// // Simple passthrough fragment shader // varying vec2 v_vTexcoord; varying vec4 v_vColour; #define GRADIENT_LIMIT 128 uniform float seed; uniform float strength; uniform float dist; uniform int useMap; uniform sampler2D strengthMap; uniform int gradient_blend; uniform vec4 gradient_color[GRADIENT_LIMIT]; uniform float gradient_time[GRADIENT_LIMIT]; uniform int gradient_keys; uniform int gradient_use_map; uniform vec4 gradient_map_range; uniform sampler2D gradient_map; uniform float alpha_curve[64]; uniform int curve_amount; uniform float randomAmount; float eval_curve_segment_t(in float _y0, in float ax0, in float ay0, in float bx1, in float by1, in float _y1, in float prog) { return _y0 * pow(1. - prog, 3.) + ay0 * 3. * pow(1. - prog, 2.) * prog + by1 * 3. * (1. - prog) * pow(prog, 2.) + _y1 * pow(prog, 3.); } float eval_curve_segment_x(in float _y0, in float ax0, in float ay0, in float bx1, in float by1, in float _y1, in float _x) { float st = 0.; float ed = 1.; float _prec = 0.0001; float _xt = _x; int _binRep = 8; if(_x <= 0.) return _y0; if(_x >= 1.) return _y1; if(_y0 == ay0 && _y0 == by1 && _y0 == _y1) return _y0; for(int i = 0; i < _binRep; i++) { float _ftx = 3. * pow(1. - _xt, 2.) * _xt * ax0 + 3. * (1. - _xt) * pow(_xt, 2.) * bx1 + pow(_xt, 3.); if(abs(_ftx - _x) < _prec) return eval_curve_segment_t(_y0, ax0, ay0, bx1, by1, _y1, _xt); if(_xt < _x) st = _xt; else ed = _xt; _xt = (st + ed) / 2.; } int _newRep = 8; for(int i = 0; i < _newRep; i++) { float slope = (9. * ax0 - 9. * bx1 + 3.) * _xt * _xt + (-12. * ax0 + 6. * bx1) * _xt + 3. * ax0; float _ftx = 3. * pow(1. - _xt, 2.) * _xt * ax0 + 3. * (1. - _xt) * pow(_xt, 2.) * bx1 + pow(_xt, 3.) - _x; _xt -= _ftx / slope; if(abs(_ftx) < _prec) break; } _xt = clamp(_xt, 0., 1.); return eval_curve_segment_t(_y0, ax0, ay0, bx1, by1, _y1, _xt); } float curveEval(in float _x) { _x = clamp(_x, 0., 1.); int segments = curve_amount / 6 - 1; for( int i = 0; i < segments; i++ ) { int ind = i * 6; float _x0 = alpha_curve[ind + 2]; float _y0 = alpha_curve[ind + 3]; //float bx0 = _x0 + alpha_curve[ind + 0]; //float by0 = _y0 + alpha_curve[ind + 1]; float ax0 = _x0 + alpha_curve[ind + 4]; float ay0 = _y0 + alpha_curve[ind + 5]; float _x1 = alpha_curve[ind + 6 + 2]; float _y1 = alpha_curve[ind + 6 + 3]; float bx1 = _x1 + alpha_curve[ind + 6 + 0]; float by1 = _y1 + alpha_curve[ind + 6 + 1]; //float ax1 = _x1 + alpha_curve[ind + 6 + 4]; //float ay1 = _y1 + alpha_curve[ind + 6 + 5]; if(_x < _x0) continue; if(_x > _x1) continue; return eval_curve_segment_x(_y0, ax0, ay0, bx1, by1, _y1, (_x - _x0) / (_x1 - _x0)); } return alpha_curve[0]; } vec3 rgb2hsv(vec3 c) { vec4 K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0); vec4 p = mix(vec4(c.bg, K.wz), vec4(c.gb, K.xy), step(c.b, c.g)); vec4 q = mix(vec4(p.xyw, c.r), vec4(c.r, p.yzx), step(p.x, c.r)); float d = q.x - min(q.w, q.y); float e = 0.0000000001; return vec3(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x); } vec3 hsv2rgb(vec3 c) { vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0); vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www); return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y); } float hueDist(float a0, float a1, float t) { float da = fract(a1 - a0); float ds = fract(2. * da) - da; return a0 + ds * t; } vec3 hsvMix(vec3 c1, vec3 c2, float t) { vec3 h1 = rgb2hsv(c1); vec3 h2 = rgb2hsv(c2); vec3 h = vec3(0.); h.x = h.x + hueDist(h1.x, h2.x, t); h.y = mix(h1.y, h2.y, t); h.z = mix(h1.z, h2.z, t); return hsv2rgb(h); } vec4 gradientEval(in float prog) { if(gradient_use_map == 1) { vec2 samplePos = mix(gradient_map_range.xy, gradient_map_range.zw, prog); return texture2D( gradient_map, samplePos ); } vec4 col = vec4(0.); for(int i = 0; i < GRADIENT_LIMIT; i++) { if(gradient_time[i] == prog) { col = gradient_color[i]; break; } else if(gradient_time[i] > prog) { if(i == 0) col = gradient_color[i]; else { float t = (prog - gradient_time[i - 1]) / (gradient_time[i] - gradient_time[i - 1]); if(gradient_blend == 0) col = mix(gradient_color[i - 1], gradient_color[i], t); else if(gradient_blend == 1) col = gradient_color[i - 1]; else if(gradient_blend == 2) col = vec4(hsvMix(gradient_color[i - 1].rgb, gradient_color[i].rgb, t), 1.); } break; } if(i >= gradient_keys - 1) { col = gradient_color[gradient_keys - 1]; break; } } return col; } float frandom (in vec2 st, in float _seed) { float f = fract(sin(dot(st.xy, vec2(12.9898, 78.233)) * mod(15.15 + seed, 32.156 + _seed) * 12.588) * 43758.5453123); return mix(-1., 1., f); } vec2 vrandom (in vec2 st) { return vec2(frandom(st, 165.874), frandom(st, 98.601)); } void main() { vec2 _pos = v_vTexcoord; float str = strength; vec2 _vec = vrandom(_pos) * str * dist; if(useMap == 1) { vec4 _map = texture2D( strengthMap, _pos); _vec.x *= _map.r; _vec.y *= _map.g; str *= dot(_map.rg, _map.rg); } str += frandom(_pos, 12.01) * abs(.1) * str; vec2 _new_pos = _pos - _vec; vec4 _col = vec4(0.); if(_new_pos.x >= 0. && _new_pos.x <= 1. && _new_pos.y >= 0. && _new_pos.y <= 1.) { _col = texture2D( gm_BaseTexture, _new_pos ); vec4 cc = gradientEval(str + frandom(_pos, 1.235) * randomAmount); _col.rgb *= cc.rgb; _col.a *= cc.a * curveEval(str + frandom(_pos, 2.984) * randomAmount); } gl_FragColor = _col; }