mirror of
https://github.com/Ttanasart-pt/Pixel-Composer.git
synced 2025-01-04 03:16:20 +01:00
541 lines
17 KiB
Text
541 lines
17 KiB
Text
|
/// oklch conversion by dkaraush
|
||
|
/// https://gist[1]ithub.com/dkaraush/65d19d61396f5f3cd8ba7d1b4b3c9432
|
||
|
|
||
|
function multiplyMatrices(A, b) {
|
||
|
return [
|
||
|
A[0] * b[0] + A[1] * b[1] + A[2] * b[2],
|
||
|
A[3] * b[0] + A[4] * b[1] + A[5] * b[2],
|
||
|
A[6] * b[0] + A[7] * b[1] + A[8] * b[2]
|
||
|
];
|
||
|
}
|
||
|
|
||
|
function oklch2oklab(lch) {
|
||
|
var l = lch[0];
|
||
|
var c = lch[1];
|
||
|
var h = lch[2];
|
||
|
|
||
|
return [
|
||
|
l,
|
||
|
is_nan(h) ? 0 : c * dcos(h),
|
||
|
is_nan(h) ? 0 : c * dsin(h)
|
||
|
];
|
||
|
}
|
||
|
|
||
|
function oklab2oklch(lab) {
|
||
|
var l = lab[0];
|
||
|
var a = lab[1];
|
||
|
var b = lab[2];
|
||
|
|
||
|
return [
|
||
|
l,
|
||
|
sqrt(a * a + b * b),
|
||
|
abs(a) < 0.0002 && abs(b) < 0.0002 ? NaN : (radtodeg(arctan2(b, a)) % 360 + 360) % 360
|
||
|
];
|
||
|
}
|
||
|
|
||
|
function rgb2srgbLinear(rgb) {
|
||
|
var result = [];
|
||
|
for (var i = 0; i < 3; i++) {
|
||
|
var c = rgb[i];
|
||
|
result[i] = abs(c) <= 0.04045 ? c / 12.92 : (c < 0 ? -1 : 1) * power((abs(c) + 0.055) / 1.055, 2.4);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
function srgbLinear2rgb(rgb) {
|
||
|
var result = [];
|
||
|
for (var i = 0; i < 3; i++) {
|
||
|
var c = rgb[i];
|
||
|
result[i] = abs(c) > 0.0031308 ? (c < 0 ? -1 : 1) * (1.055 * power(abs(c), 1 / 2.4) - 0.055) : 12.92 * c;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
function oklab2xyz(lab) {
|
||
|
var LMSg = multiplyMatrices([
|
||
|
1, 0.3963377773761749, 0.2158037573099136,
|
||
|
1, -0.1055613458156586, -0.0638541728258133,
|
||
|
1, -0.0894841775298119, -1.2914855480194092,
|
||
|
], lab);
|
||
|
|
||
|
var LMS = [
|
||
|
power(LMSg[0], 3),
|
||
|
power(LMSg[1], 3),
|
||
|
power(LMSg[2], 3),
|
||
|
];
|
||
|
|
||
|
return multiplyMatrices([
|
||
|
1.2268798758459243, -0.5578149944602171, 0.2813910456659647,
|
||
|
-0.0405757452148008, 1.1122868032803170, -0.0717110580655164,
|
||
|
// -0.0763729497467214, -0.4214933239627914, 1.5869240244272418,
|
||
|
-0.0763729366746601, -0.4214933324022432, 1.5869240198367816,
|
||
|
], LMS);
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
function xyz2oklab(xyz) {
|
||
|
var LMS = multiplyMatrices([
|
||
|
0.8190224379967030, 0.3619062600528904, -0.1288737815209879,
|
||
|
0.0329836539323885, 0.9292868615863434, 0.0361446663506424,
|
||
|
0.0481771893596242, 0.2642395317527308, 0.6335478284694309
|
||
|
], xyz);
|
||
|
|
||
|
var LMSg = [
|
||
|
power(LMS[0], 1 / 3),
|
||
|
power(LMS[1], 1 / 3),
|
||
|
power(LMS[2], 1 / 3),
|
||
|
];
|
||
|
|
||
|
return multiplyMatrices([
|
||
|
0.2104542683093140, 0.7936177747023054, -0.0040720430116193,
|
||
|
1.9779985324311684, -2.4285922420485799, 0.4505937096174110,
|
||
|
0.0259040424655478, 0.7827717124575296, -0.8086757549230774
|
||
|
], LMSg);
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
// function xyz2rgbLinear(xyz) {
|
||
|
// return multiplyMatrices([
|
||
|
// 3.2409699419045226, -1.537383177570094, -0.4986107602930034,
|
||
|
// -0.9692436362808796, 1.8759675015077202, 0.04155505740717559,
|
||
|
// 0.05563007969699366, -0.20397695888897652, 1.0569715142428786
|
||
|
// ], xyz);
|
||
|
// }
|
||
|
|
||
|
// function rgbLinear2xyz(rgb) {
|
||
|
// return multiplyMatrices([
|
||
|
// 0.41239079926595934, 0.357584339383878, 0.1804807884018343,
|
||
|
// 0.21263900587151027, 0.715168678767756, 0.07219231536073371,
|
||
|
// 0.01933081871559182, 0.11919477979462598, 0.9505321522496607
|
||
|
// ], rgb);
|
||
|
// }
|
||
|
|
||
|
// function oklch2rgb(lch) { return srgbLinear2rgb(xyz2rgbLinear(oklab2xyz(oklch2oklab(lch)))); }
|
||
|
// function rgb2oklch(rgb) { return oklab2oklch(xyz2oklab(rgbLinear2xyz(rgb2srgbLinear(rgb)))); }
|
||
|
|
||
|
/// oklab conversion by Björn Ottosson (Oklab OP)
|
||
|
/// https://bottosson[1]ithub.io/posts/oklab/
|
||
|
// black - white is not fix to 0 - 1
|
||
|
|
||
|
function linear_srgb_to_oklab(rgb){
|
||
|
var r = rgb[0];
|
||
|
var g = rgb[1];
|
||
|
var b = rgb[2];
|
||
|
|
||
|
var l = 0.4122214708 * r + 0.5363325363 * g + 0.0514459929 * b;
|
||
|
var m = 0.2119034982 * r + 0.6806995451 * g + 0.1073969566 * b;
|
||
|
var s = 0.0883024619 * r + 0.2817188376 * g + 0.6299787005 * b;
|
||
|
|
||
|
var l_ = power(l, 1 / 3);
|
||
|
var m_ = power(m, 1 / 3);
|
||
|
var s_ = power(s, 1 / 3);
|
||
|
|
||
|
return [
|
||
|
0.2104542683093140 * l_ + 0.7936177747023054 * m_ - 0.0040720430116193 * s_,
|
||
|
1.9779985324311684 * l_ - 2.4285922420485799 * m_ + 0.4505937096174110 * s_,
|
||
|
0.0259040424655478 * l_ + 0.7827717124575296 * m_ - 0.8086757549230774 * s_,
|
||
|
];
|
||
|
}
|
||
|
|
||
|
function oklab_to_linear_srgb(lab) {
|
||
|
var L = lab[0];
|
||
|
var a = lab[1];
|
||
|
var b = lab[2];
|
||
|
|
||
|
var l_ = L + 0.3963377774 * a + 0.2158037573 * b;
|
||
|
var m_ = L - 0.1055613458 * a - 0.0638541728 * b;
|
||
|
var s_ = L - 0.0894841775 * a - 1.2914855480 * b;
|
||
|
|
||
|
var l = power(l_, 3);
|
||
|
var m = power(m_, 3);
|
||
|
var s = power(s_, 3);
|
||
|
|
||
|
return [
|
||
|
+4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s,
|
||
|
-1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s,
|
||
|
-0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s,
|
||
|
];
|
||
|
}
|
||
|
|
||
|
// function oklch2rgb(lch) { return srgbLinear2rgb(oklab_to_linear_srgb(oklch2oklab(lch))); }
|
||
|
// function rgb2oklch(rgb) { return oklab2oklch(linear_srgb_to_oklab(rgb2srgbLinear(rgb))); }
|
||
|
|
||
|
/// oklab conversion by Color.js
|
||
|
/// https://github.com/color-js/color.js/blob/main/src/spaces/oklab.js
|
||
|
|
||
|
// function xyz_to_oklab(rgb){
|
||
|
// static XYZtoLMS_M = [
|
||
|
// 0.8190224379967030, 0.3619062600528904, -0.1288737815209879,
|
||
|
// 0.0329836539323885, 0.9292868615863434, 0.0361446663506424,
|
||
|
// 0.0481771893596242, 0.2642395317527308, 0.6335478284694309,
|
||
|
// ];
|
||
|
|
||
|
// static LMStoLab_M = [
|
||
|
// 0.2104542683093140, 0.7936177747023054, -0.0040720430116193,
|
||
|
// 1.9779985324311684, -2.4285922420485799, 0.4505937096174110,
|
||
|
// 0.0259040424655478, 0.7827717124575296, -0.8086757549230774,
|
||
|
// ];
|
||
|
|
||
|
// rgb = multiplyMatrices(XYZtoLMS_M, rgb);
|
||
|
|
||
|
// rgb[0] = power(rgb[0], 1 / 3);
|
||
|
// rgb[1] = power(rgb[1], 1 / 3);
|
||
|
// rgb[2] = power(rgb[2], 1 / 3);
|
||
|
|
||
|
// return multiplyMatrices(LMStoLab_M, rgb);
|
||
|
// }
|
||
|
|
||
|
// function oklab_to_xyz(lab) {
|
||
|
// static LabtoLMS_M = [
|
||
|
// 1.0000000000000000, 0.3963377773761749, 0.2158037573099136,
|
||
|
// 1.0000000000000000, -0.1055613458156586, -0.0638541728258133,
|
||
|
// 1.0000000000000000, -0.0894841775298119, -1.2914855480194092,
|
||
|
// ];
|
||
|
|
||
|
// static LMStoXYZ_M = [
|
||
|
// 1.2268798758459243, -0.5578149944602171, 0.2813910456659647,
|
||
|
// -0.0405757452148008, 1.1122868032803170, -0.0717110580655164,
|
||
|
// -0.0763729366746601, -0.4214933324022432, 1.5869240198367816,
|
||
|
// ];
|
||
|
|
||
|
// lab = multiplyMatrices(LabtoLMS_M, lab);
|
||
|
|
||
|
// lab[0] = power(lab[0], 3);
|
||
|
// lab[1] = power(lab[1], 3);
|
||
|
// lab[2] = power(lab[2], 3);
|
||
|
|
||
|
// return multiplyMatrices(LMStoXYZ_M, lab);
|
||
|
// }
|
||
|
|
||
|
// function oklch2rgb(lch) { return srgbLinear2rgb(xyz2rgbLinear(oklab_to_xyz(oklch2oklab(lch)))); }
|
||
|
// function rgb2oklch(rgb) { return oklab2oklch(xyz_to_oklab(rgbLinear2xyz(rgb2srgbLinear(rgb)))); }
|
||
|
|
||
|
/// oklab conversion by Culori
|
||
|
/// https://github.com/Evercoder/culori/blob/main/src/oklab/convertOklabToLrgb.js#L1
|
||
|
|
||
|
function convertOklabToLrgb(lab) {
|
||
|
var l = lab[0];
|
||
|
var a = lab[1];
|
||
|
var b = lab[2];
|
||
|
|
||
|
var L = power(l * 0.99999999845051981432 + 0.39633779217376785678 * a + 0.21580375806075880339 * b, 3 );
|
||
|
var M = power(l * 1.0000000088817607767 - 0.1055613423236563494 * a - 0.063854174771705903402 * b, 3 );
|
||
|
var S = power(l * 1.0000000546724109177 - 0.089484182094965759684 * a - 1.2914855378640917399 * b, 3 );
|
||
|
|
||
|
return [ +4.076741661347994 * L - 3.307711590408193 * M + 0.230969928729428 * S,
|
||
|
-1.2684380040921763 * L + 2.6097574006633715 * M - 0.3413193963102197 * S,
|
||
|
-0.004196086541837188 * L - 0.7034186144594493 * M + 1.7076147009309444 * S
|
||
|
];
|
||
|
}
|
||
|
|
||
|
function convertLrgbToOklab(rgb) {
|
||
|
var r = rgb[0];
|
||
|
var g = rgb[1];
|
||
|
var b = rgb[2];
|
||
|
|
||
|
var L = power( 0.41222147079999993 * r + 0.5363325363 * g + 0.0514459929 * b, 1 / 3);
|
||
|
var M = power( 0.2119034981999999 * r + 0.6806995450999999 * g + 0.1073969566 * b, 1 / 3);
|
||
|
var S = power( 0.08830246189999998 * r + 0.2817188376 * g + 0.6299787005000002 * b, 1 / 3);
|
||
|
|
||
|
return [
|
||
|
0.2104542553 * L + 0.793617785 * M - 0.0040720468 * S,
|
||
|
1.9779984951 * L - 2.428592205 * M + 0.4505937099 * S,
|
||
|
0.0259040371 * L + 0.7827717662 * M - 0.808675766 * S
|
||
|
]
|
||
|
};
|
||
|
|
||
|
function oklch2rgb(lch) { return srgbLinear2rgb(convertOklabToLrgb(oklch2oklab(lch))); }
|
||
|
function rgb2oklch(rgb) { return oklab2oklch(convertLrgbToOklab(rgb2srgbLinear(rgb))); }
|
||
|
|
||
|
|
||
|
//////////////////////////////////////////////////// Gamut intersection ////////////////////////////////////////////////////
|
||
|
|
||
|
/// Björn Ottosson
|
||
|
/// https://bottosson[1]ithub.io/posts/gamutclipping/
|
||
|
|
||
|
// Finds the maximum saturation possible for a given hue that fits in sRGB
|
||
|
// Saturation here is defined as S = C/L
|
||
|
// a and b must be normalized so a^2 + b^2 == 1
|
||
|
function compute_max_saturation(a, b) {
|
||
|
// Max saturation will be when one of r, g or b goes below zero.
|
||
|
|
||
|
// Select different coefficients depending on which component goes below zero first
|
||
|
var k0, k1, k2, k3, k4, wl, wm, ws;
|
||
|
|
||
|
if (-1.88170328 * a - 0.80936493 * b > 1) {
|
||
|
// Red component
|
||
|
k0 = +1.19086277; k1 = +1.76576728; k2 = +0.59662641; k3 = +0.75515197; k4 = +0.56771245;
|
||
|
wl = +4.0767416621; wm = -3.3077115913; ws = +0.2309699292;
|
||
|
|
||
|
} else if (1.81444104 * a - 1.19445276 * b > 1) {
|
||
|
// Green component
|
||
|
k0 = +0.73956515; k1 = -0.45954404; k2 = +0.08285427; k3 = +0.12541070; k4 = +0.14503204;
|
||
|
wl = -1.2684380046; wm = +2.6097574011; ws = -0.3413193965;
|
||
|
|
||
|
} else {
|
||
|
// Blue component
|
||
|
k0 = +1.35733652; k1 = -0.00915799; k2 = -1.15130210; k3 = -0.50559606; k4 = +0.00692167;
|
||
|
wl = -0.0041960863; wm = -0.7034186147; ws = +1.7076147010;
|
||
|
}
|
||
|
|
||
|
// Approximate max saturation using a polynomial:
|
||
|
var S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b;
|
||
|
|
||
|
// Do one step Halley's method to get closer
|
||
|
// this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite
|
||
|
// this should be sufficient for most applications, otherwise do two/three steps
|
||
|
|
||
|
var k_l = +0.3963377774 * a + 0.2158037573 * b;
|
||
|
var k_m = -0.1055613458 * a - 0.0638541728 * b;
|
||
|
var k_s = -0.0894841775 * a - 1.2914855480 * b;
|
||
|
|
||
|
var l_ = 1. + S * k_l;
|
||
|
var m_ = 1. + S * k_m;
|
||
|
var s_ = 1. + S * k_s;
|
||
|
|
||
|
var l = l_ * l_ * l_;
|
||
|
var m = m_ * m_ * m_;
|
||
|
var s = s_ * s_ * s_;
|
||
|
|
||
|
var l_dS = 3. * k_l * l_ * l_;
|
||
|
var m_dS = 3. * k_m * m_ * m_;
|
||
|
var s_dS = 3. * k_s * s_ * s_;
|
||
|
|
||
|
var l_dS2 = 6. * k_l * k_l * l_;
|
||
|
var m_dS2 = 6. * k_m * k_m * m_;
|
||
|
var s_dS2 = 6. * k_s * k_s * s_;
|
||
|
|
||
|
var f = wl * l + wm * m + ws * s;
|
||
|
var f1 = wl * l_dS + wm * m_dS + ws * s_dS;
|
||
|
var f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2;
|
||
|
|
||
|
S = S - f * f1 / (f1 * f1 - 0.5 * f * f2);
|
||
|
|
||
|
return S;
|
||
|
}
|
||
|
|
||
|
// finds L_cusp and C_cusp for a given hue
|
||
|
// a and b must be normalized so a^2 + b^2 == 1
|
||
|
// struct LC { var L; var C; };
|
||
|
function find_cusp(a, b) {
|
||
|
// First, find the maximum saturation (saturation S = C/L)
|
||
|
var S_cusp = compute_max_saturation(a, b);
|
||
|
|
||
|
// Convert to linear sRGB to find the first point where at least one of r,g or b >= 1:
|
||
|
var rgb_at_max = oklab_to_linear_srgb([ 1, S_cusp * a, S_cusp * b ]);
|
||
|
var L_cusp = power(1 / max(rgb_at_max[0], rgb_at_max[1], rgb_at_max[2]), 1 / 3);
|
||
|
var C_cusp = L_cusp * S_cusp;
|
||
|
|
||
|
return [ L_cusp , C_cusp ];
|
||
|
}
|
||
|
|
||
|
// Finds intersection of the line defined by
|
||
|
// L = L0 * (1 - t) + t * L1;
|
||
|
// C = t * C1;
|
||
|
// a and b must be normalized so a^2 + b^2 == 1
|
||
|
function find_gamut_intersection(a, b, L1, C1, L0) {
|
||
|
// Find the cusp of the gamut triangle
|
||
|
var cusp = find_cusp(a, b);
|
||
|
|
||
|
// Find the intersection for upper and lower half seprately
|
||
|
var t;
|
||
|
if (((L1 - L0) * cusp[1] - (cusp[0] - L0) * C1) <= 0.) {
|
||
|
// Lower half
|
||
|
t = cusp[1] * L0 / (C1 * cusp[0] + cusp[1] * (L0 - L1));
|
||
|
|
||
|
} else {
|
||
|
// Upper half
|
||
|
|
||
|
// First intersect with triangle
|
||
|
t = cusp[1] * (L0 - 1.) / (C1 * (cusp[0] - 1.) + cusp[1] * (L0 - L1));
|
||
|
|
||
|
// Then one step Halley's method
|
||
|
var dL = L1 - L0;
|
||
|
var dC = C1;
|
||
|
|
||
|
var k_l = +0.3963377774 * a + 0.2158037573 * b;
|
||
|
var k_m = -0.1055613458 * a - 0.0638541728 * b;
|
||
|
var k_s = -0.0894841775 * a - 1.2914855480 * b;
|
||
|
|
||
|
var l_dt = dL + dC * k_l;
|
||
|
var m_dt = dL + dC * k_m;
|
||
|
var s_dt = dL + dC * k_s;
|
||
|
|
||
|
// If higher accuracy is required, 2 or 3 iterations of the following block can be used:
|
||
|
var L = L0 * (1. - t) + t * L1;
|
||
|
var C = t * C1;
|
||
|
|
||
|
var l_ = L + C * k_l;
|
||
|
var m_ = L + C * k_m;
|
||
|
var s_ = L + C * k_s;
|
||
|
|
||
|
var l = l_ * l_ * l_;
|
||
|
var m = m_ * m_ * m_;
|
||
|
var s = s_ * s_ * s_;
|
||
|
|
||
|
var ldt = 3 * l_dt * l_ * l_;
|
||
|
var mdt = 3 * m_dt * m_ * m_;
|
||
|
var sdt = 3 * s_dt * s_ * s_;
|
||
|
|
||
|
var ldt2 = 6 * l_dt * l_dt * l_;
|
||
|
var mdt2 = 6 * m_dt * m_dt * m_;
|
||
|
var sdt2 = 6 * s_dt * s_dt * s_;
|
||
|
|
||
|
var r = 4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s - 1;
|
||
|
var r1 = 4.0767416621 * ldt - 3.3077115913 * mdt + 0.2309699292 * sdt;
|
||
|
var r2 = 4.0767416621 * ldt2 - 3.3077115913 * mdt2 + 0.2309699292 * sdt2;
|
||
|
|
||
|
var u_r = r1 / (r1 * r1 - 0.5 * r * r2);
|
||
|
var t_r = -r * u_r;
|
||
|
|
||
|
var g = -1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s - 1;
|
||
|
var g1 = -1.2684380046 * ldt + 2.6097574011 * mdt - 0.3413193965 * sdt;
|
||
|
var g2 = -1.2684380046 * ldt2 + 2.6097574011 * mdt2 - 0.3413193965 * sdt2;
|
||
|
|
||
|
var u_g = g1 / (g1 * g1 - 0.5 * g * g2);
|
||
|
var t_g = -g * u_g;
|
||
|
|
||
|
var b0 = -0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s - 1;
|
||
|
var b1 = -0.0041960863 * ldt - 0.7034186147 * mdt + 1.7076147010 * sdt;
|
||
|
var b2 = -0.0041960863 * ldt2 - 0.7034186147 * mdt2 + 1.7076147010 * sdt2;
|
||
|
|
||
|
var u_b = b1 / (b1 * b1 - 0.5 * b0 * b2);
|
||
|
var t_b = -b0 * u_b;
|
||
|
|
||
|
t_r = u_r >= 0. ? t_r : 99999.;
|
||
|
t_g = u_g >= 0. ? t_g : 99999.;
|
||
|
t_b = u_b >= 0. ? t_b : 99999.;
|
||
|
|
||
|
t += min(t_r, t_g, t_b);
|
||
|
}
|
||
|
|
||
|
return t;
|
||
|
}
|
||
|
|
||
|
//////////////////////////////////////////////////// Gamut clipping ////////////////////////////////////////////////////
|
||
|
|
||
|
function gamut_clip_preserve_chroma(rgb) {
|
||
|
if (rgb[0] < 1 && rgb[1] < 1 && rgb[2] < 1 && rgb[0] > 0 && rgb[1] > 0 && rgb[2] > 0)
|
||
|
return rgb;
|
||
|
|
||
|
var lab = linear_srgb_to_oklab(rgb);
|
||
|
|
||
|
var L = lab[0];
|
||
|
var eps = 0.00001;
|
||
|
var d = is_nan(lab[1]) || is_nan(lab[2])? 0 : sqrt(lab[1] * lab[1] + lab[2] * lab[2]);
|
||
|
var C = max(eps, d);
|
||
|
var a_ = lab[1] / C;
|
||
|
var b_ = lab[2] / C;
|
||
|
|
||
|
var L0 = clamp(L, 0, 1);
|
||
|
|
||
|
var t = find_gamut_intersection(a_, b_, L, C, L0);
|
||
|
var L_clipped = L0 * (1 - t) + t * L;
|
||
|
var C_clipped = t * C;
|
||
|
|
||
|
return oklab_to_linear_srgb([ L_clipped, C_clipped * a_, C_clipped * b_ ]);
|
||
|
}
|
||
|
|
||
|
function gamut_clip_project_to_0_5(rgb) {
|
||
|
if (rgb[0] < 1 && rgb[1] < 1 && rgb[2] < 1 && rgb[0] > 0 && rgb[1] > 0 && rgb[2] > 0)
|
||
|
return rgb;
|
||
|
|
||
|
var lab = linear_srgb_to_oklab(rgb);
|
||
|
|
||
|
var L = lab[0];
|
||
|
var eps = 0.00001;
|
||
|
var d = is_nan(lab[1]) || is_nan(lab[2])? 0 : sqrt(lab[1] * lab[1] + lab[2] * lab[2]);
|
||
|
var C = max(eps, d);
|
||
|
var a_ = lab[1] / C;
|
||
|
var b_ = lab[2] / C;
|
||
|
|
||
|
var L0 = 0.5;
|
||
|
|
||
|
var t = find_gamut_intersection(a_, b_, L, C, L0);
|
||
|
var L_clipped = L0 * (1 - t) + t * L;
|
||
|
var C_clipped = t * C;
|
||
|
|
||
|
return oklab_to_linear_srgb([ L_clipped, C_clipped * a_, C_clipped * b_ ]);
|
||
|
}
|
||
|
|
||
|
function gamut_clip_project_to_L_cusp(rgb) {
|
||
|
if (rgb[0] < 1 && rgb[1] < 1 && rgb[2] < 1 && rgb[0] > 0 && rgb[1] > 0 && rgb[2] > 0)
|
||
|
return rgb;
|
||
|
|
||
|
var lab = linear_srgb_to_oklab(rgb);
|
||
|
|
||
|
var L = lab[0];
|
||
|
var eps = 0.00001;
|
||
|
var d = is_nan(lab[1]) || is_nan(lab[2])? 0 : sqrt(lab[1] * lab[1] + lab[2] * lab[2]);
|
||
|
var C = max(eps, d);
|
||
|
var a_ = lab[1] / C;
|
||
|
var b_ = lab[2] / C;
|
||
|
|
||
|
// The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
|
||
|
var cusp = find_cusp(a_, b_);
|
||
|
|
||
|
var L0 = cusp[0];
|
||
|
var t = find_gamut_intersection(a_, b_, L, C, L0);
|
||
|
|
||
|
var L_clipped = L0 * (1 - t) + t * L;
|
||
|
var C_clipped = t * C;
|
||
|
|
||
|
return oklab_to_linear_srgb([ L_clipped, C_clipped * a_, C_clipped * b_ ]);
|
||
|
}
|
||
|
|
||
|
function gamut_clip_adaptive_L0_0_5(rgb, alpha = 0.05) {
|
||
|
if (rgb[0] < 1 && rgb[1] < 1 && rgb[2] < 1 && rgb[0] > 0 && rgb[1] > 0 && rgb[2] > 0)
|
||
|
return rgb;
|
||
|
|
||
|
var lab = linear_srgb_to_oklab(rgb);
|
||
|
|
||
|
var L = lab[0];
|
||
|
var eps = 0.00001;
|
||
|
var d = is_nan(lab[1]) || is_nan(lab[2])? 0 : sqrt(lab[1] * lab[1] + lab[2] * lab[2]);
|
||
|
var C = max(eps, d);
|
||
|
var a_ = lab[1] / C;
|
||
|
var b_ = lab[2] / C;
|
||
|
|
||
|
var Ld = L - 0.5;
|
||
|
var e1 = 0.5 + abs(Ld) + alpha * C;
|
||
|
var L0 = 0.5 *(1. + sign(Ld)*(e1 - sqrt(e1*e1 - 2. * abs(Ld))));
|
||
|
|
||
|
var t = find_gamut_intersection(a_, b_, L, C, L0);
|
||
|
var L_clipped = L0 * (1. - t) + t * L;
|
||
|
var C_clipped = t * C;
|
||
|
|
||
|
return oklab_to_linear_srgb([ L_clipped, C_clipped * a_, C_clipped * b_ ]);
|
||
|
}
|
||
|
|
||
|
function gamut_clip_adaptive_L0_L_cusp(rgb, alpha = 0.05) {
|
||
|
if (rgb[0] < 1 && rgb[1] < 1 && rgb[2] < 1 && rgb[0] > 0 && rgb[1] > 0 && rgb[2] > 0)
|
||
|
return rgb;
|
||
|
|
||
|
var lab = linear_srgb_to_oklab(rgb);
|
||
|
|
||
|
var L = lab[0];
|
||
|
var eps = 0.00001;
|
||
|
var d = is_nan(lab[1]) || is_nan(lab[2])? 0 : sqrt(lab[1] * lab[1] + lab[2] * lab[2]);
|
||
|
var C = max(eps, d);
|
||
|
var a_ = lab[1] / C;
|
||
|
var b_ = lab[2] / C;
|
||
|
|
||
|
// The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
|
||
|
var cusp = find_cusp(a_, b_);
|
||
|
|
||
|
var Ld = L - cusp[0];
|
||
|
var k = 2. * (Ld > 0 ? 1. - cusp[0] : cusp[0]);
|
||
|
|
||
|
var e1 = 0.5 * k + abs(Ld) + alpha * C / k;
|
||
|
var L0 = cusp[0] + 0.5 * (sign(Ld) * (e1 - sqrt(e1 * e1 - 2. * k * abs(Ld))));
|
||
|
|
||
|
var t = find_gamut_intersection(a_, b_, L, C, L0);
|
||
|
var L_clipped = L0 * (1. - t) + t * L;
|
||
|
var C_clipped = t * C;
|
||
|
|
||
|
return oklab_to_linear_srgb([ L_clipped, C_clipped * a_, C_clipped * b_ ]);
|
||
|
}
|