// 2D Signed Distance equations by InigoQuilez varying vec2 v_vTexcoord; varying vec4 v_vColour; uniform int shape; uniform int bg; uniform int aa; uniform int sides; uniform int tile; uniform int drawBG; uniform int drawDF; uniform vec2 dfLevel; uniform float w_curve[1024]; uniform int w_amount; uniform float rotation; uniform float angle; uniform float inner; uniform float outer; uniform float corner; uniform float stRad; uniform float edRad; uniform float parall; uniform vec2 angle_range; uniform vec2 dimension; uniform vec2 center; uniform vec2 scale; uniform vec2 trep; uniform float shapeScale; uniform int teeth; uniform vec2 teethSize; uniform float teethAngle; uniform vec2 arrow; uniform float arrow_head; uniform vec4 bgColor; #define PI 3.14159265359 #define TAU 6.283185307179586 float ndot(vec2 a, vec2 b ) { return a.x*b.x - a.y*b.y; } float dot2(in vec2 v ) { return dot(v,v); } mat2 rot(in float ang) { return mat2(cos(ang), - sin(ang), sin(ang), cos(ang)); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// float eval_curve_segment_t(in float _y0, in float ax0, in float ay0, in float bx1, in float by1, in float _y1, in float prog) { return _y0 * pow(1. - prog, 3.) + ay0 * 3. * pow(1. - prog, 2.) * prog + by1 * 3. * (1. - prog) * pow(prog, 2.) + _y1 * pow(prog, 3.); } float eval_curve_segment_x(in float _y0, in float ax0, in float ay0, in float bx1, in float by1, in float _y1, in float _x) { float st = 0.; float ed = 1.; float _prec = 0.0001; float _xt = _x; int _binRep = 8; if(_x <= 0.) return _y0; if(_x >= 1.) return _y1; if(_y0 == ay0 && _y0 == by1 && _y0 == _y1) return _y0; for(int i = 0; i < _binRep; i++) { float _ftx = 3. * pow(1. - _xt, 2.) * _xt * ax0 + 3. * (1. - _xt) * pow(_xt, 2.) * bx1 + pow(_xt, 3.); if(abs(_ftx - _x) < _prec) return eval_curve_segment_t(_y0, ax0, ay0, bx1, by1, _y1, _xt); if(_xt < _x) st = _xt; else ed = _xt; _xt = (st + ed) / 2.; } int _newRep = 16; for(int i = 0; i < _newRep; i++) { float slope = ( 9. * ax0 - 9. * bx1 + 3.) * _xt * _xt + (-12. * ax0 + 6. * bx1) * _xt + 3. * ax0; float _ftx = 3. * pow(1. - _xt, 2.) * _xt * ax0 + 3. * (1. - _xt) * pow(_xt, 2.) * bx1 + pow(_xt, 3.) - _x; _xt -= _ftx / slope; if(abs(_ftx) < _prec) break; } _xt = clamp(_xt, 0., 1.); return eval_curve_segment_t(_y0, ax0, ay0, bx1, by1, _y1, _xt); } float curveEval(in float[1024] curve, in int amo, in float _x) { int _shf = amo - int(floor(float(amo) / 6.) * 6.); int _segs = (amo - _shf) / 6 - 1; float _shift = _shf > 0? curve[0] : 0.; float _scale = _shf > 1? curve[1] : 1.; _x = _x / _scale - _shift; _x = clamp(_x, 0., 1.); for( int i = 0; i < _segs; i++ ) { int ind = _shf + i * 6; float _x0 = curve[ind + 2]; float _y0 = curve[ind + 3]; //float bx0 = _x0 + curve[ind + 0]; //float by0 = _y0 + curve[ind + 1]; float ax0 = _x0 + curve[ind + 4]; float ay0 = _y0 + curve[ind + 5]; float _x1 = curve[ind + 6 + 2]; float _y1 = curve[ind + 6 + 3]; float bx1 = _x1 + curve[ind + 6 + 0]; float by1 = _y1 + curve[ind + 6 + 1]; //float ax1 = _x1 + curve[ind + 6 + 4]; //float ay1 = _y1 + curve[ind + 6 + 5]; if(_x < _x0) continue; if(_x > _x1) continue; return eval_curve_segment_x(_y0, ax0, ay0, bx1, by1, _y1, (_x - _x0) / (_x1 - _x0)); } return curve[0]; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// float sdRegularPolygon(in vec2 p, in float r, in int n, in float ang ) { // these 4 lines can be precomputed for a given shape float an = PI / float(n); vec2 acs = vec2(cos(an), sin(an)); // reduce to first sector float bn = mod(atan(p.x, p.y) + PI - ang, 2.0 * an) - an; p = length(p) * vec2(cos(bn), abs(sin(bn))); // line sdf p -= r * acs; p.y += clamp( -p.y, 0.0, r * acs.y); return length(p) * sign(p.x); } // signed distance to a n-star polygon with external angle en float sdStar(in vec2 p, in float r, in int n, in float m, in float ang) { //m=[2,n] // these 4 lines can be precomputed for a given shape float an = PI / float(n); float en = PI / m; vec2 acs = vec2(cos(an), sin(an)); vec2 ecs = vec2(cos(en), sin(en)); // ecs=vec2(0,1) and simplify, for regular polygon, // reduce to first sector float bn = mod( atan(p.x, p.y) + PI - ang, 2.0 * an) - an; p = length(p) * vec2(cos(bn), abs(sin(bn))); // line sdf p -= r * acs; p += ecs * clamp( -dot(p, ecs), 0.0, r * acs.y / ecs.y); return length(p)*sign(p.x); } // sca is the sin/cos of the orientation // scb is the sin/cos of the aperture float sdArc( in vec2 p, in vec2 sca, in vec2 scb, in float ra, in float rb ) { p *= mat2(sca.x, sca.y, -sca.y, sca.x); p.x = abs(p.x); float k = (scb.y * p.x > scb.x * p.y) ? dot(p.xy,scb) : length(p); return sqrt( dot(p, p) + ra * ra - 2.0 * ra * k ) - rb; } float sdSegment( in vec2 p, in vec2 a, in vec2 b ) { vec2 pa = p - a, ba = b - a; float h = clamp( dot(pa, ba) / dot(ba, ba), 0.0, 1.0 ); return length( pa - ba * h ); } float sdRoundBox( in vec2 p, in vec2 b, in vec4 r ) { r.xy = (p.x > 0.0)? r.xy : r.zw; r.x = (p.y > 0.0)? r.x : r.y; vec2 q = abs(p) - b + r.x; return min(max(q.x, q.y), 0.0) + length(max(q, 0.0)) - r.x; } float sdBox( in vec2 p, in vec2 b ) { vec2 d = abs(p) - b; return length(max(d, 0.0)) + min(max(d.x, d.y), 0.0); } float sdTearDrop( vec2 p, float r1, float r2, float h ) { p.x = abs(p.x); float b = (r1 - r2) / h; float a = sqrt(1.0 - b * b); float k = dot(p, vec2(-b, a)); if( k < 0.0 ) return length(p) - r1; if( k > a * h ) return length(p - vec2(0.0, h)) - r2; return dot(p, vec2(a, b) ) - r1; } float sdCross( in vec2 p, in vec2 b, float r ) { p = abs(p); p = (p.y > p.x) ? p.yx : p.xy; vec2 q = p - b; float k = max(q.y, q.x); vec2 w = (k > 0.0) ? q : vec2(b.y - p.x, -k); return sign(k) * length(max(w, 0.0)) + r; } float sdVesica(vec2 p, float r, float d) { p = abs(p); float b = sqrt(r * r - d * d); // can delay this sqrt by rewriting the comparison return ((p.y - b) * d > p.x * b) ? length(p - vec2(0.0, b)) * sign(d) : length(p - vec2(-d, 0.0)) - r; } float sdCrescent(vec2 p, float s, float c, float a) { float o = length(p) - 1.; float i = length(p - vec2(cos(a) * (1. - s * c), sin(a) * (1. - s * c))) / s - 1.; return max(o, -i); } float sdDonut(vec2 p, float s) { float o = length(p) - 1.; float i = length(p) / s - 1.; return max(o, -i); } float sdGear(vec2 p, float s, int teeth, vec2 teethSize, float teethAngle) { float teeth_w = teethSize.y; float teeth_h = teethSize.x; float s1; vec2 _p; float rad = 1. - teeth_w; float o = length(p) / rad- 1.; float i = length(p) / (rad * s) - 1.; float d = o; float _angSt = TAU / float(teeth); for(int i = 0; i < teeth; i++) { _p = p; _p = _p * rot(radians(teethAngle) + float(i) * _angSt); _p = _p - vec2(1. - teeth_w, .0); s1 = sdBox(_p, vec2(teeth_w, teeth_h)); d = min(d, s1); } d = max(d, -i); return d; } float sdRhombus( in vec2 p, in vec2 b ) { p = abs(p); float h = clamp( ndot(b - 2.0 * p,b) / dot(b, b), -1.0, 1.0 ); float d = length( p - 0.5 * b * vec2(1.0 - h, 1.0 + h) ); return d * sign( p.x * b.y + p.y * b.x - b.x * b.y ); } float sdTrapezoid( in vec2 p, in float r1, float r2, float he ) { vec2 k1 = vec2(r2, he); vec2 k2 = vec2(r2 - r1, 2.0 * he); p.x = abs(p.x); vec2 ca = vec2(p.x - min(p.x, (p.y < 0.0)? r1 : r2), abs(p.y) - he); vec2 cb = p - k1 + k2 * clamp( dot(k1 - p, k2) / dot2(k2), 0.0, 1.0 ); float s = (cb.x < 0.0 && ca.y < 0.0) ? -1.0 : 1.0; return s * sqrt( min(dot2(ca), dot2(cb)) ); } float sdParallelogram( in vec2 p, float wi, float he, float sk ) { vec2 e = vec2(sk, he); p = (p.y < 0.0)? -p : p; vec2 w = p - e; w.x -= clamp(w.x, -wi, wi); vec2 d = vec2(dot(w, w), -w.y); float s = p.x * e.y - p.y * e.x; p = (s < 0.0)? -p : p; vec2 v = p - vec2(wi, 0); v -= e * clamp(dot(v, e) / dot(e, e), -1.0, 1.0); d = min( d, vec2(dot(v, v), wi * he - abs(s))); return sqrt(d.x) * sign(-d.y); } float sdHeart( in vec2 p ) { p.x = abs(p.x); p.y = -p.y + 0.9; p /= 1.65; if( p.y+p.x>1.0 ) return sqrt(dot2(p-vec2(0.25,0.75))) - sqrt(2.0)/4.0; return sqrt(min(dot2(p-vec2(0.00,1.00)), dot2(p-0.5*max(p.x+p.y,0.0)))) * sign(p.x-p.y); } float sdCutDisk( in vec2 p, in float r, in float h ) { float w = sqrt(r*r-h*h); // constant for any given shape p.x = abs(p.x); float s = max( (h-r)*p.x*p.x+w*w*(h+r-2.0*p.y), h*p.x-w*p.y ); return (s<0.0) ? length(p)-r : (p.x0.0 ) // conditional is optional { q = pz; q -= vec2(k,-1.0)*clamp( (q.x*k-q.y)/(k*k+1.0), 0.0, w2 ); di = min( di, dot(q,q) ); } // === sign === float si = 1.0; float z = l - p.x; if( min(p.x,z)>0.0 ) //if( p.x>0.0 && z>0.0 ) { float h = (pz.x<0.0) ? w1 : z/k; if( p.y