// // Simple passthrough fragment shader // varying vec2 v_vTexcoord; varying vec4 v_vColour; uniform vec2 dimension; uniform vec2 position; uniform float scale; uniform int pattern; uniform float time; uniform float contrast; uniform float middle; uniform float radiusScale; uniform float radiusShatter; #define PI 3.14159265359 #define TAU 6.283185307179586 vec2 random2( vec2 p ) { return fract(sin(vec2(dot(p, vec2(127.1, 311.7)), dot(p, vec2(269.5, 183.3)))) * 43758.5453); } float random (in vec2 st) { return fract(sin(dot(st.xy, vec2(12.9898, 78.233))) * 43758.5453123); } void main() { vec2 pos = position / dimension; vec2 st = v_vTexcoord - pos; vec3 color = vec3(.0); st *= scale; float m_dist = 1.; if(pattern == 0) { vec2 i_st = floor(st); vec2 f_st = fract(st); for (int y = -1; y <= 1; y++) { for (int x = -1; x <= 1; x++) { vec2 neighbor = vec2(float(x),float(y)); vec2 point = random2(i_st + neighbor); point = 0.5 + 0.5 * sin(time + 6.2831 * point); vec2 _diff = neighbor + point - f_st; float dist = length(_diff); m_dist = min(m_dist, dist); } } } else if(pattern == 1) { for (int j = 0; j <= int(scale / 2.); j++) { int _amo = int(scale) + int(float(j) * radiusShatter); for (int i = 0; i <= _amo; i++) { float ang = TAU / float(_amo) * float(i) + float(j) + random(vec2(0.684, 1.387)) + time; float rad = pow(float(j) / scale, radiusScale) * scale * .5 + random(vec2(ang)) * 0.1; vec2 point = vec2(cos(ang) * rad, sin(ang) * rad) + pos; vec2 _diff = point - v_vTexcoord; float dist = length(_diff); m_dist = min(m_dist, dist); } } } color += m_dist; vec3 c = middle + (color - middle) * contrast; gl_FragColor = vec4(c, 1.0); }