#define PI 3.14159265359 varying vec2 v_vTexcoord; varying vec4 v_vColour; uniform vec2 dimension; uniform vec2 position; uniform vec2 scale; uniform float turbidity; uniform float azimuth; uniform float inclination; float saturatedDot( in vec3 a, in vec3 b ) { return max( dot( a, b ), 0.0 ); } vec3 computeSphericalCoordinates( in vec2 uv ) { float theta = uv.x * 2.0 * PI; float phi = uv.y * PI; return vec3(cos(theta) * sin(phi), sin(theta) * sin(phi), cos(phi)); } vec3 YxyToXYZ( in vec3 Yxy ) { float Y = Yxy.r; float x = Yxy.g; float y = Yxy.b; float X = x * ( Y / y ); float Z = ( 1.0 - x - y ) * ( Y / y ); return vec3(X,Y,Z); } vec3 XYZToRGB( in vec3 XYZ ) { // CIE/E mat3 M = mat3 ( 2.3706743, -0.9000405, -0.4706338, -0.5138850, 1.4253036, 0.0885814, 0.0052982, -0.0146949, 1.0093968 ); return XYZ * M; } vec3 YxyToRGB( in vec3 Yxy ) { vec3 XYZ = YxyToXYZ( Yxy ); vec3 RGB = XYZToRGB( XYZ ); return RGB; } void calculatePerezDistribution( in float t, out vec3 A, out vec3 B, out vec3 C, out vec3 D, out vec3 E ) { A = vec3( 0.1787 * t - 1.4630, -0.0193 * t - 0.2592, -0.0167 * t - 0.2608 ); B = vec3( -0.3554 * t + 0.4275, -0.0665 * t + 0.0008, -0.0950 * t + 0.0092 ); C = vec3( -0.0227 * t + 5.3251, -0.0004 * t + 0.2125, -0.0079 * t + 0.2102 ); D = vec3( 0.1206 * t - 2.5771, -0.0641 * t - 0.8989, -0.0441 * t - 1.6537 ); E = vec3( -0.0670 * t + 0.3703, -0.0033 * t + 0.0452, -0.0109 * t + 0.0529 ); } vec3 calculateZenithLuminanceYxy( in float t, in float thetaS ) { float chi = ( 4.0 / 9.0 - t / 120.0 ) * ( PI - 2.0 * thetaS ); float Yz = ( 4.0453 * t - 4.9710 ) * tan( chi ) - 0.2155 * t + 2.4192; float theta2 = thetaS * thetaS; float theta3 = theta2 * thetaS; float T = t; float T2 = t * t; float xz = ( 0.00165 * theta3 - 0.00375 * theta2 + 0.00209 * thetaS + 0.0) * T2 + (-0.02903 * theta3 + 0.06377 * theta2 - 0.03202 * thetaS + 0.00394) * T + ( 0.11693 * theta3 - 0.21196 * theta2 + 0.06052 * thetaS + 0.25886); float yz = ( 0.00275 * theta3 - 0.00610 * theta2 + 0.00317 * thetaS + 0.0) * T2 + (-0.04214 * theta3 + 0.08970 * theta2 - 0.04153 * thetaS + 0.00516) * T + ( 0.15346 * theta3 - 0.26756 * theta2 + 0.06670 * thetaS + 0.26688); return vec3( Yz, xz, yz ); } vec3 calculatePerezLuminanceYxy( in float theta, in float gamma, in vec3 A, in vec3 B, in vec3 C, in vec3 D, in vec3 E ) { return ( 1.0 + A * exp( B / cos( theta ) ) ) * ( 1.0 + C * exp( D * gamma ) + E * cos( gamma ) * cos( gamma ) ); } vec3 calculateSkyLuminanceRGB( in vec3 s, in vec3 e, in float t ) { vec3 A, B, C, D, E; calculatePerezDistribution( t, A, B, C, D, E ); float thetaS = acos( saturatedDot( s, vec3(0,1,0) ) ); float thetaE = acos( saturatedDot( e, vec3(0,1,0) ) ); float gammaE = acos( saturatedDot( s, e ) ); vec3 Yz = calculateZenithLuminanceYxy( t, thetaS ); vec3 fThetaGamma = calculatePerezLuminanceYxy( thetaE, gammaE, A, B, C, D, E ); vec3 fZeroThetaS = calculatePerezLuminanceYxy( 0.0, thetaS, A, B, C, D, E ); vec3 Yp = Yz * ( fThetaGamma / fZeroThetaS ); return YxyToRGB( Yp ); } void main() { vec2 uv = v_vTexcoord; uv = (uv - position / dimension); uv.y = 1. - uv.y; uv /= scale; vec3 sunDir = normalize( vec3( sin( inclination ) * cos( azimuth ), cos( inclination ), sin( inclination ) * sin(azimuth) ) ); vec3 viewDir = -computeSphericalCoordinates( uv ).xzy; vec3 skyLuminance = calculateSkyLuminanceRGB( sunDir, viewDir, turbidity ); gl_FragColor = vec4( skyLuminance * 0.05, 1.0 ); }