// // Simple passthrough fragment shader // varying vec2 v_vTexcoord; varying vec4 v_vColour; uniform vec2 position; uniform vec2 u_resolution; uniform vec2 scale; uniform int iteration; uniform float seed; uniform int tile; float random (in vec2 st, float seed) { return fract(sin(dot(st.xy + vec2(21.4564, 46.8564), vec2(12.9898, 78.233))) * (43758.5453123 + seed)); } float noise (in vec2 st, in vec2 scale) { vec2 cellMin = tile == 1? mod(floor(st), scale) : floor(st); vec2 cellMax = tile == 1? mod(floor(st) + vec2(1., 1.), scale) : floor(st) + vec2(1., 1.); vec2 f = fract(st); // Four corners in 2D of a tile float sedSt = floor(seed); float sedFr = fract(seed); float a = mix(random(vec2(cellMin.x, cellMin.y), sedSt), random(vec2(cellMin.x, cellMin.y), sedSt + 1.), sedFr); float b = mix(random(vec2(cellMax.x, cellMin.y), sedSt), random(vec2(cellMax.x, cellMin.y), sedSt + 1.), sedFr); float c = mix(random(vec2(cellMin.x, cellMax.y), sedSt), random(vec2(cellMin.x, cellMax.y), sedSt + 1.), sedFr); float d = mix(random(vec2(cellMax.x, cellMax.y), sedSt), random(vec2(cellMax.x, cellMax.y), sedSt + 1.), sedFr); // Cubic Hermine Curve. Same as SmoothStep() vec2 u = f * f * (3.0 - 2.0 * f); // Mix 4 coorners percentages return mix(mix(a, b, u.x), mix(c, d, u.x), u.y); } void main() { vec2 pos = (v_vTexcoord + position) * scale; float amp = pow(2., float(iteration) - 1.) / (pow(2., float(iteration)) - 1.); float n = 0.; vec2 sc = scale; for(int i = 0; i < iteration; i++) { n += noise(pos, sc) * amp; sc *= 2.; amp *= .5; pos *= 2.; } gl_FragColor = vec4(vec3(n), 1.0); }