Pixel-Composer/shaders/sh_perlin_tiled/sh_perlin_tiled.fsh

85 lines
2.9 KiB
Text
Raw Normal View History

2022-01-13 05:24:03 +01:00
//
// Simple passthrough fragment shader
//
varying vec2 v_vTexcoord;
varying vec4 v_vColour;
uniform vec2 position;
uniform vec2 u_resolution;
uniform vec2 scale;
uniform int iteration;
2022-12-27 04:00:50 +01:00
uniform float seed;
2023-02-28 09:43:01 +01:00
uniform int tile;
2022-01-13 05:24:03 +01:00
2023-04-07 21:25:27 +02:00
uniform int colored;
uniform vec2 colorRanR;
uniform vec2 colorRanG;
uniform vec2 colorRanB;
vec3 hsv2rgb(vec3 c) {
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
2022-12-27 04:00:50 +01:00
float random (in vec2 st, float seed) {
2023-02-28 09:43:01 +01:00
return fract(sin(dot(st.xy + vec2(21.4564, 46.8564), vec2(12.9898, 78.233))) * (43758.5453123 + seed));
2022-01-13 05:24:03 +01:00
}
2023-02-28 09:43:01 +01:00
float noise (in vec2 st, in vec2 scale) {
vec2 cellMin = tile == 1? mod(floor(st), scale) : floor(st);
vec2 cellMax = tile == 1? mod(floor(st) + vec2(1., 1.), scale) : floor(st) + vec2(1., 1.);
2022-01-13 05:24:03 +01:00
vec2 f = fract(st);
// Four corners in 2D of a tile
2023-02-28 09:43:01 +01:00
float sedSt = floor(seed);
float sedFr = fract(seed);
float a = mix(random(vec2(cellMin.x, cellMin.y), sedSt), random(vec2(cellMin.x, cellMin.y), sedSt + 1.), sedFr);
float b = mix(random(vec2(cellMax.x, cellMin.y), sedSt), random(vec2(cellMax.x, cellMin.y), sedSt + 1.), sedFr);
float c = mix(random(vec2(cellMin.x, cellMax.y), sedSt), random(vec2(cellMin.x, cellMax.y), sedSt + 1.), sedFr);
float d = mix(random(vec2(cellMax.x, cellMax.y), sedSt), random(vec2(cellMax.x, cellMax.y), sedSt + 1.), sedFr);
2022-01-13 05:24:03 +01:00
// Cubic Hermine Curve. Same as SmoothStep()
vec2 u = f * f * (3.0 - 2.0 * f);
// Mix 4 coorners percentages
return mix(mix(a, b, u.x), mix(c, d, u.x), u.y);
}
2023-04-07 21:25:27 +02:00
float perlin(in vec2 st) {
2023-02-28 09:43:01 +01:00
float amp = pow(2., float(iteration) - 1.) / (pow(2., float(iteration)) - 1.);
2023-04-07 21:25:27 +02:00
float n = 0.;
vec2 pos = st;
vec2 sc = scale;
2022-01-13 05:24:03 +01:00
for(int i = 0; i < iteration; i++) {
2023-02-28 09:43:01 +01:00
n += noise(pos, sc) * amp;
2022-01-13 05:24:03 +01:00
2023-02-28 09:43:01 +01:00
sc *= 2.;
2022-01-13 05:24:03 +01:00
amp *= .5;
pos *= 2.;
}
2023-04-07 21:25:27 +02:00
return n;
}
void main() {
if(colored == 0) {
vec2 pos = (v_vTexcoord + position) * scale;
gl_FragColor = vec4(vec3(perlin(pos)), 1.0);
} else if(colored == 1) {
float randR = colorRanR[0] + perlin((v_vTexcoord + position) * scale) * (colorRanR[1] - colorRanR[0]);
float randG = colorRanG[0] + perlin((v_vTexcoord + position + vec2(1.7227, 4.55529)) * scale) * (colorRanG[1] - colorRanG[0]);
float randB = colorRanB[0] + perlin((v_vTexcoord + position + vec2(6.9950, 6.82063)) * scale) * (colorRanB[1] - colorRanB[0]);
gl_FragColor = vec4(randR, randG, randB, 1.0);
} else if(colored == 2) {
float randH = colorRanR[0] + perlin((v_vTexcoord + position) * scale) * (colorRanR[1] - colorRanR[0]);
float randS = colorRanG[0] + perlin((v_vTexcoord + position + vec2(1.7227, 4.55529)) * scale) * (colorRanG[1] - colorRanG[0]);
float randV = colorRanB[0] + perlin((v_vTexcoord + position + vec2(6.9950, 6.82063)) * scale) * (colorRanB[1] - colorRanB[0]);
gl_FragColor = vec4(hsv2rgb(vec3(randH, randS, randV)), 1.0);
}
2022-01-13 05:24:03 +01:00
}