Flywheel/joml/Vector3fc.java
PepperCode1 a42c027b6f Scheme-a-version
- Fix Resources not being closed properly
- Change versioning scheme to match Create
- Add LICENSE to built jar
- Fix mods.toml version sync
- Move JOML code to non-src directory
- Update Gradle
- Organize imports
2022-07-15 00:00:54 -07:00

1090 lines
34 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* The MIT License
*
* Copyright (c) 2016-2021 JOML
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.jozufozu.flywheel.repack.joml;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.util.*;
/**
* Interface to a read-only view of a 3-dimensional vector of single-precision floats.
*
* @author Kai Burjack
*/
public interface Vector3fc {
/**
* @return the value of the x component
*/
float x();
/**
* @return the value of the y component
*/
float y();
/**
* @return the value of the z component
*/
float z();
/**
* Store this vector into the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the vector is stored, use {@link #get(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @see #get(int, FloatBuffer)
*
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
* @see #get(int, FloatBuffer)
*/
FloatBuffer get(FloatBuffer buffer);
/**
* Store this vector into the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
*/
FloatBuffer get(int index, FloatBuffer buffer);
/**
* Store this vector into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the vector is stored, use {@link #get(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @see #get(int, ByteBuffer)
*
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
* @see #get(int, ByteBuffer)
*/
ByteBuffer get(ByteBuffer buffer);
/**
* Store this vector into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this vector in <code>x, y, z</code> order
* @return the passed in buffer
*/
ByteBuffer get(int index, ByteBuffer buffer);
/**
* Store this vector at the given off-heap memory address.
* <p>
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
* <p>
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
*
* @param address
* the off-heap address where to store this vector
* @return this
*/
Vector3fc getToAddress(long address);
/**
* Subtract the supplied vector from this one and store the result in <code>dest</code>.
*
* @param v
* the vector to subtract
* @param dest
* will hold the result
* @return dest
*/
Vector3f sub(Vector3fc v, Vector3f dest);
/**
* Decrement the components of this vector by the given values and store the result in <code>dest</code>.
*
* @param x
* the x component to subtract
* @param y
* the y component to subtract
* @param z
* the z component to subtract
* @param dest
* will hold the result
* @return dest
*/
Vector3f sub(float x, float y, float z, Vector3f dest);
/**
* Add the supplied vector to this one and store the result in <code>dest</code>.
*
* @param v
* the vector to add
* @param dest
* will hold the result
* @return dest
*/
Vector3f add(Vector3fc v, Vector3f dest);
/**
* Increment the components of this vector by the given values and store the result in <code>dest</code>.
*
* @param x
* the x component to add
* @param y
* the y component to add
* @param z
* the z component to add
* @param dest
* will hold the result
* @return dest
*/
Vector3f add(float x, float y, float z, Vector3f dest);
/**
* Add the component-wise multiplication of <code>a * b</code> to this vector
* and store the result in <code>dest</code>.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @param dest
* will hold the result
* @return dest
*/
Vector3f fma(Vector3fc a, Vector3fc b, Vector3f dest);
/**
* Add the component-wise multiplication of <code>a * b</code> to this vector
* and store the result in <code>dest</code>.
*
* @param a
* the first multiplicand
* @param b
* the second multiplicand
* @param dest
* will hold the result
* @return dest
*/
Vector3f fma(float a, Vector3fc b, Vector3f dest);
/**
* Add the component-wise multiplication of <code>this * a</code> to <code>b</code>
* and store the result in <code>dest</code>.
*
* @param a
* the multiplicand
* @param b
* the addend
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulAdd(Vector3fc a, Vector3fc b, Vector3f dest);
/**
* Add the component-wise multiplication of <code>this * a</code> to <code>b</code>
* and store the result in <code>dest</code>.
*
* @param a
* the multiplicand
* @param b
* the addend
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulAdd(float a, Vector3fc b, Vector3f dest);
/**
* Multiply this Vector3f component-wise by another Vector3f and store the result in <code>dest</code>.
*
* @param v
* the vector to multiply by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mul(Vector3fc v, Vector3f dest);
/**
* Divide this Vector3f component-wise by another Vector3f and store the result in <code>dest</code>.
*
* @param v
* the vector to divide by
* @param dest
* will hold the result
* @return dest
*/
Vector3f div(Vector3fc v, Vector3f dest);
/**
* Multiply the given matrix <code>mat</code> with this Vector3f, perform perspective division
* and store the result in <code>dest</code>.
* <p>
* This method uses <code>w=1.0</code> as the fourth vector component.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulProject(Matrix4fc mat, Vector3f dest);
/**
* Multiply the given matrix <code>mat</code> with this Vector3f, perform perspective division
* and store the result in <code>dest</code>.
* <p>
* This method uses the given <code>w</code> as the fourth vector component.
*
* @param mat
* the matrix to multiply this vector by
* @param w
* the w component to use
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulProject(Matrix4fc mat, float w, Vector3f dest);
/**
* Multiply the given matrix with this Vector3f and store the result in <code>dest</code>.
*
* @param mat
* the matrix
* @param dest
* will hold the result
* @return dest
*/
Vector3f mul(Matrix3fc mat, Vector3f dest);
/**
* Multiply the given matrix with this Vector3f and store the result in <code>dest</code>.
*
* @param mat
* the matrix
* @param dest
* will hold the result
* @return dest
*/
Vector3f mul(Matrix3dc mat, Vector3f dest);
/**
* Multiply the given matrix <code>mat</code> with <code>this</code> by assuming a
* third row in the matrix of <code>(0, 0, 1)</code> and store the result in <code>dest</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mul(Matrix3x2fc mat, Vector3f dest);
/**
* Multiply the transpose of the given matrix with this Vector3f and store the result in <code>dest</code>.
*
* @param mat
* the matrix
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulTranspose(Matrix3fc mat, Vector3f dest);
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulPosition(Matrix4fc mat, Vector3f dest);
/**
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulPosition(Matrix4x3fc mat, Vector3f dest);
/**
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix whose transpose to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulTransposePosition(Matrix4fc mat, Vector3f dest);
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>, store the
* result in <code>dest</code> and return the <i>w</i> component of the resulting 4D vector.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the <code>(x, y, z)</code> components of the resulting vector
* @return the <i>w</i> component of the resulting 4D vector after multiplication
*/
float mulPositionW(Matrix4fc mat, Vector3f dest);
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulDirection(Matrix4dc mat, Vector3f dest);
/**
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulDirection(Matrix4fc mat, Vector3f dest);
/**
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulDirection(Matrix4x3fc mat, Vector3f dest);
/**
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
* result in <code>dest</code>.
* <p>
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
*
* @param mat
* the matrix whose transpose to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mulTransposeDirection(Matrix4fc mat, Vector3f dest);
/**
* Multiply all components of this {@link Vector3f} by the given scalar
* value and store the result in <code>dest</code>.
*
* @param scalar
* the scalar to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mul(float scalar, Vector3f dest);
/**
* Multiply the components of this Vector3f by the given scalar values and store the result in <code>dest</code>.
*
* @param x
* the x component to multiply this vector by
* @param y
* the y component to multiply this vector by
* @param z
* the z component to multiply this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f mul(float x, float y, float z, Vector3f dest);
/**
* Divide all components of this {@link Vector3f} by the given scalar
* value and store the result in <code>dest</code>.
*
* @param scalar
* the scalar to divide by
* @param dest
* will hold the result
* @return dest
*/
Vector3f div(float scalar, Vector3f dest);
/**
* Divide the components of this Vector3f by the given scalar values and store the result in <code>dest</code>.
*
* @param x
* the x component to divide this vector by
* @param y
* the y component to divide this vector by
* @param z
* the z component to divide this vector by
* @param dest
* will hold the result
* @return dest
*/
Vector3f div(float x, float y, float z, Vector3f dest);
/**
* Rotate this vector by the given quaternion <code>quat</code> and store the result in <code>dest</code>.
*
* @see Quaternionfc#transform(Vector3f)
*
* @param quat
* the quaternion to rotate this vector
* @param dest
* will hold the result
* @return dest
*/
Vector3f rotate(Quaternionfc quat, Vector3f dest);
/**
* Compute the quaternion representing a rotation of <code>this</code> vector to point along <code>toDir</code>
* and store the result in <code>dest</code>.
* <p>
* Because there can be multiple possible rotations, this method chooses the one with the shortest arc.
*
* @see Quaternionf#rotationTo(Vector3fc, Vector3fc)
*
* @param toDir
* the destination direction
* @param dest
* will hold the result
* @return dest
*/
Quaternionf rotationTo(Vector3fc toDir, Quaternionf dest);
/**
* Compute the quaternion representing a rotation of <code>this</code> vector to point along <code>(toDirX, toDirY, toDirZ)</code>
* and store the result in <code>dest</code>.
* <p>
* Because there can be multiple possible rotations, this method chooses the one with the shortest arc.
*
* @see Quaternionf#rotationTo(float, float, float, float, float, float)
*
* @param toDirX
* the x coordinate of the destination direction
* @param toDirY
* the y coordinate of the destination direction
* @param toDirZ
* the z coordinate of the destination direction
* @param dest
* will hold the result
* @return dest
*/
Quaternionf rotationTo(float toDirX, float toDirY, float toDirZ, Quaternionf dest);
/**
* Rotate this vector the specified radians around the given rotation axis and store the result
* into <code>dest</code>.
*
* @param angle
* the angle in radians
* @param aX
* the x component of the rotation axis
* @param aY
* the y component of the rotation axis
* @param aZ
* the z component of the rotation axis
* @param dest
* will hold the result
* @return dest
*/
Vector3f rotateAxis(float angle, float aX, float aY, float aZ, Vector3f dest);
/**
* Rotate this vector the specified radians around the X axis and store the result
* into <code>dest</code>.
*
* @param angle
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Vector3f rotateX(float angle, Vector3f dest);
/**
* Rotate this vector the specified radians around the Y axis and store the result
* into <code>dest</code>.
*
* @param angle
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Vector3f rotateY(float angle, Vector3f dest);
/**
* Rotate this vector the specified radians around the Z axis and store the result
* into <code>dest</code>.
*
* @param angle
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Vector3f rotateZ(float angle, Vector3f dest);
/**
* Return the length squared of this vector.
*
* @return the length squared
*/
float lengthSquared();
/**
* Return the length of this vector.
*
* @return the length
*/
float length();
/**
* Normalize this vector and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f normalize(Vector3f dest);
/**
* Scale this vector to have the given length and store the result in <code>dest</code>.
*
* @param length
* the desired length
* @param dest
* will hold the result
* @return dest
*/
Vector3f normalize(float length, Vector3f dest);
/**
* Compute the cross product of this vector and <code>v</code> and store the result in <code>dest</code>.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3f cross(Vector3fc v, Vector3f dest);
/**
* Compute the cross product of this vector and <code>(x, y, z)</code> and store the result in <code>dest</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3f cross(float x, float y, float z, Vector3f dest);
/**
* Return the distance between this Vector and <code>v</code>.
*
* @param v
* the other vector
* @return the distance
*/
float distance(Vector3fc v);
/**
* Return the distance between <code>this</code> vector and <code>(x, y, z)</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return the euclidean distance
*/
float distance(float x, float y, float z);
/**
* Return the square of the distance between this vector and <code>v</code>.
*
* @param v
* the other vector
* @return the squared of the distance
*/
float distanceSquared(Vector3fc v);
/**
* Return the square of the distance between <code>this</code> vector and <code>(x, y, z)</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return the square of the distance
*/
float distanceSquared(float x, float y, float z);
/**
* Return the dot product of this vector and the supplied vector.
*
* @param v
* the other vector
* @return the dot product
*/
float dot(Vector3fc v);
/**
* Return the dot product of this vector and the vector <code>(x, y, z)</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @return the dot product
*/
float dot(float x, float y, float z);
/**
* Return the cosine of the angle between this vector and the supplied vector. Use this instead of Math.cos(this.angle(v)).
*
* @see #angle(Vector3fc)
*
* @param v
* the other vector
* @return the cosine of the angle
*/
float angleCos(Vector3fc v);
/**
* Return the angle between this vector and the supplied vector.
*
* @see #angleCos(Vector3fc)
*
* @param v
* the other vector
* @return the angle, in radians
*/
float angle(Vector3fc v);
/**
* Return the signed angle between this vector and the supplied vector with
* respect to the plane with the given normal vector <code>n</code>.
*
* @see #angleCos(Vector3fc)
*
* @param v
* the other vector
* @param n
* the plane's normal vector
* @return the angle, in radians
*/
float angleSigned(Vector3fc v, Vector3fc n);
/**
* Return the signed angle between this vector and the supplied vector with
* respect to the plane with the given normal vector <code>(nx, ny, nz)</code>.
*
* @param x
* the x coordinate of the other vector
* @param y
* the y coordinate of the other vector
* @param z
* the z coordinate of the other vector
* @param nx
* the x coordinate of the plane's normal vector
* @param ny
* the y coordinate of the plane's normal vector
* @param nz
* the z coordinate of the plane's normal vector
* @return the angle, in radians
*/
float angleSigned(float x, float y, float z, float nx, float ny, float nz);
/**
* Set the components of <code>dest</code> to be the component-wise minimum of this and the other vector.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3f min(Vector3fc v, Vector3f dest);
/**
* Set the components of <code>dest</code> to be the component-wise maximum of this and the other vector.
*
* @param v
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3f max(Vector3fc v, Vector3f dest);
/**
* Negate this vector and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f negate(Vector3f dest);
/**
* Compute the absolute values of the individual components of <code>this</code> and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f absolute(Vector3f dest);
/**
* Reflect this vector about the given <code>normal</code> vector and store the result in <code>dest</code>.
*
* @param normal
* the vector to reflect about
* @param dest
* will hold the result
* @return dest
*/
Vector3f reflect(Vector3fc normal, Vector3f dest);
/**
* Reflect this vector about the given normal vector and store the result in <code>dest</code>.
*
* @param x
* the x component of the normal
* @param y
* the y component of the normal
* @param z
* the z component of the normal
* @param dest
* will hold the result
* @return dest
*/
Vector3f reflect(float x, float y, float z, Vector3f dest);
/**
* Compute the half vector between this and the other vector and store the result in <code>dest</code>.
*
* @param other
* the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3f half(Vector3fc other, Vector3f dest);
/**
* Compute the half vector between this and the vector <code>(x, y, z)</code>
* and store the result in <code>dest</code>.
*
* @param x
* the x component of the other vector
* @param y
* the y component of the other vector
* @param z
* the z component of the other vector
* @param dest
* will hold the result
* @return dest
*/
Vector3f half(float x, float y, float z, Vector3f dest);
/**
* Compute a smooth-step (i.e. hermite with zero tangents) interpolation
* between <code>this</code> vector and the given vector <code>v</code> and
* store the result in <code>dest</code>.
*
* @param v
* the other vector
* @param t
* the interpolation factor, within <code>[0..1]</code>
* @param dest
* will hold the result
* @return dest
*/
Vector3f smoothStep(Vector3fc v, float t, Vector3f dest);
/**
* Compute a hermite interpolation between <code>this</code> vector with its
* associated tangent <code>t0</code> and the given vector <code>v</code>
* with its tangent <code>t1</code> and store the result in
* <code>dest</code>.
*
* @param t0
* the tangent of <code>this</code> vector
* @param v1
* the other vector
* @param t1
* the tangent of the other vector
* @param t
* the interpolation factor, within <code>[0..1]</code>
* @param dest
* will hold the result
* @return dest
*/
Vector3f hermite(Vector3fc t0, Vector3fc v1, Vector3fc t1, float t, Vector3f dest);
/**
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
* and store the result in <code>dest</code>.
* <p>
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
* then the result is <code>other</code>.
*
* @param other
* the other vector
* @param t
* the interpolation factor between 0.0 and 1.0
* @param dest
* will hold the result
* @return dest
*/
Vector3f lerp(Vector3fc other, float t, Vector3f dest);
/**
* Get the value of the specified component of this vector.
*
* @param component
* the component, within <code>[0..2]</code>
* @return the value
* @throws IllegalArgumentException if <code>component</code> is not within <code>[0..2]</code>
*/
float get(int component) throws IllegalArgumentException;
/**
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector
* using the given {@link RoundingMode}.
*
* @param mode
* the {@link RoundingMode} to use
* @param dest
* will hold the result
* @return dest
*/
Vector3i get(int mode, Vector3i dest);
/**
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f get(Vector3f dest);
/**
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3d get(Vector3d dest);
/**
* Determine the component with the biggest absolute value.
*
* @return the component index, within <code>[0..2]</code>
*/
int maxComponent();
/**
* Determine the component with the smallest (towards zero) absolute value.
*
* @return the component index, within <code>[0..2]</code>
*/
int minComponent();
/**
* Transform <code>this</code> vector so that it is orthogonal to the given vector <code>v</code>, normalize the result and store it into <code>dest</code>.
* <p>
* Reference: <a href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">GramSchmidt process</a>
*
* @param v
* the reference vector which the result should be orthogonal to
* @param dest
* will hold the result
* @return dest
*/
Vector3f orthogonalize(Vector3fc v, Vector3f dest);
/**
* Transform <code>this</code> vector so that it is orthogonal to the given unit vector <code>v</code>, normalize the result and store it into <code>dest</code>.
* <p>
* The vector <code>v</code> is assumed to be a {@link #normalize(Vector3f) unit} vector.
* <p>
* Reference: <a href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">GramSchmidt process</a>
*
* @param v
* the reference unit vector which the result should be orthogonal to
* @param dest
* will hold the result
* @return dest
*/
Vector3f orthogonalizeUnit(Vector3fc v, Vector3f dest);
/**
* Compute for each component of this vector the largest (closest to positive
* infinity) {@code float} value that is less than or equal to that
* component and is equal to a mathematical integer and store the result in
* <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f floor(Vector3f dest);
/**
* Compute for each component of this vector the smallest (closest to negative
* infinity) {@code float} value that is greater than or equal to that
* component and is equal to a mathematical integer and store the result in
* <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f ceil(Vector3f dest);
/**
* Compute for each component of this vector the closest float that is equal to
* a mathematical integer, with ties rounding to positive infinity and store
* the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Vector3f round(Vector3f dest);
/**
* Determine whether all components are finite floating-point values, that
* is, they are not {@link Float#isNaN() NaN} and not
* {@link Float#isInfinite() infinity}.
*
* @return {@code true} if all components are finite floating-point values;
* {@code false} otherwise
*/
boolean isFinite();
/**
* Compare the vector components of <code>this</code> vector with the given vector using the given <code>delta</code>
* and return whether all of them are equal within a maximum difference of <code>delta</code>.
* <p>
* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap}
* and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those
* data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods.
*
* @param v
* the other vector
* @param delta
* the allowed maximum difference
* @return <code>true</code> whether all of the vector components are equal; <code>false</code> otherwise
*/
boolean equals(Vector3fc v, float delta);
/**
* Compare the vector components of <code>this</code> vector with the given <code>(x, y, z)</code>
* and return whether all of them are equal.
*
* @param x
* the x component to compare to
* @param y
* the y component to compare to
* @param z
* the z component to compare to
* @return <code>true</code> if all the vector components are equal
*/
boolean equals(float x, float y, float z);
}