Flywheel/joml/Matrix3x2fc.java
PepperCode1 dd18300b70 Scheme-a-version
- Fix Resources not being closed properly
- Change versioning scheme to match Create
- Add LICENSE to built jar
- Fix mods.toml version sync
- Move JOML code to non-src directory
- Update Gradle
- Organize imports
2022-07-15 00:00:54 -07:00

1181 lines
47 KiB
Java

/*
* The MIT License
*
* Copyright (c) 2017-2021 JOML
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.jozufozu.flywheel.repack.joml;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.util.*;
/**
* Interface to a read-only view of a 3x2 matrix of single-precision floats.
*
* @author Kai Burjack
*/
public interface Matrix3x2fc {
/**
* Return the value of the matrix element at column 0 and row 0.
*
* @return the value of the matrix element
*/
float m00();
/**
* Return the value of the matrix element at column 0 and row 1.
*
* @return the value of the matrix element
*/
float m01();
/**
* Return the value of the matrix element at column 1 and row 0.
*
* @return the value of the matrix element
*/
float m10();
/**
* Return the value of the matrix element at column 1 and row 1.
*
* @return the value of the matrix element
*/
float m11();
/**
* Return the value of the matrix element at column 2 and row 0.
*
* @return the value of the matrix element
*/
float m20();
/**
* Return the value of the matrix element at column 2 and row 1.
*
* @return the value of the matrix element
*/
float m21();
/**
* Multiply this matrix by the supplied <code>right</code> matrix by assuming a third row in
* both matrices of <code>(0, 0, 1)</code> and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the <code>right</code> matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the
* transformation of the right matrix will be applied first!
*
* @param right
* the right operand of the matrix multiplication
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f mul(Matrix3x2fc right, Matrix3x2f dest);
/**
* Pre-multiply this matrix by the supplied <code>left</code> matrix and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>L</code> the <code>left</code> matrix,
* then the new matrix will be <code>L * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>L * M * v</code>, the
* transformation of <code>this</code> matrix will be applied first!
*
* @param left
* the left operand of the matrix multiplication
* @param dest
* the destination matrix, which will hold the result
* @return dest
*/
Matrix3x2f mulLocal(Matrix3x2fc left, Matrix3x2f dest);
/**
* Return the determinant of this matrix.
*
* @return the determinant
*/
float determinant();
/**
* Invert the <code>this</code> matrix by assuming a third row in this matrix of <code>(0, 0, 1)</code>
* and store the result in <code>dest</code>.
*
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f invert(Matrix3x2f dest);
/**
* Apply a translation to this matrix by translating by the given number of units in x and y and store the result
* in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
* matrix, then the new matrix will be <code>M * T</code>. So when
* transforming a vector <code>v</code> with the new matrix by using
* <code>M * T * v</code>, the translation will be applied first!
*
* @param x
* the offset to translate in x
* @param y
* the offset to translate in y
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f translate(float x, float y, Matrix3x2f dest);
/**
* Apply a translation to this matrix by translating by the given number of units in x and y, and
* store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
* matrix, then the new matrix will be <code>M * T</code>. So when
* transforming a vector <code>v</code> with the new matrix by using
* <code>M * T * v</code>, the translation will be applied first!
*
* @param offset
* the offset to translate
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f translate(Vector2fc offset, Matrix3x2f dest);
/**
* Pre-multiply a translation to this matrix by translating by the given number of
* units in x and y and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
* matrix, then the new matrix will be <code>T * M</code>. So when
* transforming a vector <code>v</code> with the new matrix by using
* <code>T * M * v</code>, the translation will be applied last!
*
* @param offset
* the number of units in x and y by which to translate
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f translateLocal(Vector2fc offset, Matrix3x2f dest);
/**
* Pre-multiply a translation to this matrix by translating by the given number of
* units in x and y and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>T</code> the translation
* matrix, then the new matrix will be <code>T * M</code>. So when
* transforming a vector <code>v</code> with the new matrix by using
* <code>T * M * v</code>, the translation will be applied last!
*
* @param x
* the offset to translate in x
* @param y
* the offset to translate in y
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f translateLocal(float x, float y, Matrix3x2f dest);
/**
* Get the current values of <code>this</code> matrix and store them into
* <code>dest</code>.
*
* @param dest
* the destination matrix
* @return dest
*/
Matrix3x2f get(Matrix3x2f dest);
/**
* Store this matrix in column-major order into the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the matrix is stored, use {@link #get(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @see #get(int, FloatBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
FloatBuffer get(FloatBuffer buffer);
/**
* Store this matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
FloatBuffer get(int index, FloatBuffer buffer);
/**
* Store this matrix in column-major order into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the matrix is stored, use {@link #get(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @see #get(int, ByteBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
ByteBuffer get(ByteBuffer buffer);
/**
* Store this matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
ByteBuffer get(int index, ByteBuffer buffer);
/**
* Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the matrix is stored, use {@link #get3x3(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @see #get3x3(int, FloatBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
FloatBuffer get3x3(FloatBuffer buffer);
/**
* Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
FloatBuffer get3x3(int index, FloatBuffer buffer);
/**
* Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the matrix is stored, use {@link #get3x3(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @see #get3x3(int, ByteBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
ByteBuffer get3x3(ByteBuffer buffer);
/**
* Store this matrix as an equivalent 3x3 matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
ByteBuffer get3x3(int index, ByteBuffer buffer);
/**
* Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied {@link FloatBuffer} at the current
* buffer {@link FloatBuffer#position() position}.
* <p>
* This method will not increment the position of the given FloatBuffer.
* <p>
* In order to specify the offset into the FloatBuffer at which
* the matrix is stored, use {@link #get4x4(int, FloatBuffer)}, taking
* the absolute position as parameter.
*
* @see #get4x4(int, FloatBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
FloatBuffer get4x4(FloatBuffer buffer);
/**
* Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied {@link FloatBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given FloatBuffer.
*
* @param index
* the absolute position into the FloatBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
FloatBuffer get4x4(int index, FloatBuffer buffer);
/**
* Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied {@link ByteBuffer} at the current
* buffer {@link ByteBuffer#position() position}.
* <p>
* This method will not increment the position of the given ByteBuffer.
* <p>
* In order to specify the offset into the ByteBuffer at which
* the matrix is stored, use {@link #get4x4(int, ByteBuffer)}, taking
* the absolute position as parameter.
*
* @see #get4x4(int, ByteBuffer)
*
* @param buffer
* will receive the values of this matrix in column-major order at its current position
* @return the passed in buffer
*/
ByteBuffer get4x4(ByteBuffer buffer);
/**
* Store this matrix as an equivalent 4x4 matrix in column-major order into the supplied {@link ByteBuffer} starting at the specified
* absolute buffer position/index.
* <p>
* This method will not increment the position of the given ByteBuffer.
*
* @param index
* the absolute position into the ByteBuffer
* @param buffer
* will receive the values of this matrix in column-major order
* @return the passed in buffer
*/
ByteBuffer get4x4(int index, ByteBuffer buffer);
/**
* Store this matrix in column-major order at the given off-heap address.
* <p>
* This method will throw an {@link UnsupportedOperationException} when JOML is used with `-Djoml.nounsafe`.
* <p>
* <em>This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.</em>
*
* @param address
* the off-heap address where to store this matrix
* @return this
*/
Matrix3x2fc getToAddress(long address);
/**
* Store this matrix into the supplied float array in column-major order at the given offset.
*
* @param arr
* the array to write the matrix values into
* @param offset
* the offset into the array
* @return the passed in array
*/
float[] get(float[] arr, int offset);
/**
* Store this matrix into the supplied float array in column-major order.
* <p>
* In order to specify an explicit offset into the array, use the method {@link #get(float[], int)}.
*
* @see #get(float[], int)
*
* @param arr
* the array to write the matrix values into
* @return the passed in array
*/
float[] get(float[] arr);
/**
* Store this matrix as an equivalent 3x3 matrix into the supplied float array in column-major order at the given offset.
*
* @param arr
* the array to write the matrix values into
* @param offset
* the offset into the array
* @return the passed in array
*/
float[] get3x3(float[] arr, int offset);
/**
* Store this matrix as an equivalent 3x3 matrix into the supplied float array in column-major order.
* <p>
* In order to specify an explicit offset into the array, use the method {@link #get3x3(float[], int)}.
*
* @see #get3x3(float[], int)
*
* @param arr
* the array to write the matrix values into
* @return the passed in array
*/
float[] get3x3(float[] arr);
/**
* Store this matrix as an equivalent 4x4 matrix into the supplied float array in column-major order at the given offset.
*
* @param arr
* the array to write the matrix values into
* @param offset
* the offset into the array
* @return the passed in array
*/
float[] get4x4(float[] arr, int offset);
/**
* Store this matrix as an equivalent 4x4 matrix into the supplied float array in column-major order.
* <p>
* In order to specify an explicit offset into the array, use the method {@link #get4x4(float[], int)}.
*
* @see #get4x4(float[], int)
*
* @param arr
* the array to write the matrix values into
* @return the passed in array
*/
float[] get4x4(float[] arr);
/**
* Apply scaling to this matrix by scaling the unit axes by the given x and y and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f scale(float x, float y, Matrix3x2f dest);
/**
* Apply scaling to this matrix by scaling the base axes by the given <code>xy</code> factors
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first!
*
* @param xy
* the factors of the x and y component, respectively
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f scale(Vector2fc xy, Matrix3x2f dest);
/**
* Pre-multiply scaling to <code>this</code> matrix by scaling the base axes by the given sx and
* sy factors while using the given <code>(ox, oy)</code> as the scaling origin,
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>S * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>
* , the scaling will be applied last!
* <p>
* This method is equivalent to calling: <code>new Matrix3x2f().translate(ox, oy).scale(sx, sy).translate(-ox, -oy).mul(this, dest)</code>
*
* @param sx
* the scaling factor of the x component
* @param sy
* the scaling factor of the y component
* @param ox
* the x coordinate of the scaling origin
* @param oy
* the y coordinate of the scaling origin
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f scaleAroundLocal(float sx, float sy, float ox, float oy, Matrix3x2f dest);
/**
* Pre-multiply scaling to this matrix by scaling the base axes by the given <code>factor</code>
* while using <code>(ox, oy)</code> as the scaling origin,
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>S * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>, the
* scaling will be applied last!
* <p>
* This method is equivalent to calling: <code>new Matrix3x2f().translate(ox, oy).scale(factor).translate(-ox, -oy).mul(this, dest)</code>
*
* @param factor
* the scaling factor for all three axes
* @param ox
* the x coordinate of the scaling origin
* @param oy
* the y coordinate of the scaling origin
* @param dest
* will hold the result
* @return this
*/
Matrix3x2f scaleAroundLocal(float factor, float ox, float oy, Matrix3x2f dest);
/**
* Apply scaling to this matrix by uniformly scaling the two base axes by the given <code>xy</code> factor
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the scaling will be applied first!
*
* @see #scale(float, float, Matrix3x2f)
*
* @param xy
* the factor for the two components
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f scale(float xy, Matrix3x2f dest);
/**
* Pre-multiply scaling to <code>this</code> matrix by scaling the two base axes by the given <code>xy</code> factor,
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>S * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>
* , the scaling will be applied last!
*
* @param xy
* the factor to scale all two base axes by
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f scaleLocal(float xy, Matrix3x2f dest);
/**
* Pre-multiply scaling to <code>this</code> matrix by scaling the base axes by the given x and y
* factors and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>S * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>S * M * v</code>
* , the scaling will be applied last!
*
* @param x
* the factor of the x component
* @param y
* the factor of the y component
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f scaleLocal(float x, float y, Matrix3x2f dest);
/**
* Apply scaling to <code>this</code> matrix by scaling the base axes by the given sx and
* sy factors while using <code>(ox, oy)</code> as the scaling origin, and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>
* , the scaling will be applied first!
* <p>
* This method is equivalent to calling: <code>translate(ox, oy, dest).scale(sx, sy).translate(-ox, -oy)</code>
*
* @param sx
* the scaling factor of the x component
* @param sy
* the scaling factor of the y component
* @param ox
* the x coordinate of the scaling origin
* @param oy
* the y coordinate of the scaling origin
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f scaleAround(float sx, float sy, float ox, float oy, Matrix3x2f dest);
/**
* Apply scaling to this matrix by scaling the base axes by the given <code>factor</code>
* while using <code>(ox, oy)</code> as the scaling origin,
* and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>S</code> the scaling matrix,
* then the new matrix will be <code>M * S</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * S * v</code>, the
* scaling will be applied first!
* <p>
* This method is equivalent to calling: <code>translate(ox, oy, dest).scale(factor).translate(-ox, -oy)</code>
*
* @param factor
* the scaling factor for all three axes
* @param ox
* the x coordinate of the scaling origin
* @param oy
* the y coordinate of the scaling origin
* @param dest
* will hold the result
* @return this
*/
Matrix3x2f scaleAround(float factor, float ox, float oy, Matrix3x2f dest);
/**
* Transform/multiply the given vector by this matrix by assuming a third row in this matrix of <code>(0, 0, 1)</code>
* and store the result in that vector.
*
* @see Vector3f#mul(Matrix3x2fc)
*
* @param v
* the vector to transform and to hold the final result
* @return v
*/
Vector3f transform(Vector3f v);
/**
* Transform/multiply the given vector by this matrix and store the result in <code>dest</code>.
*
* @see Vector3f#mul(Matrix3x2fc, Vector3f)
*
* @param v
* the vector to transform
* @param dest
* will contain the result
* @return dest
*/
Vector3f transform(Vector3f v, Vector3f dest);
/**
* Transform/multiply the given vector <code>(x, y, z)</code> by this matrix and store the result in <code>dest</code>.
*
* @param x
* the x component of the vector to transform
* @param y
* the y component of the vector to transform
* @param z
* the z component of the vector to transform
* @param dest
* will contain the result
* @return dest
*/
Vector3f transform(float x, float y, float z, Vector3f dest);
/**
* Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=1, by
* this matrix and store the result in that vector.
* <p>
* The given 2D-vector is treated as a 3D-vector with its z-component being 1.0, so it
* will represent a position/location in 2D-space rather than a direction.
* <p>
* In order to store the result in another vector, use {@link #transformPosition(Vector2fc, Vector2f)}.
*
* @see #transformPosition(Vector2fc, Vector2f)
* @see #transform(Vector3f)
*
* @param v
* the vector to transform and to hold the final result
* @return v
*/
Vector2f transformPosition(Vector2f v);
/**
* Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=1, by
* this matrix and store the result in <code>dest</code>.
* <p>
* The given 2D-vector is treated as a 3D-vector with its z-component being 1.0, so it
* will represent a position/location in 2D-space rather than a direction.
* <p>
* In order to store the result in the same vector, use {@link #transformPosition(Vector2f)}.
*
* @see #transformPosition(Vector2f)
* @see #transform(Vector3f, Vector3f)
*
* @param v
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector2f transformPosition(Vector2fc v, Vector2f dest);
/**
* Transform/multiply the given 2D-vector <code>(x, y)</code>, as if it was a 3D-vector with z=1, by
* this matrix and store the result in <code>dest</code>.
* <p>
* The given 2D-vector is treated as a 3D-vector with its z-component being 1.0, so it
* will represent a position/location in 2D-space rather than a direction.
* <p>
* In order to store the result in the same vector, use {@link #transformPosition(Vector2f)}.
*
* @see #transformPosition(Vector2f)
* @see #transform(Vector3f, Vector3f)
*
* @param x
* the x component of the vector to transform
* @param y
* the y component of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector2f transformPosition(float x, float y, Vector2f dest);
/**
* Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=0, by
* this matrix and store the result in that vector.
* <p>
* The given 2D-vector is treated as a 3D-vector with its z-component being <code>0.0</code>, so it
* will represent a direction in 2D-space rather than a position. This method will therefore
* not take the translation part of the matrix into account.
* <p>
* In order to store the result in another vector, use {@link #transformDirection(Vector2fc, Vector2f)}.
*
* @see #transformDirection(Vector2fc, Vector2f)
*
* @param v
* the vector to transform and to hold the final result
* @return v
*/
Vector2f transformDirection(Vector2f v);
/**
* Transform/multiply the given 2D-vector, as if it was a 3D-vector with z=0, by
* this matrix and store the result in <code>dest</code>.
* <p>
* The given 2D-vector is treated as a 3D-vector with its z-component being <code>0.0</code>, so it
* will represent a direction in 2D-space rather than a position. This method will therefore
* not take the translation part of the matrix into account.
* <p>
* In order to store the result in the same vector, use {@link #transformDirection(Vector2f)}.
*
* @see #transformDirection(Vector2f)
*
* @param v
* the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector2f transformDirection(Vector2fc v, Vector2f dest);
/**
* Transform/multiply the given 2D-vector <code>(x, y)</code>, as if it was a 3D-vector with z=0, by
* this matrix and store the result in <code>dest</code>.
* <p>
* The given 2D-vector is treated as a 3D-vector with its z-component being <code>0.0</code>, so it
* will represent a direction in 2D-space rather than a position. This method will therefore
* not take the translation part of the matrix into account.
* <p>
* In order to store the result in the same vector, use {@link #transformDirection(Vector2f)}.
*
* @see #transformDirection(Vector2f)
*
* @param x
* the x component of the vector to transform
* @param y
* the y component of the vector to transform
* @param dest
* will hold the result
* @return dest
*/
Vector2f transformDirection(float x, float y, Vector2f dest);
/**
* Apply a rotation transformation to this matrix by rotating the given amount of radians and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first!
*
* @param ang
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f rotate(float ang, Matrix3x2f dest);
/**
* Pre-multiply a rotation to this matrix by rotating the given amount of radians and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>R * M</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>R * M * v</code>, the
* rotation will be applied last!
* <p>
* Reference: <a href="http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle">http://en.wikipedia.org</a>
*
* @param ang
* the angle in radians
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f rotateLocal(float ang, Matrix3x2f dest);
/**
* Apply a rotation transformation to this matrix by rotating the given amount of radians about
* the specified rotation center <code>(x, y)</code> and store the result in <code>dest</code>.
* <p>
* This method is equivalent to calling: <code>translate(x, y, dest).rotate(ang).translate(-x, -y)</code>
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first!
*
* @see #translate(float, float, Matrix3x2f)
* @see #rotate(float, Matrix3x2f)
*
* @param ang
* the angle in radians
* @param x
* the x component of the rotation center
* @param y
* the y component of the rotation center
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f rotateAbout(float ang, float x, float y, Matrix3x2f dest);
/**
* Apply a rotation transformation to this matrix that rotates the given normalized <code>fromDir</code> direction vector
* to point along the normalized <code>toDir</code>, and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>R</code> the rotation matrix,
* then the new matrix will be <code>M * R</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * R * v</code>, the rotation will be applied first!
*
* @param fromDir
* the normalized direction which should be rotate to point along <code>toDir</code>
* @param toDir
* the normalized destination direction
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f rotateTo(Vector2fc fromDir, Vector2fc toDir, Matrix3x2f dest);
/**
* Apply a "view" transformation to this matrix that maps the given <code>(left, bottom)</code> and
* <code>(right, top)</code> corners to <code>(-1, -1)</code> and <code>(1, 1)</code> respectively and store the result in <code>dest</code>.
* <p>
* If <code>M</code> is <code>this</code> matrix and <code>O</code> the orthographic projection matrix,
* then the new matrix will be <code>M * O</code>. So when transforming a
* vector <code>v</code> with the new matrix by using <code>M * O * v</code>, the
* orthographic projection transformation will be applied first!
*
* @param left
* the distance from the center to the left view edge
* @param right
* the distance from the center to the right view edge
* @param bottom
* the distance from the center to the bottom view edge
* @param top
* the distance from the center to the top view edge
* @param dest
* will hold the result
* @return dest
*/
Matrix3x2f view(float left, float right, float bottom, float top, Matrix3x2f dest);
/**
* Obtain the position that gets transformed to the origin by <code>this</code> matrix.
* This can be used to get the position of the "camera" from a given <i>view</i> transformation matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix3x2f inv = new Matrix3x2f(this).invertAffine();
* inv.transform(origin.set(0, 0));
* </pre>
*
* @param origin
* will hold the position transformed to the origin
* @return origin
*/
Vector2f origin(Vector2f origin);
/**
* Obtain the extents of the view transformation of <code>this</code> matrix and store it in <code>area</code>.
* This can be used to determine which region of the screen (i.e. the NDC space) is covered by the view.
*
* @param area
* will hold the view area as <code>[minX, minY, maxX, maxY]</code>
* @return area
*/
float[] viewArea(float[] area);
/**
* Obtain the direction of <code>+X</code> before the transformation represented by <code>this</code> matrix is applied.
* <p>
* This method uses the rotation component of the left 2x2 submatrix to obtain the direction
* that is transformed to <code>+X</code> by <code>this</code> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix3x2f inv = new Matrix3x2f(this).invert();
* inv.transformDirection(dir.set(1, 0)).normalize();
* </pre>
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveX(Vector2f)} instead.
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+X</code>
* @return dir
*/
Vector2f positiveX(Vector2f dir);
/**
* Obtain the direction of <code>+X</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
* <p>
* This method uses the rotation component of the left 2x2 submatrix to obtain the direction
* that is transformed to <code>+X</code> by <code>this</code> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix3x2f inv = new Matrix3x2f(this).transpose();
* inv.transformDirection(dir.set(1, 0));
* </pre>
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+X</code>
* @return dir
*/
Vector2f normalizedPositiveX(Vector2f dir);
/**
* Obtain the direction of <code>+Y</code> before the transformation represented by <code>this</code> matrix is applied.
* <p>
* This method uses the rotation component of the left 2x2 submatrix to obtain the direction
* that is transformed to <code>+Y</code> by <code>this</code> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix3x2f inv = new Matrix3x2f(this).invert();
* inv.transformDirection(dir.set(0, 1)).normalize();
* </pre>
* If <code>this</code> is already an orthogonal matrix, then consider using {@link #normalizedPositiveY(Vector2f)} instead.
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+Y</code>
* @return dir
*/
Vector2f positiveY(Vector2f dir);
/**
* Obtain the direction of <code>+Y</code> before the transformation represented by <code>this</code> <i>orthogonal</i> matrix is applied.
* This method only produces correct results if <code>this</code> is an <i>orthogonal</i> matrix.
* <p>
* This method uses the rotation component of the left 2x2 submatrix to obtain the direction
* that is transformed to <code>+Y</code> by <code>this</code> matrix.
* <p>
* This method is equivalent to the following code:
* <pre>
* Matrix3x2f inv = new Matrix3x2f(this).transpose();
* inv.transformDirection(dir.set(0, 1));
* </pre>
* <p>
* Reference: <a href="http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/threeD/">http://www.euclideanspace.com</a>
*
* @param dir
* will hold the direction of <code>+Y</code>
* @return dir
*/
Vector2f normalizedPositiveY(Vector2f dir);
/**
* Unproject the given window coordinates <code>(winX, winY)</code> by <code>this</code> matrix using the specified viewport.
* <p>
* This method first converts the given window coordinates to normalized device coordinates in the range <code>[-1..1]</code>
* and then transforms those NDC coordinates by the inverse of <code>this</code> matrix.
* <p>
* As a necessary computation step for unprojecting, this method computes the inverse of <code>this</code> matrix.
* In order to avoid computing the matrix inverse with every invocation, the inverse of <code>this</code> matrix can be built
* once outside using {@link #invert(Matrix3x2f)} and then the method {@link #unprojectInv(float, float, int[], Vector2f) unprojectInv()} can be invoked on it.
*
* @see #unprojectInv(float, float, int[], Vector2f)
* @see #invert(Matrix3x2f)
*
* @param winX
* the x-coordinate in window coordinates (pixels)
* @param winY
* the y-coordinate in window coordinates (pixels)
* @param viewport
* the viewport described by <code>[x, y, width, height]</code>
* @param dest
* will hold the unprojected position
* @return dest
*/
Vector2f unproject(float winX, float winY, int[] viewport, Vector2f dest);
/**
* Unproject the given window coordinates <code>(winX, winY)</code> by <code>this</code> matrix using the specified viewport.
* <p>
* This method differs from {@link #unproject(float, float, int[], Vector2f) unproject()}
* in that it assumes that <code>this</code> is already the inverse matrix of the original projection matrix.
* It exists to avoid recomputing the matrix inverse with every invocation.
*
* @see #unproject(float, float, int[], Vector2f)
*
* @param winX
* the x-coordinate in window coordinates (pixels)
* @param winY
* the y-coordinate in window coordinates (pixels)
* @param viewport
* the viewport described by <code>[x, y, width, height]</code>
* @param dest
* will hold the unprojected position
* @return dest
*/
Vector2f unprojectInv(float winX, float winY, int[] viewport, Vector2f dest);
/**
* Test whether the given point <code>(x, y)</code> is within the frustum defined by <code>this</code> matrix.
* <p>
* This method assumes <code>this</code> matrix to be a transformation from any arbitrary coordinate system/space <code>M</code>
* into standard OpenGL clip space and tests whether the given point with the coordinates <code>(x, y, z)</code> given
* in space <code>M</code> is within the clip space.
* <p>
* Reference: <a href="http://gamedevs.org/uploads/fast-extraction-viewing-frustum-planes-from-world-view-projection-matrix.pdf">
* Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix</a>
*
* @param x
* the x-coordinate of the point
* @param y
* the y-coordinate of the point
* @return <code>true</code> if the given point is inside the frustum; <code>false</code> otherwise
*/
boolean testPoint(float x, float y);
/**
* Test whether the given circle is partly or completely within or outside of the frustum defined by <code>this</code> matrix.
* <p>
* This method assumes <code>this</code> matrix to be a transformation from any arbitrary coordinate system/space <code>M</code>
* into standard OpenGL clip space and tests whether the given sphere with the coordinates <code>(x, y, z)</code> given
* in space <code>M</code> is within the clip space.
* <p>
* Reference: <a href="http://gamedevs.org/uploads/fast-extraction-viewing-frustum-planes-from-world-view-projection-matrix.pdf">
* Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix</a>
*
* @param x
* the x-coordinate of the circle's center
* @param y
* the y-coordinate of the circle's center
* @param r
* the circle's radius
* @return <code>true</code> if the given circle is partly or completely inside the frustum; <code>false</code> otherwise
*/
boolean testCircle(float x, float y, float r);
/**
* Test whether the given axis-aligned rectangle is partly or completely within or outside of the frustum defined by <code>this</code> matrix.
* The rectangle is specified via its min and max corner coordinates.
* <p>
* This method assumes <code>this</code> matrix to be a transformation from any arbitrary coordinate system/space <code>M</code>
* into standard OpenGL clip space and tests whether the given axis-aligned rectangle with its minimum corner coordinates <code>(minX, minY, minZ)</code>
* and maximum corner coordinates <code>(maxX, maxY, maxZ)</code> given in space <code>M</code> is within the clip space.
* <p>
* Reference: <a href="http://old.cescg.org/CESCG-2002/DSykoraJJelinek/">Efficient View Frustum Culling</a>
* <br>
* Reference: <a href="http://gamedevs.org/uploads/fast-extraction-viewing-frustum-planes-from-world-view-projection-matrix.pdf">
* Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix</a>
*
* @param minX
* the x-coordinate of the minimum corner
* @param minY
* the y-coordinate of the minimum corner
* @param maxX
* the x-coordinate of the maximum corner
* @param maxY
* the y-coordinate of the maximum corner
* @return <code>true</code> if the axis-aligned box is completely or partly inside of the frustum; <code>false</code> otherwise
*/
boolean testAar(float minX, float minY, float maxX, float maxY);
/**
* Compare the matrix elements of <code>this</code> matrix with the given matrix using the given <code>delta</code>
* and return whether all of them are equal within a maximum difference of <code>delta</code>.
* <p>
* Please note that this method is not used by any data structure such as {@link ArrayList} {@link HashSet} or {@link HashMap}
* and their operations, such as {@link ArrayList#contains(Object)} or {@link HashSet#remove(Object)}, since those
* data structures only use the {@link Object#equals(Object)} and {@link Object#hashCode()} methods.
*
* @param m
* the other matrix
* @param delta
* the allowed maximum difference
* @return <code>true</code> whether all of the matrix elements are equal; <code>false</code> otherwise
*/
boolean equals(Matrix3x2fc m, float delta);
/**
* Determine whether all matrix elements are finite floating-point values, that
* is, they are not {@link Float#isNaN() NaN} and not
* {@link Float#isInfinite() infinity}.
*
* @return {@code true} if all components are finite floating-point values;
* {@code false} otherwise
*/
boolean isFinite();
}