applied first!
* <p>
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param dest
* will hold the result
* @param zZeroToOne
* whether to use Vulkan's and Direct3D's NDC z range of <code>[0..+1]</code> when <code>true</code>
* or whether to use OpenGL's NDC z range of <code>[-1..+1]</code> when <code>false</code>
* @return dest
*/
Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, boolean zZeroToOne, Matrix4x3f dest);
/**
* Apply a symmetric orthographic projection transformation for a left-handed coordinate system
* using OpenGL's NDC z range of <code>[-1..+1]</code> to this matrix and store the result in <code>dest</code>.
* <p>
* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float, Matrix4x3f) orthoLH()} with
* <code>left=-width/2</code>, <code>right=+width/2</code>, <code>bottom=-height/2</code> and <code>top=+height/2</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
* then the new matrix will be <code>M * O</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
* orthographic projection transformation will be applied first!
* <p>
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
*
* @param width
* the distance between the right and left frustum edges
* @param height
* the distance between the top and bottom frustum edges
* @param zNear
* near clipping plane distance
* @param zFar
* far clipping plane distance
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f orthoSymmetricLH(float width, float height, float zNear, float zFar, Matrix4x3f dest);
/**
* Apply an orthographic projection transformation for a right-handed coordinate system to this matrix
* and store the result in <code>dest</code>.
* <p>
* This method is equivalent to calling {@link #ortho(float, float, float, float, float, float, Matrix4x3f) ortho()} with
* <code>zNear=-1</code> and <code>zFar=+1</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
* then the new matrix will be <code>M * O</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
* orthographic projection transformation will be applied first!
* <p>
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
*
* @see #ortho(float, float, float, float, float, float, Matrix4x3f)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f ortho2D(float left, float right, float bottom, float top, Matrix4x3f dest);
/**
* Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result in <code>dest</code>.
* <p>
* This method is equivalent to calling {@link #orthoLH(float, float, float, float, float, float, Matrix4x3f) orthoLH()} with
* <code>zNear=-1</code> and <code>zFar=+1</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
* then the new matrix will be <code>M * O</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
* orthographic projection transformation will be applied first!
* <p>
* Reference: <a href="http://www.songho.ca/opengl/gl_projectionmatrix.html#ortho">http://www.songho.ca</a>
*
* @see #orthoLH(float, float, float, float, float, float, Matrix4x3f)
*
* @param left
* the distance from the center to the left frustum edge
* @param right
* the distance from the center to the right frustum edge
* @param bottom
* the distance from the center to the bottom frustum edge
* @param top
* the distance from the center to the top frustum edge
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f ortho2DLH(float left, float right, float bottom, float top, Matrix4x3f dest);
/**
* Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix,
* then the new matrix will be <code>M * L</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the
* lookalong rotation transformation will be applied first!
* <p>
* This is equivalent to calling
* {@link #lookAt(Vector3fc, Vector3fc, Vector3fc, Matrix4x3f) lookAt}
* with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>.
*
* @see #lookAlong(float, float, float, float, float, float, Matrix4x3f)
* @see #lookAt(Vector3fc, Vector3fc, Vector3fc, Matrix4x3f)
*
* @param dir
* the direction in space to look along
* @param up
* the direction of 'up'
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f lookAlong(Vector3fc dir, Vector3fc up, Matrix4x3f dest);
/**
* Apply a rotation transformation to this matrix to make <code>-z</code> point along <code>dir</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookalong rotation matrix,
* then the new matrix will be <code>M * L</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>, the
* lookalong rotation transformation will be applied first!
* <p>
* This is equivalent to calling
* {@link #lookAt(float, float, float, float, float, float, float, float, float, Matrix4x3f) lookAt()}
* with <code>eye = (0, 0, 0)</code> and <code>center = dir</code>.
*
* @see #lookAt(float, float, float, float, float, float, float, float, float, Matrix4x3f)
*
* @param dirX
* the x-coordinate of the direction to look along
* @param dirY
* the y-coordinate of the direction to look along
* @param dirZ
* the z-coordinate of the direction to look along
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f lookAlong(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest);
/**
* Apply a "lookat" transformation to this matrix for a right-handed coordinate system,
* that aligns <code>-z</code> with <code>center - eye</code> and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
* then the new matrix will be <code>M * L</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
* the lookat transformation will be applied first!
*
* @see #lookAt(float, float, float, float, float, float, float, float, float, Matrix4x3f)
*
* @param eye
* the position of the camera
* @param center
* the point in space to look at
* @param up
* the direction of 'up'
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f lookAt(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest);
/**
* Apply a "lookat" transformation to this matrix for a right-handed coordinate system,
* that aligns <code>-z</code> with <code>center - eye</code> and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
* then the new matrix will be <code>M * L</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
* the lookat transformation will be applied first!
*
* @see #lookAt(Vector3fc, Vector3fc, Vector3fc, Matrix4x3f)
*
* @param eyeX
* the x-coordinate of the eye/camera location
* @param eyeY
* the y-coordinate of the eye/camera location
* @param eyeZ
* the z-coordinate of the eye/camera location
* @param centerX
* the x-coordinate of the point to look at
* @param centerY
* the y-coordinate of the point to look at
* @param centerZ
* the z-coordinate of the point to look at
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f lookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest);
/**
* Apply a "lookat" transformation to this matrix for a left-handed coordinate system,
* that aligns <code>+z</code> with <code>center - eye</code> and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
* then the new matrix will be <code>M * L</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
* the lookat transformation will be applied first!
*
* @see #lookAtLH(float, float, float, float, float, float, float, float, float, Matrix4x3f)
*
* @param eye
* the position of the camera
* @param center
* the point in space to look at
* @param up
* the direction of 'up'
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f lookAtLH(Vector3fc eye, Vector3fc center, Vector3fc up, Matrix4x3f dest);
/**
* Apply a "lookat" transformation to this matrix for a left-handed coordinate system,
* that aligns <code>+z</code> with <code>center - eye</code> and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
* then the new matrix will be <code>M * L</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
* the lookat transformation will be applied first!
*
* @see #lookAtLH(Vector3fc, Vector3fc, Vector3fc, Matrix4x3f)
*
* @param eyeX
* the x-coordinate of the eye/camera location
* @param eyeY
* the y-coordinate of the eye/camera location
* @param eyeZ
* the z-coordinate of the eye/camera location
* @param centerX
* the x-coordinate of the point to look at
* @param centerY
* the y-coordinate of the point to look at
* @param centerZ
* the z-coordinate of the point to look at
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f lookAtLH(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ, Matrix4x3f dest);
/**
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix and store
* the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
* then the new matrix will be <code>M * Q</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
* the quaternion rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
*
* @param quat
* the {@link Quaternionfc}
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotate(Quaternionfc quat, Matrix4x3f dest);
/**
* Apply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix, which is assumed to only contain a translation, and store
* the result in <code>dest</code>.
* <p>
* This method assumes <code>this</code> to only contain a translation.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
* then the new matrix will be <code>M * Q</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * Q * v</code>,
* the quaternion rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
*
* @param quat
* the {@link Quaternionfc}
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotateTranslation(Quaternionfc quat, Matrix4x3f dest);
/**
* Pre-multiply the rotation - and possibly scaling - transformation of the given {@link Quaternionfc} to this matrix and store
* the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>Q</code> the rotation matrix obtained from the given quaternion,
* then the new matrix will be <code>Q * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>Q * M * v</code>,
* the quaternion rotation will be applied last!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion">http://en.wikipedia.org</a>
*
* @param quat
* the {@link Quaternionfc}
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotateLocal(Quaternionfc quat, Matrix4x3f dest);
/**
* Apply a rotation transformation, rotating about the given {@link AxisAngle4f} and store the result in <code>dest</code>.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given {@link AxisAngle4f},
* then the new matrix will be <code>M * A</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
* the {@link AxisAngle4f} rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
*
* @see #rotate(float, float, float, float, Matrix4x3f)
*
* @param axisAngle
* the {@link AxisAngle4f} (needs to be {@link AxisAngle4f#normalize() normalized})
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotate(AxisAngle4f axisAngle, Matrix4x3f dest);
/**
* Apply a rotation transformation, rotating the given radians about the specified axis and store the result in <code>dest</code>.
* <p>
* The axis described by the <code>axis</code> vector needs to be a unit vector.
* <p>
* When used with a right-handed coordinate system, the produced rotation will rotate a vector
* counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin.
* When used with a left-handed coordinate system, the rotation is clockwise.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>A</code> the rotation matrix obtained from the given axis-angle,
* then the new matrix will be <code>M * A</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * A * v</code>,
* the axis-angle rotation will be applied first!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Axis_and_angle">http://en.wikipedia.org</a>
*
* @see #rotate(float, float, float, float, Matrix4x3f)
*
* @param angle
* the angle in radians
* @param axis
* the rotation axis (needs to be {@link Vector3f#normalize() normalized})
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotate(float angle, Vector3fc axis, Matrix4x3f dest);
/**
* Apply a mirror/reflection transformation to this matrix that reflects about the given plane
* specified via the equation <code>x*a + y*b + z*c + d = 0</code> and store the result in <code>dest</code>.
* <p>
* The vector <code>(a, b, c)</code> must be a unit vector.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* reflection will be applied first!
* <p>
* Reference: <a href="https://msdn.microsoft.com/en-us/library/windows/desktop/bb281733(v=vs.85).aspx">msdn.microsoft.com</a>
*
* @param a
* the x factor in the plane equation
* @param b
* the y factor in the plane equation
* @param c
* the z factor in the plane equation
* @param d
* the constant in the plane equation
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f reflect(float a, float b, float c, float d, Matrix4x3f dest);
/**
* Apply a mirror/reflection transformation to this matrix that reflects about the given plane
* specified via the plane normal and a point on the plane, and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* reflection will be applied first!
*
* @param nx
* the x-coordinate of the plane normal
* @param ny
* the y-coordinate of the plane normal
* @param nz
* the z-coordinate of the plane normal
* @param px
* the x-coordinate of a point on the plane
* @param py
* the y-coordinate of a point on the plane
* @param pz
* the z-coordinate of a point on the plane
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f reflect(float nx, float ny, float nz, float px, float py, float pz, Matrix4x3f dest);
/**
* Apply a mirror/reflection transformation to this matrix that reflects about a plane
* specified via the plane orientation and a point on the plane, and store the result in <code>dest</code>.
* <p>
* This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene.
* It is assumed that the default mirror plane's normal is <code>(0, 0, 1)</code>. So, if the given {@link Quaternionfc} is
* the identity (does not apply any additional rotation), the reflection plane will be <code>z=0</code>, offset by the given <code>point</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* reflection will be applied first!
*
* @param orientation
* the plane orientation relative to an implied normal vector of <code>(0, 0, 1)</code>
* @param point
* a point on the plane
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f reflect(Quaternionfc orientation, Vector3fc point, Matrix4x3f dest);
/**
* Apply a mirror/reflection transformation to this matrix that reflects about the given plane
* specified via the plane normal and a point on the plane, and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the reflection matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* reflection will be applied first!
*
* @param normal
* the plane normal
* @param point
* a point on the plane
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f reflect(Vector3fc normal, Vector3fc point, Matrix4x3f dest);
/**
* Get the row at the given <code>row</code> index, starting with <code>0</code>.
*
* @param row
* the row index in <code>[0..2]</code>
* @param dest
* will hold the row components
* @return the passed in destination
* @throws IndexOutOfBoundsException if <code>row</code> is not in <code>[0..2]</code>
*/
Vector4f getRow(int row, Vector4f dest) throws IndexOutOfBoundsException;
/**
* Get the column at the given <code>column</code> index, starting with <code>0</code>.
*
* @param column
* the column index in <code>[0..2]</code>
* @param dest
* will hold the column components
* @return the passed in destination
* @throws IndexOutOfBoundsException if <code>column</code> is not in <code>[0..2]</code>
*/
Vector3f getColumn(int column, Vector3f dest) throws IndexOutOfBoundsException;
/**
* Compute a normal matrix from the left 3x3 submatrix of <code>this</code>
* and store it into the left 3x3 submatrix of <code>dest</code>.
* All other values of <code>dest</code> will be set to identity.
* <p>
* The normal matrix of <code>m</code> is the transpose of the inverse of <code>m</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f normal(Matrix4x3f dest);
/**
* Compute a normal matrix from the left 3x3 submatrix of <code>this</code> and store it into <code>dest</code>.
* <p>
* The normal matrix of <code>m</code> is the transpose of the inverse of <code>m</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f normal(Matrix3f dest);
/**
* Compute the cofactor matrix of the left 3x3 submatrix of <code>this</code>
* and store it into <code>dest</code>.
* <p>
* The cofactor matrix can be used instead of {@link #normal(Matrix3f)} to transform normals
* when the orientation of the normals with respect to the surface should be preserved.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f cofactor3x3(Matrix3f dest);
/**
* Compute the cofactor matrix of the left 3x3 submatrix of <code>this</code>
* and store it into <code>dest</code>.
* All other values of <code>dest</code> will be set to identity.
* <p>
* The cofactor matrix can be used instead of {@link #normal(Matrix4x3f)} to transform normals
* when the orientation of the normals with respect to the surface should be preserved.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f cofactor3x3(Matrix4x3f dest);
/**
* Normalize the left 3x3 submatrix of this matrix and store the result in <code>dest</code>.
* <p>
* The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit
* vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself
* (i.e. had <i>skewing</i>).
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f normalize3x3(Matrix4x3f dest);
/**
* Normalize the left 3x3 submatrix of this matrix and store the result in <code>dest</code>.
* <p>
* The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit
* vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself
* (i.e. had <i>skewing</i>).
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3f normalize3x3(Matrix3f dest);
/**
* Calculate a frustum plane of <code>this</code> matrix, which
* can be a projection matrix or a combined modelview-projection matrix, and store the result
* in the given <code>dest</code>.
* <p>
* Generally, this method computes the frustum plane in the local frame of
* any coordinate system that existed before <code>this</code>
* transformation was applied to it in order to yield homogeneous clipping space.
* <p>
* The plane normal, which is <code>(a, b, c)</code>, is directed "inwards" of the frustum.
* Any plane/point test using <code>a*x + b*y + c*z + d</code> therefore will yield a result greater than zero
* if the point is within the frustum (i.e. at the <i>positive</i> side of the frustum plane).
* <p>
* Reference: <a href="http://gamedevs.org/uploads/fast-extraction-viewing-frustum-planes-from-world-view-projection-matrix.pdf">
* Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix</a>
*
* @param which
* one of the six possible planes, given as numeric constants
* {@link #PLANE_NX}, {@link #PLANE_PX},
* {@link #PLANE_NY}, {@link #PLANE_PY},
* {@link #PLANE_NZ} and {@link #PLANE_PZ}
* @param dest
* will hold the computed plane equation.
* The plane equation will be normalized, meaning that <code>(a, b, c)</code> will be a unit vector
* @return dest
*/
Vector4f frustumPlane(int which, Vector4f dest);
/**
* Obtain the direction of <code>+Z</code> before the transformation represented by <code>this</code> matrix is applied.
* <p>
* This method uses the rotation component of the left 3x3 submatrix to obtain the direction
* that is transformed to <code>+Z</code> by <code>this</code> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix4x3f inv = new Matrix4x3f(this).invert();
* inv.transformDirection(dir.set(0, 0, 1)).normalize();
* </pre>
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveZ(Vector3f)} instead.
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+Z</code>
* @return dir
*/
Vector3f positiveZ(Vector3f dir);
/**
* Obtain the direction of <code>+Z</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
* <p>
* This method uses the rotation component of the left 3x3 submatrix to obtain the direction
* that is transformed to <code>+Z</code> by <code>this</code> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix4x3f inv = new Matrix4x3f(this).transpose();
* inv.transformDirection(dir.set(0, 0, 1)).normalize();
* </pre>
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+Z</code>
* @return dir
*/
Vector3f normalizedPositiveZ(Vector3f dir);
/**
* Obtain the direction of <code>+X</code> before the transformation represented by <code>this</code> matrix is applied.
* <p>
* This method uses the rotation component of the left 3x3 submatrix to obtain the direction
* that is transformed to <code>+X</code> by <code>this</code> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix4x3f inv = new Matrix4x3f(this).invert();
* inv.transformDirection(dir.set(1, 0, 0)).normalize();
* </pre>
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveX(Vector3f)} instead.
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+X</code>
* @return dir
*/
Vector3f positiveX(Vector3f dir);
/**
* Obtain the direction of <code>+X</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
* <p>
* This method uses the rotation component of the left 3x3 submatrix to obtain the direction
* that is transformed to <code>+X</code> by <code>this</code> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix4x3f inv = new Matrix4x3f(this).transpose();
* inv.transformDirection(dir.set(1, 0, 0)).normalize();
* </pre>
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+X</code>
* @return dir
*/
Vector3f normalizedPositiveX(Vector3f dir);
/**
* Obtain the direction of <code>+Y</code> before the transformation represented by <code>this</code> matrix is applied.
* <p>
* This method uses the rotation component of the left 3x3 submatrix to obtain the direction
* that is transformed to <code>+Y</code> by <code>this</code> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix4x3f inv = new Matrix4x3f(this).invert();
* inv.transformDirection(dir.set(0, 1, 0)).normalize();
* </pre>
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveY(Vector3f)} instead.
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+Y</code>
* @return dir
*/
Vector3f positiveY(Vector3f dir);
/**
* Obtain the direction of <code>+Y</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
* <p>
* This method uses the rotation component of the left 3x3 submatrix to obtain the direction
* that is transformed to <code>+Y</code> by <code>this</code> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix4x3f inv = new Matrix4x3f(this).transpose();
* inv.transformDirection(dir.set(0, 1, 0)).normalize();
* </pre>
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+Y</code>
* @return dir
*/
Vector3f normalizedPositiveY(Vector3f dir);
/**
* Obtain the position that gets transformed to the origin by <code>this</code> matrix.
* This can be used to get the position of the "camera" from a given <i>view</i> transformation matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix4x3f inv = new Matrix4x3f(this).invert();
* inv.transformPosition(origin.set(0, 0, 0));
* </pre>
*
* @param origin
* will hold the position transformed to the origin
* @return origin
*/
Vector3f origin(Vector3f origin);
/**
* Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation
* <code>x*a + y*b + z*c + d = 0</code> as if casting a shadow from a given light position/direction <code>light</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>light.w</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
* shadow projection will be applied first!
* <p>
* Reference: <a href="ftp://ftp.sgi.com/opengl/contrib/blythe/advanced99/notes/node192.html">ftp.sgi.com</a>
*
* @param light
* the light's vector
* @param a
* the x factor in the plane equation
* @param b
* the y factor in the plane equation
* @param c
* the z factor in the plane equation
* @param d
* the constant in the plane equation
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f shadow(Vector4fc light, float a, float b, float c, float d, Matrix4x3f dest);
/**
* Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equation
* <code>x*a + y*b + z*c + d = 0</code> as if casting a shadow from a given light position/direction <code>(lightX, lightY, lightZ, lightW)</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>lightW</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
* shadow projection will be applied first!
* <p>
* Reference: <a href="ftp://ftp.sgi.com/opengl/contrib/blythe/advanced99/notes/node192.html">ftp.sgi.com</a>
*
* @param lightX
* the x-component of the light's vector
* @param lightY
* the y-component of the light's vector
* @param lightZ
* the z-component of the light's vector
* @param lightW
* the w-component of the light's vector
* @param a
* the x factor in the plane equation
* @param b
* the y factor in the plane equation
* @param c
* the z factor in the plane equation
* @param d
* the constant in the plane equation
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, float a, float b, float c, float d, Matrix4x3f dest);
/**
* Apply a projection transformation to this matrix that projects onto the plane with the general plane equation
* <code>y = 0</code> as if casting a shadow from a given light position/direction <code>light</code>
* and store the result in <code>dest</code>.
* <p>
* Before the shadow projection is applied, the plane is transformed via the specified <code>planeTransformation</code>.
* <p>
* If <code>light.w</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
* shadow projection will be applied first!
*
* @param light
* the light's vector
* @param planeTransform
* the transformation to transform the implied plane <code>y = 0</code> before applying the projection
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f shadow(Vector4fc light, Matrix4x3fc planeTransform, Matrix4x3f dest);
/**
* Apply a projection transformation to this matrix that projects onto the plane with the general plane equation
* <code>y = 0</code> as if casting a shadow from a given light position/direction <code>(lightX, lightY, lightZ, lightW)</code>
* and store the result in <code>dest</code>.
* <p>
* Before the shadow projection is applied, the plane is transformed via the specified <code>planeTransformation</code>.
* <p>
* If <code>lightW</code> is <code>0.0</code> the light is being treated as a directional light; if it is <code>1.0</code> it is a point light.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the shadow matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
* shadow projection will be applied first!
*
* @param lightX
* the x-component of the light vector
* @param lightY
* the y-component of the light vector
* @param lightZ
* the z-component of the light vector
* @param lightW
* the w-component of the light vector
* @param planeTransform
* the transformation to transform the implied plane <code>y = 0</code> before applying the projection
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f shadow(float lightX, float lightY, float lightZ, float lightW, Matrix4x3fc planeTransform, Matrix4x3f dest);
/**
* Apply a picking transformation to this matrix using the given window coordinates <code>(x, y)</code> as the pick center
* and the given <code>(width, height)</code> as the size of the picking region in window coordinates, and store the result
* in <code>dest</code>.
*
* @param x
* the x coordinate of the picking region center in window coordinates
* @param y
* the y coordinate of the picking region center in window coordinates
* @param width
* the width of the picking region in window coordinates
* @param height
* the height of the picking region in window coordinates
* @param viewport
* the viewport described by <code>[x, y, width, height]</code>
* @param dest
* the destination matrix, which will hold the result
* @return dest
*/
Matrix4x3f pick(float x, float y, float width, float height, int[] viewport, Matrix4x3f dest);
/**
* Apply an arcball view transformation to this matrix with the given <code>radius</code> and center <code>(centerX, centerY, centerZ)</code>
* position of the arcball and the specified X and Y rotation angles, and store the result in <code>dest</code>.
* <p>
* This method is equivalent to calling: <code>translate(0, 0, -radius, dest).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)</code>
*
* @param radius
* the arcball radius
* @param centerX
* the x coordinate of the center position of the arcball
* @param centerY
* the y coordinate of the center position of the arcball
* @param centerZ
* the z coordinate of the center position of the arcball
* @param angleX
* the rotation angle around the X axis in radians
* @param angleY
* the rotation angle around the Y axis in radians
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f arcball(float radius, float centerX, float centerY, float centerZ, float angleX, float angleY, Matrix4x3f dest);
/**
* Apply an arcball view transformation to this matrix with the given <code>radius</code> and <code>center</code>
* position of the arcball and the specified X and Y rotation angles, and store the result in <code>dest</code>.
* <p>
* This method is equivalent to calling: <code>translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)</code>
*
* @param radius
* the arcball radius
* @param center
* the center position of the arcball
* @param angleX
* the rotation angle around the X axis in radians
* @param angleY
* the rotation angle around the Y axis in radians
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f arcball(float radius, Vector3fc center, float angleX, float angleY, Matrix4x3f dest);
/**
* Transform the axis-aligned box given as the minimum corner <code>(minX, minY, minZ)</code> and maximum corner <code>(maxX, maxY, maxZ)</code>
* by <code>this</code> matrix and compute the axis-aligned box of the result whose minimum corner is stored in <code>outMin</code>
* and maximum corner stored in <code>outMax</code>.
* <p>
* Reference: <a href="http://dev.theomader.com/transform-bounding-boxes/">http://dev.theomader.com</a>
*
* @param minX
* the x coordinate of the minimum corner of the axis-aligned box
* @param minY
* the y coordinate of the minimum corner of the axis-aligned box
* @param minZ
* the z coordinate of the minimum corner of the axis-aligned box
* @param maxX
* the x coordinate of the maximum corner of the axis-aligned box
* @param maxY
* the y coordinate of the maximum corner of the axis-aligned box
* @param maxZ
* the y coordinate of the maximum corner of the axis-aligned box
* @param outMin
* will hold the minimum corner of the resulting axis-aligned box
* @param outMax
* will hold the maximum corner of the resulting axis-aligned box
* @return this
*/
Matrix4x3f transformAab(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, Vector3f outMin, Vector3f outMax);
/**
* Transform the axis-aligned box given as the minimum corner <code>min</code> and maximum corner <code>max</code>
* by <code>this</code> matrix and compute the axis-aligned box of the result whose minimum corner is stored in <code>outMin</code>
* and maximum corner stored in <code>outMax</code>.
*
* @param min
* the minimum corner of the axis-aligned box
* @param max
* the maximum corner of the axis-aligned box
* @param outMin
* will hold the minimum corner of the resulting axis-aligned box
* @param outMax
* will hold the maximum corner of the resulting axis-aligned box
* @return this
*/
Matrix4x3f transformAab(Vector3fc min, Vector3fc max, Vector3f outMin, Vector3f outMax);
/**
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
* then the result is <code>other</code>.
*
* @param other
* the other matrix
* @param t
* the interpolation factor between 0.0 and 1.0
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f lerp(Matrix4x3fc other, float t, Matrix4x3f dest);
/**
* Apply a model transformation to this matrix for a right-handed coordinate system,
* that aligns the local <code>+Z</code> axis with <code>dir</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
* then the new matrix will be <code>M * L</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
* the lookat transformation will be applied first!
* <p>
* This method is equivalent to calling: <code>mul(new Matrix4x3f().lookAt(new Vector3f(), new Vector3f(dir).negate(), up).invert(), dest)</code>
*
* @see #rotateTowards(float, float, float, float, float, float, Matrix4x3f)
*
* @param dir
* the direction to rotate towards
* @param up
* the up vector
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotateTowards(Vector3fc dir, Vector3fc up, Matrix4x3f dest);
/**
* Apply a model transformation to this matrix for a right-handed coordinate system,
* that aligns the local <code>+Z</code> axis with <code>(dirX, dirY, dirZ)</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the lookat matrix,
* then the new matrix will be <code>M * L</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * L * v</code>,
* the lookat transformation will be applied first!
* <p>
* This method is equivalent to calling: <code>mul(new Matrix4x3f().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)</code>
*
* @see #rotateTowards(Vector3fc, Vector3fc, Matrix4x3f)
*
* @param dirX
* the x-coordinate of the direction to rotate towards
* @param dirY
* the y-coordinate of the direction to rotate towards
* @param dirZ
* the z-coordinate of the direction to rotate towards
* @param upX
* the x-coordinate of the up vector
* @param upY
* the y-coordinate of the up vector
* @param upZ
* the z-coordinate of the up vector
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f rotateTowards(float dirX, float dirY, float dirZ, float upX, float upY, float upZ, Matrix4x3f dest);
/**
* Extract the Euler angles from the rotation represented by the left 3x3 submatrix of <code>this</code>
* and store the extracted Euler angles in <code>dest</code>.
* <p>
* This method assumes that the left 3x3 submatrix of <code>this</code> only represents a rotation without scaling.
* <p>
* The Euler angles are always returned as the angle around X in the {@link Vector3f#x} field, the angle around Y in the {@link Vector3f#y}
* field and the angle around Z in the {@link Vector3f#z} field of the supplied {@link Vector3f} instance.
* <p>
* Note that the returned Euler angles must be applied in the order <code>X * Y * Z</code> to obtain the identical matrix.
* This means that calling {@link Matrix4x3fc#rotateXYZ(float, float, float, Matrix4x3f)} using the obtained Euler angles will yield
* the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrix
* <code>m2</code> should be identical to <code>m</code> (disregarding possible floating-point inaccuracies).
* <pre>
* Matrix4x3f m = ...; // &lt;- matrix only representing rotation
* Matrix4x3f n = new Matrix4x3f();
* n.rotateXYZ(m.getEulerAnglesXYZ(new Vector3f()));
* </pre>
* <p>
* Reference: <a href="http://nghiaho.com/?page_id=846">http://nghiaho.com/</a>
*
* @param dest
* will hold the extracted Euler angles
* @return dest
*/
Vector3f getEulerAnglesXYZ(Vector3f dest);
/**
* Extract the Euler angles from the rotation represented by the left 3x3 submatrix of <code>this</code>
* and store the extracted Euler angles in <code>dest</code>.
* <p>
* This method assumes that the left 3x3 submatrix of <code>this</code> only represents a rotation without scaling.
* <p>
* The Euler angles are always returned as the angle around X in the {@link Vector3f#x} field, the angle around Y in the {@link Vector3f#y}
* field and the angle around Z in the {@link Vector3f#z} field of the supplied {@link Vector3f} instance.
* <p>
* Note that the returned Euler angles must be applied in the order <code>Z * Y * X</code> to obtain the identical matrix.
* This means that calling {@link Matrix4x3fc#rotateZYX(float, float, float, Matrix4x3f)} using the obtained Euler angles will yield
* the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrix
* <code>m2</code> should be identical to <code>m</code> (disregarding possible floating-point inaccuracies).
* <pre>
* Matrix4x3f m = ...; // &lt;- matrix only representing rotation
* Matrix4x3f n = new Matrix4x3f();
* n.rotateZYX(m.getEulerAnglesZYX(new Vector3f()));
* </pre>
* <p>
* Reference: <a href="http://nghiaho.com/?page_id=846">http://nghiaho.com/</a>
*
* @param dest
* will hold the extracted Euler angles
* @return dest
*/
Vector3f getEulerAnglesZYX(Vector3f dest);
/**
* Apply an oblique projection transformation to this matrix with the given values for <code>a</code> and
* <code>b</code> and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the oblique transformation matrix,
* then the new matrix will be <code>M * O</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
* oblique transformation will be applied first!
* <p>
* The oblique transformation is defined as:
* <pre>
* x' = x + a*z
* y' = y + a*z
* z' = z
* </pre>
* or in matrix form:
* <pre>
* 1 0 a 0
* 0 1 b 0
* 0 0 1 0
* </pre>
*
* @param a
* the value for the z factor that applies to x
* @param b
* the value for the z factor that applies to y
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f obliqueZ(float a, float b, Matrix4x3f dest);
/**
* Apply a transformation to this matrix to ensure that the local Y axis (as obtained by {@link #positiveY(Vector3f)})
* will be coplanar to the plane spanned by the local Z axis (as obtained by {@link #positiveZ(Vector3f)}) and the
* given vector <code>up</code>, and store the result in <code>dest</code>.
* <p>
* This effectively ensures that the resulting matrix will be equal to the one obtained from calling
* {@link Matrix4f#setLookAt(Vector3fc, Vector3fc, Vector3fc)} with the current
* local origin of this matrix (as obtained by {@link #origin(Vector3f)}), the sum of this position and the
* negated local Z axis as well as the given vector <code>up</code>.
*
* @param up
* the up vector
* @param dest
* will hold the result
* @return this
*/
Matrix4x3f withLookAtUp(Vector3fc up, Matrix4x3f dest);
/**
* Apply a transformation to this matrix to ensure that the local Y axis (as obtained by {@link #positiveY(Vector3f)})
* will be coplanar to the plane spanned by the local Z axis (as obtained by {@link #positiveZ(Vector3f)}) and the
* given vector <code>(upX, upY, upZ)</code>, and store the result in <code>dest</code>.
* <p>
* This effectively ensures that the resulting matrix will be equal to the one obtained from calling
* {@link Matrix4f#setLookAt(float, float, float, float, float, float, float, float, float)} called with the current
* local origin of this matrix (as obtained by {@link #origin(Vector3f)}), the sum of this position and the
* negated local Z axis as well as the given vector <code>(upX, upY, upZ)</code>.
*
* @param upX
* the x coordinate of the up vector
* @param upY
* the y coordinate of the up vector
* @param upZ
* the z coordinate of the up vector
* @param dest
* will hold the result
* @return this
*/
Matrix4x3f withLookAtUp(float upX, float upY, float upZ, Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 1 0 0 0
* 0 0 1 0
* 0 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapXZY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 1 0 0 0
* 0 0 -1 0
* 0 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapXZnY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 1 0 0 0
* 0 -1 0 0
* 0 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapXnYnZ(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 1 0 0 0
* 0 0 1 0
* 0 -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapXnZY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 1 0 0 0
* 0 0 -1 0
* 0 -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapXnZnY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0 0
* 1 0 0 0
* 0 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapYXZ(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0 0
* 1 0 0 0
* 0 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapYXnZ(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1 0
* 1 0 0 0
* 0 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapYZX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1 0
* 1 0 0 0
* 0 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapYZnX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0 0
* 1 0 0 0
* 0 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapYnXZ(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0 0
* 1 0 0 0
* 0 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapYnXnZ(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1 0
* 1 0 0 0
* 0 -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapYnZX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1 0
* 1 0 0 0
* 0 -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapYnZnX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0 0
* 0 0 1 0
* 1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapZXY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0 0
* 0 0 -1 0
* 1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapZXnY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1 0
* 0 1 0 0
* 1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapZYX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1 0
* 0 1 0 0
* 1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapZYnX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0 0
* 0 0 1 0
* 1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapZnXY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0 0
* 0 0 -1 0
* 1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapZnXnY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1 0
* 0 -1 0 0
* 1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapZnYX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1 0
* 0 -1 0 0
* 1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapZnYnX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0 0
* 0 1 0 0
* 0 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnXYnZ(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0 0
* 0 0 1 0
* 0 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnXZY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0 0
* 0 0 -1 0
* 0 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnXZnY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0 0
* 0 -1 0 0
* 0 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnXnYZ(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0 0
* 0 -1 0 0
* 0 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnXnYnZ(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0 0
* 0 0 1 0
* 0 -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnXnZY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0 0
* 0 0 -1 0
* 0 -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnXnZnY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0 0
* -1 0 0 0
* 0 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnYXZ(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0 0
* -1 0 0 0
* 0 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnYXnZ(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1 0
* -1 0 0 0
* 0 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnYZX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1 0
* -1 0 0 0
* 0 1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnYZnX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0 0
* -1 0 0 0
* 0 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnYnXZ(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0 0
* -1 0 0 0
* 0 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnYnXnZ(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1 0
* -1 0 0 0
* 0 -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnYnZX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1 0
* -1 0 0 0
* 0 -1 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnYnZnX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0 0
* 0 0 1 0
* -1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnZXY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 1 0 0
* 0 0 -1 0
* -1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnZXnY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1 0
* 0 1 0 0
* -1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnZYX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1 0
* 0 1 0 0
* -1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnZYnX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0 0
* 0 0 1 0
* -1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnZnXY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 -1 0 0
* 0 0 -1 0
* -1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnZnXnY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 1 0
* 0 -1 0 0
* -1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnZnYX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 0 0 -1 0
* 0 -1 0 0
* -1 0 0 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f mapnZnYnX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* -1 0 0 0
* 0 1 0 0
* 0 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f negateX(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 1 0 0 0
* 0 -1 0 0
* 0 0 1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f negateY(Matrix4x3f dest);
/**
* Multiply <code>this</code> by the matrix
* <pre>
* 1 0 0 0
* 0 1 0 0
* 0 0 -1 0
* </pre>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix4x3f negateZ(Matrix4x3f dest);
/**
* Compare the matrix elements of <code>this</code> matrix with the given matrix using the given <code>delta</code>
* and return whether all of them are equal within a maximum difference of <code>delta</code>.
* <p>
* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap}
* and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those
* data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods.
*
* @param m
* the other matrix
* @param delta
* the allowed maximum difference
* @return <code>true</code> whether all of the matrix elements are equal; <code>false</code> otherwise
*/
boolean equals(Matrix4x3fc m, float delta);
/**
* Determine whether all matrix elements are finite floating-point values, that
* is, they are not {@link Float#isNaN() NaN} and not
* {@link Float#isInfinite() infinity}.
*
* @return {@code true} if all components are finite floating-point values;
* {@code false} otherwise
*/
boolean isFinite();
}