mirror of
https://github.com/Jozufozu/Flywheel.git
synced 2024-11-10 12:34:11 +01:00
a42c027b6f
- Fix Resources not being closed properly - Change versioning scheme to match Create - Add LICENSE to built jar - Fix mods.toml version sync - Move JOML code to non-src directory - Update Gradle - Organize imports
1090 lines
34 KiB
Java
1090 lines
34 KiB
Java
/*
|
||
* The MIT License
|
||
*
|
||
* Copyright (c) 2016-2021 JOML
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
* of this software and associated documentation files (the "Software"), to deal
|
||
* in the Software without restriction, including without limitation the rights
|
||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
* copies of the Software, and to permit persons to whom the Software is
|
||
* furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice shall be included in
|
||
* all copies or substantial portions of the Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
* THE SOFTWARE.
|
||
*/
|
||
package com.jozufozu.flywheel.repack.joml;
|
||
|
||
import java.nio.ByteBuffer;
|
||
import java.nio.FloatBuffer;
|
||
import java.util.*;
|
||
|
||
/**
|
||
* Interface to a read-only view of a 3-dimensional vector of single-precision floats.
|
||
*
|
||
* @author Kai Burjack
|
||
*/
|
||
public interface Vector3fc {
|
||
|
||
/**
|
||
* @return the value of the x component
|
||
*/
|
||
float x();
|
||
|
||
/**
|
||
* @return the value of the y component
|
||
*/
|
||
float y();
|
||
|
||
/**
|
||
* @return the value of the z component
|
||
*/
|
||
float z();
|
||
|
||
/**
|
||
* Store this vector into the supplied {@link FloatBuffer} at the current
|
||
* buffer {@link FloatBuffer#position() position}.
|
||
* <p>
|
||
* This method will not increment the position of the given FloatBuffer.
|
||
* <p>
|
||
* In order to specify the offset into the FloatBuffer at which
|
||
* the vector is stored, use {@link #get(int, FloatBuffer)}, taking
|
||
* the absolute position as parameter.
|
||
*
|
||
* @see #get(int, FloatBuffer)
|
||
*
|
||
* @param buffer
|
||
* will receive the values of this vector in <code>x, y, z</code> order
|
||
* @return the passed in buffer
|
||
* @see #get(int, FloatBuffer)
|
||
*/
|
||
FloatBuffer get(FloatBuffer buffer);
|
||
|
||
/**
|
||
* Store this vector into the supplied {@link FloatBuffer} starting at the specified
|
||
* absolute buffer position/index.
|
||
* <p>
|
||
* This method will not increment the position of the given FloatBuffer.
|
||
*
|
||
* @param index
|
||
* the absolute position into the FloatBuffer
|
||
* @param buffer
|
||
* will receive the values of this vector in <code>x, y, z</code> order
|
||
* @return the passed in buffer
|
||
*/
|
||
FloatBuffer get(int index, FloatBuffer buffer);
|
||
|
||
/**
|
||
* Store this vector into the supplied {@link ByteBuffer} at the current
|
||
* buffer {@link ByteBuffer#position() position}.
|
||
* <p>
|
||
* This method will not increment the position of the given ByteBuffer.
|
||
* <p>
|
||
* In order to specify the offset into the ByteBuffer at which
|
||
* the vector is stored, use {@link #get(int, ByteBuffer)}, taking
|
||
* the absolute position as parameter.
|
||
*
|
||
* @see #get(int, ByteBuffer)
|
||
*
|
||
* @param buffer
|
||
* will receive the values of this vector in <code>x, y, z</code> order
|
||
* @return the passed in buffer
|
||
* @see #get(int, ByteBuffer)
|
||
*/
|
||
ByteBuffer get(ByteBuffer buffer);
|
||
|
||
/**
|
||
* Store this vector into the supplied {@link ByteBuffer} starting at the specified
|
||
* absolute buffer position/index.
|
||
* <p>
|
||
* This method will not increment the position of the given ByteBuffer.
|
||
*
|
||
* @param index
|
||
* the absolute position into the ByteBuffer
|
||
* @param buffer
|
||
* will receive the values of this vector in <code>x, y, z</code> order
|
||
* @return the passed in buffer
|
||
*/
|
||
ByteBuffer get(int index, ByteBuffer buffer);
|
||
|
||
/**
|
||
* Store this vector at the given off-heap memory address.
|
||
* <p>
|
||
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
|
||
* <p>
|
||
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
|
||
*
|
||
* @param address
|
||
* the off-heap address where to store this vector
|
||
* @return this
|
||
*/
|
||
Vector3fc getToAddress(long address);
|
||
|
||
/**
|
||
* Subtract the supplied vector from this one and store the result in <code>dest</code>.
|
||
*
|
||
* @param v
|
||
* the vector to subtract
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f sub(Vector3fc v, Vector3f dest);
|
||
|
||
/**
|
||
* Decrement the components of this vector by the given values and store the result in <code>dest</code>.
|
||
*
|
||
* @param x
|
||
* the x component to subtract
|
||
* @param y
|
||
* the y component to subtract
|
||
* @param z
|
||
* the z component to subtract
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f sub(float x, float y, float z, Vector3f dest);
|
||
|
||
/**
|
||
* Add the supplied vector to this one and store the result in <code>dest</code>.
|
||
*
|
||
* @param v
|
||
* the vector to add
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f add(Vector3fc v, Vector3f dest);
|
||
|
||
/**
|
||
* Increment the components of this vector by the given values and store the result in <code>dest</code>.
|
||
*
|
||
* @param x
|
||
* the x component to add
|
||
* @param y
|
||
* the y component to add
|
||
* @param z
|
||
* the z component to add
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f add(float x, float y, float z, Vector3f dest);
|
||
|
||
/**
|
||
* Add the component-wise multiplication of <code>a * b</code> to this vector
|
||
* and store the result in <code>dest</code>.
|
||
*
|
||
* @param a
|
||
* the first multiplicand
|
||
* @param b
|
||
* the second multiplicand
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f fma(Vector3fc a, Vector3fc b, Vector3f dest);
|
||
|
||
/**
|
||
* Add the component-wise multiplication of <code>a * b</code> to this vector
|
||
* and store the result in <code>dest</code>.
|
||
*
|
||
* @param a
|
||
* the first multiplicand
|
||
* @param b
|
||
* the second multiplicand
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f fma(float a, Vector3fc b, Vector3f dest);
|
||
|
||
/**
|
||
* Add the component-wise multiplication of <code>this * a</code> to <code>b</code>
|
||
* and store the result in <code>dest</code>.
|
||
*
|
||
* @param a
|
||
* the multiplicand
|
||
* @param b
|
||
* the addend
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mulAdd(Vector3fc a, Vector3fc b, Vector3f dest);
|
||
|
||
/**
|
||
* Add the component-wise multiplication of <code>this * a</code> to <code>b</code>
|
||
* and store the result in <code>dest</code>.
|
||
*
|
||
* @param a
|
||
* the multiplicand
|
||
* @param b
|
||
* the addend
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mulAdd(float a, Vector3fc b, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply this Vector3f component-wise by another Vector3f and store the result in <code>dest</code>.
|
||
*
|
||
* @param v
|
||
* the vector to multiply by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mul(Vector3fc v, Vector3f dest);
|
||
|
||
/**
|
||
* Divide this Vector3f component-wise by another Vector3f and store the result in <code>dest</code>.
|
||
*
|
||
* @param v
|
||
* the vector to divide by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f div(Vector3fc v, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the given matrix <code>mat</code> with this Vector3f, perform perspective division
|
||
* and store the result in <code>dest</code>.
|
||
* <p>
|
||
* This method uses <code>w=1.0</code> as the fourth vector component.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mulProject(Matrix4fc mat, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the given matrix <code>mat</code> with this Vector3f, perform perspective division
|
||
* and store the result in <code>dest</code>.
|
||
* <p>
|
||
* This method uses the given <code>w</code> as the fourth vector component.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @param w
|
||
* the w component to use
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mulProject(Matrix4fc mat, float w, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the given matrix with this Vector3f and store the result in <code>dest</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mul(Matrix3fc mat, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the given matrix with this Vector3f and store the result in <code>dest</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mul(Matrix3dc mat, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the given matrix <code>mat</code> with <code>this</code> by assuming a
|
||
* third row in the matrix of <code>(0, 0, 1)</code> and store the result in <code>dest</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mul(Matrix3x2fc mat, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the transpose of the given matrix with this Vector3f and store the result in <code>dest</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mulTranspose(Matrix3fc mat, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
|
||
* result in <code>dest</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mulPosition(Matrix4fc mat, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code> and store the
|
||
* result in <code>dest</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mulPosition(Matrix4x3fc mat, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
|
||
* result in <code>dest</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix whose transpose to multiply this vector by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mulTransposePosition(Matrix4fc mat, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code>, store the
|
||
* result in <code>dest</code> and return the <i>w</i> component of the resulting 4D vector.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>1.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @param dest
|
||
* will hold the <code>(x, y, z)</code> components of the resulting vector
|
||
* @return the <i>w</i> component of the resulting 4D vector after multiplication
|
||
*/
|
||
float mulPositionW(Matrix4fc mat, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
|
||
* result in <code>dest</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mulDirection(Matrix4dc mat, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
|
||
* result in <code>dest</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mulDirection(Matrix4fc mat, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the given 4x3 matrix <code>mat</code> with <code>this</code> and store the
|
||
* result in <code>dest</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix to multiply this vector by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mulDirection(Matrix4x3fc mat, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the transpose of the given 4x4 matrix <code>mat</code> with <code>this</code> and store the
|
||
* result in <code>dest</code>.
|
||
* <p>
|
||
* This method assumes the <code>w</code> component of <code>this</code> to be <code>0.0</code>.
|
||
*
|
||
* @param mat
|
||
* the matrix whose transpose to multiply this vector by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mulTransposeDirection(Matrix4fc mat, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply all components of this {@link Vector3f} by the given scalar
|
||
* value and store the result in <code>dest</code>.
|
||
*
|
||
* @param scalar
|
||
* the scalar to multiply this vector by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mul(float scalar, Vector3f dest);
|
||
|
||
/**
|
||
* Multiply the components of this Vector3f by the given scalar values and store the result in <code>dest</code>.
|
||
*
|
||
* @param x
|
||
* the x component to multiply this vector by
|
||
* @param y
|
||
* the y component to multiply this vector by
|
||
* @param z
|
||
* the z component to multiply this vector by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f mul(float x, float y, float z, Vector3f dest);
|
||
|
||
/**
|
||
* Divide all components of this {@link Vector3f} by the given scalar
|
||
* value and store the result in <code>dest</code>.
|
||
*
|
||
* @param scalar
|
||
* the scalar to divide by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f div(float scalar, Vector3f dest);
|
||
|
||
/**
|
||
* Divide the components of this Vector3f by the given scalar values and store the result in <code>dest</code>.
|
||
*
|
||
* @param x
|
||
* the x component to divide this vector by
|
||
* @param y
|
||
* the y component to divide this vector by
|
||
* @param z
|
||
* the z component to divide this vector by
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f div(float x, float y, float z, Vector3f dest);
|
||
|
||
/**
|
||
* Rotate this vector by the given quaternion <code>quat</code> and store the result in <code>dest</code>.
|
||
*
|
||
* @see Quaternionfc#transform(Vector3f)
|
||
*
|
||
* @param quat
|
||
* the quaternion to rotate this vector
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f rotate(Quaternionfc quat, Vector3f dest);
|
||
|
||
/**
|
||
* Compute the quaternion representing a rotation of <code>this</code> vector to point along <code>toDir</code>
|
||
* and store the result in <code>dest</code>.
|
||
* <p>
|
||
* Because there can be multiple possible rotations, this method chooses the one with the shortest arc.
|
||
*
|
||
* @see Quaternionf#rotationTo(Vector3fc, Vector3fc)
|
||
*
|
||
* @param toDir
|
||
* the destination direction
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Quaternionf rotationTo(Vector3fc toDir, Quaternionf dest);
|
||
|
||
/**
|
||
* Compute the quaternion representing a rotation of <code>this</code> vector to point along <code>(toDirX, toDirY, toDirZ)</code>
|
||
* and store the result in <code>dest</code>.
|
||
* <p>
|
||
* Because there can be multiple possible rotations, this method chooses the one with the shortest arc.
|
||
*
|
||
* @see Quaternionf#rotationTo(float, float, float, float, float, float)
|
||
*
|
||
* @param toDirX
|
||
* the x coordinate of the destination direction
|
||
* @param toDirY
|
||
* the y coordinate of the destination direction
|
||
* @param toDirZ
|
||
* the z coordinate of the destination direction
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Quaternionf rotationTo(float toDirX, float toDirY, float toDirZ, Quaternionf dest);
|
||
|
||
/**
|
||
* Rotate this vector the specified radians around the given rotation axis and store the result
|
||
* into <code>dest</code>.
|
||
*
|
||
* @param angle
|
||
* the angle in radians
|
||
* @param aX
|
||
* the x component of the rotation axis
|
||
* @param aY
|
||
* the y component of the rotation axis
|
||
* @param aZ
|
||
* the z component of the rotation axis
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f rotateAxis(float angle, float aX, float aY, float aZ, Vector3f dest);
|
||
|
||
/**
|
||
* Rotate this vector the specified radians around the X axis and store the result
|
||
* into <code>dest</code>.
|
||
*
|
||
* @param angle
|
||
* the angle in radians
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f rotateX(float angle, Vector3f dest);
|
||
|
||
/**
|
||
* Rotate this vector the specified radians around the Y axis and store the result
|
||
* into <code>dest</code>.
|
||
*
|
||
* @param angle
|
||
* the angle in radians
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f rotateY(float angle, Vector3f dest);
|
||
|
||
/**
|
||
* Rotate this vector the specified radians around the Z axis and store the result
|
||
* into <code>dest</code>.
|
||
*
|
||
* @param angle
|
||
* the angle in radians
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f rotateZ(float angle, Vector3f dest);
|
||
|
||
/**
|
||
* Return the length squared of this vector.
|
||
*
|
||
* @return the length squared
|
||
*/
|
||
float lengthSquared();
|
||
|
||
/**
|
||
* Return the length of this vector.
|
||
*
|
||
* @return the length
|
||
*/
|
||
float length();
|
||
|
||
/**
|
||
* Normalize this vector and store the result in <code>dest</code>.
|
||
*
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f normalize(Vector3f dest);
|
||
|
||
/**
|
||
* Scale this vector to have the given length and store the result in <code>dest</code>.
|
||
*
|
||
* @param length
|
||
* the desired length
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f normalize(float length, Vector3f dest);
|
||
|
||
/**
|
||
* Compute the cross product of this vector and <code>v</code> and store the result in <code>dest</code>.
|
||
*
|
||
* @param v
|
||
* the other vector
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f cross(Vector3fc v, Vector3f dest);
|
||
|
||
/**
|
||
* Compute the cross product of this vector and <code>(x, y, z)</code> and store the result in <code>dest</code>.
|
||
*
|
||
* @param x
|
||
* the x component of the other vector
|
||
* @param y
|
||
* the y component of the other vector
|
||
* @param z
|
||
* the z component of the other vector
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f cross(float x, float y, float z, Vector3f dest);
|
||
|
||
/**
|
||
* Return the distance between this Vector and <code>v</code>.
|
||
*
|
||
* @param v
|
||
* the other vector
|
||
* @return the distance
|
||
*/
|
||
float distance(Vector3fc v);
|
||
|
||
/**
|
||
* Return the distance between <code>this</code> vector and <code>(x, y, z)</code>.
|
||
*
|
||
* @param x
|
||
* the x component of the other vector
|
||
* @param y
|
||
* the y component of the other vector
|
||
* @param z
|
||
* the z component of the other vector
|
||
* @return the euclidean distance
|
||
*/
|
||
float distance(float x, float y, float z);
|
||
|
||
/**
|
||
* Return the square of the distance between this vector and <code>v</code>.
|
||
*
|
||
* @param v
|
||
* the other vector
|
||
* @return the squared of the distance
|
||
*/
|
||
float distanceSquared(Vector3fc v);
|
||
|
||
/**
|
||
* Return the square of the distance between <code>this</code> vector and <code>(x, y, z)</code>.
|
||
*
|
||
* @param x
|
||
* the x component of the other vector
|
||
* @param y
|
||
* the y component of the other vector
|
||
* @param z
|
||
* the z component of the other vector
|
||
* @return the square of the distance
|
||
*/
|
||
float distanceSquared(float x, float y, float z);
|
||
|
||
/**
|
||
* Return the dot product of this vector and the supplied vector.
|
||
*
|
||
* @param v
|
||
* the other vector
|
||
* @return the dot product
|
||
*/
|
||
float dot(Vector3fc v);
|
||
|
||
/**
|
||
* Return the dot product of this vector and the vector <code>(x, y, z)</code>.
|
||
*
|
||
* @param x
|
||
* the x component of the other vector
|
||
* @param y
|
||
* the y component of the other vector
|
||
* @param z
|
||
* the z component of the other vector
|
||
* @return the dot product
|
||
*/
|
||
float dot(float x, float y, float z);
|
||
|
||
/**
|
||
* Return the cosine of the angle between this vector and the supplied vector. Use this instead of Math.cos(this.angle(v)).
|
||
*
|
||
* @see #angle(Vector3fc)
|
||
*
|
||
* @param v
|
||
* the other vector
|
||
* @return the cosine of the angle
|
||
*/
|
||
float angleCos(Vector3fc v);
|
||
|
||
/**
|
||
* Return the angle between this vector and the supplied vector.
|
||
*
|
||
* @see #angleCos(Vector3fc)
|
||
*
|
||
* @param v
|
||
* the other vector
|
||
* @return the angle, in radians
|
||
*/
|
||
float angle(Vector3fc v);
|
||
|
||
/**
|
||
* Return the signed angle between this vector and the supplied vector with
|
||
* respect to the plane with the given normal vector <code>n</code>.
|
||
*
|
||
* @see #angleCos(Vector3fc)
|
||
*
|
||
* @param v
|
||
* the other vector
|
||
* @param n
|
||
* the plane's normal vector
|
||
* @return the angle, in radians
|
||
*/
|
||
float angleSigned(Vector3fc v, Vector3fc n);
|
||
|
||
/**
|
||
* Return the signed angle between this vector and the supplied vector with
|
||
* respect to the plane with the given normal vector <code>(nx, ny, nz)</code>.
|
||
*
|
||
* @param x
|
||
* the x coordinate of the other vector
|
||
* @param y
|
||
* the y coordinate of the other vector
|
||
* @param z
|
||
* the z coordinate of the other vector
|
||
* @param nx
|
||
* the x coordinate of the plane's normal vector
|
||
* @param ny
|
||
* the y coordinate of the plane's normal vector
|
||
* @param nz
|
||
* the z coordinate of the plane's normal vector
|
||
* @return the angle, in radians
|
||
*/
|
||
float angleSigned(float x, float y, float z, float nx, float ny, float nz);
|
||
|
||
/**
|
||
* Set the components of <code>dest</code> to be the component-wise minimum of this and the other vector.
|
||
*
|
||
* @param v
|
||
* the other vector
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f min(Vector3fc v, Vector3f dest);
|
||
|
||
/**
|
||
* Set the components of <code>dest</code> to be the component-wise maximum of this and the other vector.
|
||
*
|
||
* @param v
|
||
* the other vector
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f max(Vector3fc v, Vector3f dest);
|
||
|
||
/**
|
||
* Negate this vector and store the result in <code>dest</code>.
|
||
*
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f negate(Vector3f dest);
|
||
|
||
/**
|
||
* Compute the absolute values of the individual components of <code>this</code> and store the result in <code>dest</code>.
|
||
*
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f absolute(Vector3f dest);
|
||
|
||
/**
|
||
* Reflect this vector about the given <code>normal</code> vector and store the result in <code>dest</code>.
|
||
*
|
||
* @param normal
|
||
* the vector to reflect about
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f reflect(Vector3fc normal, Vector3f dest);
|
||
|
||
/**
|
||
* Reflect this vector about the given normal vector and store the result in <code>dest</code>.
|
||
*
|
||
* @param x
|
||
* the x component of the normal
|
||
* @param y
|
||
* the y component of the normal
|
||
* @param z
|
||
* the z component of the normal
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f reflect(float x, float y, float z, Vector3f dest);
|
||
|
||
/**
|
||
* Compute the half vector between this and the other vector and store the result in <code>dest</code>.
|
||
*
|
||
* @param other
|
||
* the other vector
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f half(Vector3fc other, Vector3f dest);
|
||
|
||
/**
|
||
* Compute the half vector between this and the vector <code>(x, y, z)</code>
|
||
* and store the result in <code>dest</code>.
|
||
*
|
||
* @param x
|
||
* the x component of the other vector
|
||
* @param y
|
||
* the y component of the other vector
|
||
* @param z
|
||
* the z component of the other vector
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f half(float x, float y, float z, Vector3f dest);
|
||
|
||
/**
|
||
* Compute a smooth-step (i.e. hermite with zero tangents) interpolation
|
||
* between <code>this</code> vector and the given vector <code>v</code> and
|
||
* store the result in <code>dest</code>.
|
||
*
|
||
* @param v
|
||
* the other vector
|
||
* @param t
|
||
* the interpolation factor, within <code>[0..1]</code>
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f smoothStep(Vector3fc v, float t, Vector3f dest);
|
||
|
||
/**
|
||
* Compute a hermite interpolation between <code>this</code> vector with its
|
||
* associated tangent <code>t0</code> and the given vector <code>v</code>
|
||
* with its tangent <code>t1</code> and store the result in
|
||
* <code>dest</code>.
|
||
*
|
||
* @param t0
|
||
* the tangent of <code>this</code> vector
|
||
* @param v1
|
||
* the other vector
|
||
* @param t1
|
||
* the tangent of the other vector
|
||
* @param t
|
||
* the interpolation factor, within <code>[0..1]</code>
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f hermite(Vector3fc t0, Vector3fc v1, Vector3fc t1, float t, Vector3f dest);
|
||
|
||
/**
|
||
* Linearly interpolate <code>this</code> and <code>other</code> using the given interpolation factor <code>t</code>
|
||
* and store the result in <code>dest</code>.
|
||
* <p>
|
||
* If <code>t</code> is <code>0.0</code> then the result is <code>this</code>. If the interpolation factor is <code>1.0</code>
|
||
* then the result is <code>other</code>.
|
||
*
|
||
* @param other
|
||
* the other vector
|
||
* @param t
|
||
* the interpolation factor between 0.0 and 1.0
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f lerp(Vector3fc other, float t, Vector3f dest);
|
||
|
||
/**
|
||
* Get the value of the specified component of this vector.
|
||
*
|
||
* @param component
|
||
* the component, within <code>[0..2]</code>
|
||
* @return the value
|
||
* @throws IllegalArgumentException if <code>component</code> is not within <code>[0..2]</code>
|
||
*/
|
||
float get(int component) throws IllegalArgumentException;
|
||
|
||
/**
|
||
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector
|
||
* using the given {@link RoundingMode}.
|
||
*
|
||
* @param mode
|
||
* the {@link RoundingMode} to use
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3i get(int mode, Vector3i dest);
|
||
|
||
/**
|
||
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector.
|
||
*
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f get(Vector3f dest);
|
||
|
||
/**
|
||
* Set the components of the given vector <code>dest</code> to those of <code>this</code> vector.
|
||
*
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3d get(Vector3d dest);
|
||
|
||
/**
|
||
* Determine the component with the biggest absolute value.
|
||
*
|
||
* @return the component index, within <code>[0..2]</code>
|
||
*/
|
||
int maxComponent();
|
||
|
||
/**
|
||
* Determine the component with the smallest (towards zero) absolute value.
|
||
*
|
||
* @return the component index, within <code>[0..2]</code>
|
||
*/
|
||
int minComponent();
|
||
|
||
/**
|
||
* Transform <code>this</code> vector so that it is orthogonal to the given vector <code>v</code>, normalize the result and store it into <code>dest</code>.
|
||
* <p>
|
||
* Reference: <a href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">Gram–Schmidt process</a>
|
||
*
|
||
* @param v
|
||
* the reference vector which the result should be orthogonal to
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f orthogonalize(Vector3fc v, Vector3f dest);
|
||
|
||
/**
|
||
* Transform <code>this</code> vector so that it is orthogonal to the given unit vector <code>v</code>, normalize the result and store it into <code>dest</code>.
|
||
* <p>
|
||
* The vector <code>v</code> is assumed to be a {@link #normalize(Vector3f) unit} vector.
|
||
* <p>
|
||
* Reference: <a href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process">Gram–Schmidt process</a>
|
||
*
|
||
* @param v
|
||
* the reference unit vector which the result should be orthogonal to
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f orthogonalizeUnit(Vector3fc v, Vector3f dest);
|
||
|
||
/**
|
||
* Compute for each component of this vector the largest (closest to positive
|
||
* infinity) {@code float} value that is less than or equal to that
|
||
* component and is equal to a mathematical integer and store the result in
|
||
* <code>dest</code>.
|
||
*
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f floor(Vector3f dest);
|
||
|
||
/**
|
||
* Compute for each component of this vector the smallest (closest to negative
|
||
* infinity) {@code float} value that is greater than or equal to that
|
||
* component and is equal to a mathematical integer and store the result in
|
||
* <code>dest</code>.
|
||
*
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f ceil(Vector3f dest);
|
||
|
||
/**
|
||
* Compute for each component of this vector the closest float that is equal to
|
||
* a mathematical integer, with ties rounding to positive infinity and store
|
||
* the result in <code>dest</code>.
|
||
*
|
||
* @param dest
|
||
* will hold the result
|
||
* @return dest
|
||
*/
|
||
Vector3f round(Vector3f dest);
|
||
|
||
/**
|
||
* Determine whether all components are finite floating-point values, that
|
||
* is, they are not {@link Float#isNaN() NaN} and not
|
||
* {@link Float#isInfinite() infinity}.
|
||
*
|
||
* @return {@code true} if all components are finite floating-point values;
|
||
* {@code false} otherwise
|
||
*/
|
||
boolean isFinite();
|
||
|
||
/**
|
||
* Compare the vector components of <code>this</code> vector with the given vector using the given <code>delta</code>
|
||
* and return whether all of them are equal within a maximum difference of <code>delta</code>.
|
||
* <p>
|
||
* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap}
|
||
* and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those
|
||
* data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods.
|
||
*
|
||
* @param v
|
||
* the other vector
|
||
* @param delta
|
||
* the allowed maximum difference
|
||
* @return <code>true</code> whether all of the vector components are equal; <code>false</code> otherwise
|
||
*/
|
||
boolean equals(Vector3fc v, float delta);
|
||
|
||
/**
|
||
* Compare the vector components of <code>this</code> vector with the given <code>(x, y, z)</code>
|
||
* and return whether all of them are equal.
|
||
*
|
||
* @param x
|
||
* the x component to compare to
|
||
* @param y
|
||
* the y component to compare to
|
||
* @param z
|
||
* the z component to compare to
|
||
* @return <code>true</code> if all the vector components are equal
|
||
*/
|
||
boolean equals(float x, float y, float z);
|
||
|
||
}
|