Pixel-Composer/shaders/sh_rm_cloud/sh_rm_cloud.fsh

381 lines
10 KiB
Text
Raw Normal View History

2024-07-31 12:24:42 +02:00
//Inigo Quilez
//Oh where would I be without you.
varying vec2 v_vTexcoord;
varying vec4 v_vColour;
2024-08-02 04:57:52 +02:00
const int MAX_MARCHING_STEPS = 200;
2024-07-31 12:24:42 +02:00
const float EPSILON = 1e-6;
const float PI = 3.14159265358979323846;
uniform vec2 dimension;
2024-07-31 12:24:42 +02:00
uniform vec3 position;
uniform vec3 rotation;
uniform float objectScale;
uniform float fov;
uniform vec2 viewRange;
uniform int type;
2024-07-31 12:24:42 +02:00
uniform float density;
uniform int iteration;
uniform float threshold;
uniform int adaptiveIteration;
2024-08-02 04:57:52 +02:00
uniform int fogUse;
2024-07-31 12:24:42 +02:00
uniform float detailScale;
uniform float detailAtten;
mat3 rotMatrix, irotMatrix;
vec3 eye, dir;
2024-08-02 04:57:52 +02:00
#region //////////////////////////////////// GRADIENT ////////////////////////////////////
#define GRADIENT_LIMIT 128
uniform int gradient_blend;
uniform vec4 gradient_color[GRADIENT_LIMIT];
uniform float gradient_time[GRADIENT_LIMIT];
uniform int gradient_keys;
vec3 linearToGamma(vec3 c) { return pow(c, vec3( 2.2)); }
vec3 gammaToLinear(vec3 c) { return pow(c, vec3(1. / 2.2)); }
vec3 rgbMix(vec3 c1, vec3 c2, float t) {
vec3 k1 = linearToGamma(c1);
vec3 k2 = linearToGamma(c2);
return gammaToLinear(mix(k1, k2, t));
}
vec3 rgb2oklab(vec3 c) {
const mat3 kCONEtoLMS = mat3(
0.4121656120, 0.2118591070, 0.0883097947,
0.5362752080, 0.6807189584, 0.2818474174,
0.0514575653, 0.1074065790, 0.6302613616);
c = pow(c, vec3(2.2));
c = pow( kCONEtoLMS * c, vec3(1.0 / 3.0) );
return c;
}
vec3 oklab2rgb(vec3 c) {
const mat3 kLMStoCONE = mat3(
4.0767245293, -1.2681437731, -0.0041119885,
-3.3072168827, 2.6093323231, -0.7034763098,
0.2307590544, -0.3411344290, 1.7068625689);
c = kLMStoCONE * (c * c * c);
c = pow(c, vec3(1. / 2.2));
return c;
}
vec3 oklabMax(vec3 c1, vec3 c2, float t) {
vec3 k1 = rgb2oklab(c1);
vec3 k2 = rgb2oklab(c2);
return oklab2rgb(mix(k1, k2, t));
}
vec3 rgb2hsv(vec3 c) {
vec4 K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
vec4 p = mix(vec4(c.bg, K.wz), vec4(c.gb, K.xy), step(c.b, c.g));
vec4 q = mix(vec4(p.xyw, c.r), vec4(c.r, p.yzx), step(p.x, c.r));
float d = q.x - min(q.w, q.y);
float e = 0.0000000001;
return vec3(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x);
}
vec3 hsv2rgb(vec3 c) {
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
float hueDist(float a0, float a1, float t) {
float da = fract(a1 - a0);
float ds = fract(2. * da) - da;
return a0 + ds * t;
}
vec3 hsvMix(vec3 c1, vec3 c2, float t) {
vec3 h1 = rgb2hsv(c1);
vec3 h2 = rgb2hsv(c2);
vec3 h = vec3(0.);
h.x = h.x + hueDist(h1.x, h2.x, t);
h.y = mix(h1.y, h2.y, t);
h.z = mix(h1.z, h2.z, t);
return hsv2rgb(h);
}
vec4 gradientEval(in float prog) {
vec4 col = vec4(0.);
for(int i = 0; i < GRADIENT_LIMIT; i++) {
if(gradient_time[i] == prog) {
col = gradient_color[i];
break;
} else if(gradient_time[i] > prog) {
if(i == 0)
col = gradient_color[i];
else {
float t = (prog - gradient_time[i - 1]) / (gradient_time[i] - gradient_time[i - 1]);
vec3 c0 = gradient_color[i - 1].rgb;
vec3 c1 = gradient_color[i].rgb;
float a = mix(gradient_color[i - 1].a, gradient_color[i].a, t);
if(gradient_blend == 0)
col = vec4(mix(c0, c1, t), a);
else if(gradient_blend == 1)
col = gradient_color[i - 1];
else if(gradient_blend == 2)
col = vec4(hsvMix(c0, c1, t), a);
else if(gradient_blend == 3)
col = vec4(oklabMax(c0, c1, t), a);
else if(gradient_blend == 4)
col = vec4(rgbMix(c0, c1, t), a);
}
break;
}
if(i >= gradient_keys - 1) {
col = gradient_color[gradient_keys - 1];
break;
}
}
return col;
}
#endregion //////////////////////////////////// GRADIENT ////////////////////////////////////
2024-07-31 12:24:42 +02:00
#region ////========== Transform ============
mat3 rotateX(float dg) {
float c = cos(radians(dg));
float s = sin(radians(dg));
return mat3(
vec3(1, 0, 0),
vec3(0, c, -s),
vec3(0, s, c)
);
}
mat3 rotateY(float dg) {
float c = cos(radians(dg));
float s = sin(radians(dg));
return mat3(
vec3( c, 0, s),
vec3( 0, 1, 0),
vec3(-s, 0, c)
);
}
mat3 rotateZ(float dg) {
float c = cos(radians(dg));
float s = sin(radians(dg));
return mat3(
vec3(c, -s, 0),
vec3(s, c, 0),
vec3(0, 0, 1)
);
}
mat3 inverse(mat3 m) {
float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];
float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];
float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];
float b01 = a22 * a11 - a12 * a21;
float b11 = -a22 * a10 + a12 * a20;
float b21 = a21 * a10 - a11 * a20;
float det = a00 * b01 + a01 * b11 + a02 * b21;
return mat3(b01, (-a22 * a01 + a02 * a21), (a12 * a01 - a02 * a11),
b11, (a22 * a00 - a02 * a20), (-a12 * a00 + a02 * a10),
b21, (-a21 * a00 + a01 * a20), (a11 * a00 - a01 * a10)) / det;
}
#endregion
#region ////============= Noise ==============
2024-08-02 04:57:52 +02:00
vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec4 permute(vec4 x) { return mod289(((x * 34.0) + 10.0) * x); }
2024-07-31 12:24:42 +02:00
vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; }
float snoise(vec3 vec) {
vec3 v = vec * 4.;
const vec2 C = vec2(1.0 / 6.0, 1.0 / 3.0);
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy));
vec3 x0 = v - i + dot(i, C.xxx);
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min( g.xyz, l.zxy );
vec3 i2 = max( g.xyz, l.zxy );
// x0 = x0 - 0.0 + 0.0 * C.xxx;
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y
// Permutations
i = mod289(i);
vec4 p = permute( permute( permute(
i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
+ i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
+ i.x + vec4(0.0, i1.x, i2.x, 1.0 ));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
float n_ = 0.142857142857; // 1.0/7.0
vec3 ns = n_ * D.wyz - D.xzx;
vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)
vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)
vec4 x = x_ * ns.x + ns.yyyy;
vec4 y = y_ * ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4( x.xy, y.xy );
vec4 b1 = vec4( x.zw, y.zw );
//vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
vec4 s0 = floor(b0) * 2.0 + 1.0;
vec4 s1 = floor(b1) * 2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy ;
vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww ;
vec3 p0 = vec3(a0.xy, h.x);
vec3 p1 = vec3(a0.zw, h.y);
vec3 p2 = vec3(a1.xy, h.z);
vec3 p3 = vec3(a1.zw, h.w);
//Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec4 m = max(0.5 - vec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), 0.0);
m = m * m;
float n = 105.0 * dot( m * m, vec4( dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3) ) );
n = mix(0.0, 0.5 + 0.5 * n, smoothstep(0.0, 0.003, vec.z));
return n;
}
float simplex(in vec3 pos, in int itr) {
vec3 xyz = vec3(pos);
xyz.z = abs(xyz.z);
float amp = 1.;
float n = 0.;
float acc = 0.;
for(int i = 0; i < itr; i++) {
n += snoise(xyz) * amp;
acc += amp;
amp *= detailAtten;
xyz *= detailScale;
}
return n / acc;
}
#endregion
float volume(vec3 pos, float ratio) {
int it = adaptiveIteration == 1? int(max(1., ratio * float(iteration))) : iteration;
float ss = simplex(pos * 0.5, it / 2);
float sp = simplex(pos, it);
float thr = threshold;
float d1 = clamp(max(0., ss - thr) / (1. - thr), 0., 1.);
d1 = smoothstep(.2, .8, d1);
d1 *= clamp(1. - distance(pos, eye) / 16., 0., 1.);
float ds = clamp(max(0., sp - thr) / (1. - thr), 0., 1.);
ds *= d1;
2024-08-02 04:57:52 +02:00
if(fogUse == 1) ds *= sqrt(ratio);
2024-07-31 12:24:42 +02:00
if(type == 0) return ds;
else if(type == 1) return smoothstep(-.1, .1, pos.y) * ds;
return 0.;
2024-07-31 12:24:42 +02:00
}
2024-08-02 04:57:52 +02:00
vec3 marchDensity(in vec3 camera, in vec3 direction, out vec3 hitPos) {
2024-07-31 12:24:42 +02:00
float maxx = float(MAX_MARCHING_STEPS);
float st = 1. / maxx;
2024-08-02 04:57:52 +02:00
vec3 _densi = vec3(0.);
2024-07-31 12:24:42 +02:00
float dens = pow(2., 10. * density - 10.);
2024-08-02 04:57:52 +02:00
bool hitted = false;
2024-07-31 12:24:42 +02:00
for (float i = 0.; i <= maxx; i++) {
float depth = mix(viewRange.x, viewRange.y, i * st);
vec3 pos = camera + depth * direction;
float mden = volume(pos, 1. - i * st);
2024-08-02 04:57:52 +02:00
_densi += dens * gradientEval(mden).rgb;
if(!hitted && mden > 0.) {
hitPos = pos;
hitted = true;
}
2024-07-31 12:24:42 +02:00
}
return _densi;
}
void main() {
vec2 ntx = v_vTexcoord * vec2(1., dimension.y / dimension.x);
2024-07-31 12:24:42 +02:00
mat3 rx = rotateX(rotation.x);
mat3 ry = rotateY(rotation.y);
mat3 rz = rotateZ(rotation.z);
rotMatrix = rx * ry * rz;
irotMatrix = inverse(rotMatrix);
2024-07-31 12:24:42 +02:00
float z = 1. / tan(radians(fov) / 2.);
dir = normalize(vec3((ntx - .5) * 2., -z));
2024-07-31 12:24:42 +02:00
eye = vec3(0., 0., 5.);
dir = normalize(irotMatrix * dir) / objectScale;
eye = irotMatrix * eye;
eye /= objectScale;
eye -= position;
2024-08-02 04:57:52 +02:00
vec3 hitPos = vec3(0.);
vec3 rayDen = marchDensity(eye, dir, hitPos);
vec3 color = rayDen;
gl_FragColor = vec4(color, 1.);
2024-07-31 12:24:42 +02:00
}