mirror of
https://github.com/Ttanasart-pt/Pixel-Composer.git
synced 2025-01-04 03:16:20 +01:00
490 lines
15 KiB
GLSL
490 lines
15 KiB
GLSL
// 2D Signed Distance equations by InigoQuilez
|
|
|
|
#ifdef _YY_HLSL11_
|
|
#define CURVE_MAX 1024
|
|
#else
|
|
#define CURVE_MAX 512
|
|
#endif
|
|
|
|
varying vec2 v_vTexcoord;
|
|
varying vec4 v_vColour;
|
|
|
|
uniform int shape;
|
|
uniform int bg;
|
|
uniform int aa;
|
|
uniform int sides;
|
|
uniform int tile;
|
|
|
|
uniform int drawBG;
|
|
uniform int drawDF;
|
|
uniform vec2 dfLevel;
|
|
uniform float w_curve[CURVE_MAX];
|
|
uniform int w_amount;
|
|
|
|
uniform float rotation;
|
|
uniform float angle;
|
|
uniform float inner;
|
|
uniform float outer;
|
|
uniform float corner;
|
|
|
|
uniform float stRad;
|
|
uniform float edRad;
|
|
uniform float parall;
|
|
|
|
uniform vec2 angle_range;
|
|
|
|
uniform vec2 dimension;
|
|
uniform vec2 center;
|
|
uniform vec2 scale;
|
|
uniform vec2 trep;
|
|
uniform float shapeScale;
|
|
uniform int endcap;
|
|
|
|
uniform int teeth;
|
|
uniform vec2 teethSize;
|
|
uniform float teethAngle;
|
|
|
|
uniform float arrow;
|
|
uniform float arrow_head;
|
|
uniform float squircle_factor;
|
|
|
|
uniform vec2 point1;
|
|
uniform vec2 point2;
|
|
uniform float thickness;
|
|
|
|
uniform vec4 bgColor;
|
|
|
|
#define PI 3.14159265359
|
|
#define TAU 6.283185307179586
|
|
|
|
float ndot(vec2 a, vec2 b ) { return a.x*b.x - a.y*b.y; }
|
|
float dot2(in vec2 v ) { return dot(v,v); }
|
|
|
|
mat2 rot(in float ang) { return mat2(cos(ang), - sin(ang), sin(ang), cos(ang)); }
|
|
|
|
float smin( float a, float b, float k ) {
|
|
if(k == 0.) return min(a, b);
|
|
k *= 1.0/(1.0-sqrt(0.5));
|
|
float h = max( k-abs(a-b), 0.0 )/k;
|
|
return min(a,b) - k*0.5*(1.0+h-sqrt(1.0-h*(h-2.0)));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
float eval_curve_segment_t(in float _y0, in float ax0, in float ay0, in float bx1, in float by1, in float _y1, in float prog) {
|
|
return _y0 * pow(1. - prog, 3.) +
|
|
ay0 * 3. * pow(1. - prog, 2.) * prog +
|
|
by1 * 3. * (1. - prog) * pow(prog, 2.) +
|
|
_y1 * pow(prog, 3.);
|
|
}
|
|
|
|
float eval_curve_segment_x(in float _y0, in float ax0, in float ay0, in float bx1, in float by1, in float _y1, in float _x) {
|
|
float st = 0.;
|
|
float ed = 1.;
|
|
float _prec = 0.0001;
|
|
|
|
float _xt = _x;
|
|
int _binRep = 8;
|
|
|
|
if(_x <= 0.) return _y0;
|
|
if(_x >= 1.) return _y1;
|
|
if(_y0 == ay0 && _y0 == by1 && _y0 == _y1) return _y0;
|
|
|
|
for(int i = 0; i < _binRep; i++) {
|
|
float _ftx = 3. * pow(1. - _xt, 2.) * _xt * ax0
|
|
+ 3. * (1. - _xt) * pow(_xt, 2.) * bx1
|
|
+ pow(_xt, 3.);
|
|
|
|
if(abs(_ftx - _x) < _prec)
|
|
return eval_curve_segment_t(_y0, ax0, ay0, bx1, by1, _y1, _xt);
|
|
|
|
if(_xt < _x) st = _xt;
|
|
else ed = _xt;
|
|
|
|
_xt = (st + ed) / 2.;
|
|
}
|
|
|
|
int _newRep = 16;
|
|
|
|
for(int i = 0; i < _newRep; i++) {
|
|
float slope = ( 9. * ax0 - 9. * bx1 + 3.) * _xt * _xt
|
|
+ (-12. * ax0 + 6. * bx1) * _xt
|
|
+ 3. * ax0;
|
|
float _ftx = 3. * pow(1. - _xt, 2.) * _xt * ax0
|
|
+ 3. * (1. - _xt) * pow(_xt, 2.) * bx1
|
|
+ pow(_xt, 3.)
|
|
- _x;
|
|
|
|
_xt -= _ftx / slope;
|
|
|
|
if(abs(_ftx) < _prec)
|
|
break;
|
|
}
|
|
|
|
_xt = clamp(_xt, 0., 1.);
|
|
return eval_curve_segment_t(_y0, ax0, ay0, bx1, by1, _y1, _xt);
|
|
}
|
|
|
|
float curveEval(in float[CURVE_MAX] curve, in int amo, in float _x) {
|
|
|
|
int _shf = amo - int(floor(float(amo) / 6.) * 6.);
|
|
int _segs = (amo - _shf) / 6 - 1;
|
|
float _shift = _shf > 0? curve[0] : 0.;
|
|
float _scale = _shf > 1? curve[1] : 1.;
|
|
|
|
_x = _x / _scale - _shift;
|
|
_x = clamp(_x, 0., 1.);
|
|
|
|
for( int i = 0; i < _segs; i++ ) {
|
|
int ind = _shf + i * 6;
|
|
float _x0 = curve[ind + 2];
|
|
float _y0 = curve[ind + 3];
|
|
//float bx0 = _x0 + curve[ind + 0];
|
|
//float by0 = _y0 + curve[ind + 1];
|
|
float ax0 = _x0 + curve[ind + 4];
|
|
float ay0 = _y0 + curve[ind + 5];
|
|
|
|
float _x1 = curve[ind + 6 + 2];
|
|
float _y1 = curve[ind + 6 + 3];
|
|
float bx1 = _x1 + curve[ind + 6 + 0];
|
|
float by1 = _y1 + curve[ind + 6 + 1];
|
|
//float ax1 = _x1 + curve[ind + 6 + 4];
|
|
//float ay1 = _y1 + curve[ind + 6 + 5];
|
|
|
|
if(_x < _x0) continue;
|
|
if(_x > _x1) continue;
|
|
|
|
return eval_curve_segment_x(_y0, ax0, ay0, bx1, by1, _y1, (_x - _x0) / (_x1 - _x0));
|
|
}
|
|
|
|
return curve[0];
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
float sdRegularPolygon(in vec2 p, in float r, in int n, in float ang ) {
|
|
// these 4 lines can be precomputed for a given shape
|
|
float an = PI / float(n);
|
|
vec2 acs = vec2(cos(an), sin(an));
|
|
|
|
// reduce to first sector
|
|
float bn = mod(atan(p.x, p.y) + PI - ang, 2.0 * an) - an;
|
|
p = length(p) * vec2(cos(bn), abs(sin(bn)));
|
|
|
|
// line sdf
|
|
p -= r * acs;
|
|
p.y += clamp( -p.y, 0.0, r * acs.y);
|
|
return length(p) * sign(p.x);
|
|
}
|
|
|
|
// signed distance to a n-star polygon with external angle en
|
|
float sdStar(in vec2 p, in float r, in int n, in float m, in float ang) { //m=[2,n]
|
|
// these 4 lines can be precomputed for a given shape
|
|
float an = PI / float(n);
|
|
float en = PI / m;
|
|
vec2 acs = vec2(cos(an), sin(an));
|
|
vec2 ecs = vec2(cos(en), sin(en)); // ecs=vec2(0,1) and simplify, for regular polygon,
|
|
|
|
// reduce to first sector
|
|
float bn = mod( atan(p.x, p.y) + PI - ang, 2.0 * an) - an;
|
|
p = length(p) * vec2(cos(bn), abs(sin(bn)));
|
|
|
|
// line sdf
|
|
p -= r * acs;
|
|
p += ecs * clamp( -dot(p, ecs), 0.0, r * acs.y / ecs.y);
|
|
return length(p)*sign(p.x);
|
|
}
|
|
|
|
// sca is the sin/cos of the orientation
|
|
// scb is the sin/cos of the aperture
|
|
float sdArc( in vec2 p, in vec2 sca, in vec2 scb, in float ra, in float rb ) {
|
|
p = -p;
|
|
p *= mat2(sca.x, sca.y, -sca.y, sca.x);
|
|
p.x = abs(p.x);
|
|
|
|
bool k = scb.y * p.x > scb.x * p.y;
|
|
|
|
if(endcap == 1) return (k? length(p - scb * ra) : abs(length(p) - ra)) - rb;
|
|
return (k? 1. : abs(length(p) - ra)) - rb;
|
|
}
|
|
|
|
float sdSegment( in vec2 p, in vec2 a, in vec2 b ) {
|
|
vec2 pa = p - a, ba = b - a;
|
|
float h = clamp( dot(pa, ba) / dot(ba, ba), 0.0, 1.0 );
|
|
return length( pa - ba * h );
|
|
}
|
|
|
|
float sdRoundBox( in vec2 p, in vec2 b, in vec4 r ) {
|
|
r.xy = (p.x > 0.0)? r.xy : r.zw;
|
|
r.x = (p.y > 0.0)? r.x : r.y;
|
|
vec2 q = abs(p) - b + r.x;
|
|
return min(max(q.x, q.y), 0.0) + length(max(q, 0.0)) - r.x;
|
|
}
|
|
|
|
float sdBox( in vec2 p, in vec2 b ) {
|
|
vec2 d = abs(p) - b;
|
|
return length(max(d, 0.0)) + min(max(d.x, d.y), 0.0);
|
|
}
|
|
|
|
float sdTearDrop( vec2 p, float r1, float r2, float h ) {
|
|
p.x = abs(p.x);
|
|
float b = (r1 - r2) / h;
|
|
float a = sqrt(1.0 - b * b);
|
|
float k = dot(p, vec2(-b, a));
|
|
if( k < 0.0 ) return length(p) - r1;
|
|
if( k > a * h ) return length(p - vec2(0.0, h)) - r2;
|
|
return dot(p, vec2(a, b) ) - r1;
|
|
}
|
|
|
|
float sdCross( in vec2 p, in vec2 b, float r ) {
|
|
p = abs(p);
|
|
p = (p.y > p.x) ? p.yx : p.xy;
|
|
vec2 q = p - b;
|
|
float k = max(q.y, q.x);
|
|
vec2 w = (k > 0.0) ? q : vec2(b.y - p.x, -k);
|
|
return sign(k) * length(max(w, 0.0)) + r;
|
|
}
|
|
|
|
float sdVesica(vec2 p, float r, float d) {
|
|
p = abs(p);
|
|
|
|
float b = sqrt(r * r - d * d); // can delay this sqrt by rewriting the comparison
|
|
return ((p.y - b) * d > p.x * b) ? length(p - vec2(0.0, b)) * sign(d)
|
|
: length(p - vec2(-d, 0.0)) - r;
|
|
}
|
|
|
|
float sdCrescent(vec2 p, float s, float c, float a) {
|
|
float o = length(p) - 1.;
|
|
float i = length(p - vec2(cos(a) * (1. - s * c), sin(a) * (1. - s * c))) / s - 1.;
|
|
|
|
return max(o, -i);
|
|
}
|
|
|
|
float sdDonut(vec2 p, float s) {
|
|
float o = length(p) - 1.;
|
|
float i = length(p) / s - 1.;
|
|
|
|
return max(o, -i);
|
|
}
|
|
|
|
float sdGear(vec2 p, float s, int teeth, vec2 teethSize, float teethAngle, float corner) {
|
|
|
|
float teeth_w = teethSize.y;
|
|
float teeth_h = teethSize.x;
|
|
float s1;
|
|
vec2 _p;
|
|
|
|
float rad = 1. - teeth_w;
|
|
float o = length(p) / rad- 1.;
|
|
float i = length(p) / (rad * s) - 1.;
|
|
float d = o;
|
|
|
|
float _angSt = TAU / float(teeth);
|
|
float irad = corner / max(dimension.x, dimension.y) * 16.;
|
|
|
|
for(int i = 0; i < teeth; i++) {
|
|
_p = p;
|
|
_p = _p * rot(radians(teethAngle) + float(i) * _angSt);
|
|
_p = _p - vec2(1. - teeth_w, .0);
|
|
|
|
s1 = sdRoundBox(_p, vec2(teeth_w, teeth_h), vec4(corner / 2., corner / 2., 0., 0.));
|
|
// d = min(d, s1);
|
|
d = smin(d, s1, irad);
|
|
}
|
|
|
|
d = max(d, -i);
|
|
|
|
return d;
|
|
}
|
|
|
|
float sdRhombus( in vec2 p, in vec2 b ) {
|
|
p = abs(p);
|
|
|
|
float h = clamp( ndot(b - 2.0 * p,b) / dot(b, b), -1.0, 1.0 );
|
|
float d = length( p - 0.5 * b * vec2(1.0 - h, 1.0 + h) );
|
|
|
|
return d * sign( p.x * b.y + p.y * b.x - b.x * b.y );
|
|
}
|
|
|
|
float sdTrapezoid( in vec2 p, in float r1, float r2, float he ) {
|
|
vec2 k1 = vec2(r2, he);
|
|
vec2 k2 = vec2(r2 - r1, 2.0 * he);
|
|
p.x = abs(p.x);
|
|
|
|
vec2 ca = vec2(p.x - min(p.x, (p.y < 0.0)? r1 : r2), abs(p.y) - he);
|
|
vec2 cb = p - k1 + k2 * clamp( dot(k1 - p, k2) / dot2(k2), 0.0, 1.0 );
|
|
float s = (cb.x < 0.0 && ca.y < 0.0) ? -1.0 : 1.0;
|
|
return s * sqrt( min(dot2(ca), dot2(cb)) );
|
|
}
|
|
|
|
float sdParallelogram( in vec2 p, float wi, float he, float sk ) {
|
|
vec2 e = vec2(sk, he);
|
|
p = (p.y < 0.0)? -p : p;
|
|
vec2 w = p - e; w.x -= clamp(w.x, -wi, wi);
|
|
vec2 d = vec2(dot(w, w), -w.y);
|
|
float s = p.x * e.y - p.y * e.x;
|
|
p = (s < 0.0)? -p : p;
|
|
vec2 v = p - vec2(wi, 0); v -= e * clamp(dot(v, e) / dot(e, e), -1.0, 1.0);
|
|
d = min( d, vec2(dot(v, v), wi * he - abs(s)));
|
|
return sqrt(d.x) * sign(-d.y);
|
|
}
|
|
|
|
float sdHeart( in vec2 p ) {
|
|
p.x = abs(p.x);
|
|
p.y = -p.y + 0.9;
|
|
p /= 1.65;
|
|
|
|
if( p.y+p.x>1.0 )
|
|
return sqrt(dot2(p-vec2(0.25,0.75))) - sqrt(2.0)/4.0;
|
|
return sqrt(min(dot2(p-vec2(0.00,1.00)),
|
|
dot2(p-0.5*max(p.x+p.y,0.0)))) * sign(p.x-p.y);
|
|
}
|
|
|
|
float sdCutDisk( in vec2 p, in float r, in float h ) {
|
|
float w = sqrt(r*r-h*h); // constant for any given shape
|
|
p.x = abs(p.x);
|
|
float s = max( (h-r)*p.x*p.x+w*w*(h+r-2.0*p.y), h*p.x-w*p.y );
|
|
return (s<0.0) ? length(p)-r :
|
|
(p.x<w) ? h - p.y :
|
|
length(p-vec2(w,h));
|
|
}
|
|
|
|
float sdPie( in vec2 p, in vec2 c, in float r ) {
|
|
p.x = abs(p.x);
|
|
float l = length(p) - r;
|
|
float m = length(p-c*clamp(dot(p,c),0.0,r)); // c=sin/cos of aperture
|
|
return max(l,m*sign(c.y*p.x-c.x*p.y));
|
|
}
|
|
|
|
float sdRoundedCross( in vec2 p, in float h ) {
|
|
float k = 0.5*(h+1.0/h); // k should be const/precomputed at modeling time
|
|
|
|
p = abs(p);
|
|
return ( p.x<1.0 && p.y<p.x*(k-h)+h ) ?
|
|
k-sqrt(dot2(p-vec2(1,k))) : // circular arc
|
|
sqrt(min(dot2(p-vec2(0,h)), // top corner
|
|
dot2(p-vec2(1,0)))); // right corner
|
|
}
|
|
|
|
float sdArrow( in vec2 p, vec2 a, vec2 b, float w1, float w2, float k ) { // The arrow goes from a to b. It's thickness is w1. The arrow head's thickness is w2.
|
|
// constant setup
|
|
|
|
vec2 ba = b - a;
|
|
float l2 = dot(ba,ba);
|
|
float l = sqrt(l2);
|
|
|
|
// pixel setup
|
|
p = p - a;
|
|
p = mat2(ba.x, -ba.y, ba.y, ba.x) * p / l;
|
|
p.y = abs(p.y);
|
|
vec2 pz = p - vec2(l - w2 * k, w2);
|
|
|
|
// === distance (four segments) ===
|
|
|
|
vec2 q = p;
|
|
q.x -= clamp( q.x, 0.0, l - w2 * k );
|
|
q.y -= w1;
|
|
float di = dot(q,q);
|
|
//----
|
|
q = pz;
|
|
q.y -= clamp( q.y, w1 - w2, 0.0 );
|
|
di = min( di, dot(q, q) );
|
|
//----
|
|
if( p.x < w1 ) { // conditional is optional
|
|
q = p;
|
|
q.y -= clamp( q.y, 0.0, w1 );
|
|
di = min( di, dot(q, q) );
|
|
}
|
|
//----
|
|
if( pz.x > 0.0 ) { // conditional is optional
|
|
q = pz;
|
|
q -= vec2(k, -1.0) * clamp( (q.x * k - q.y) / (k * k + 1.0), 0.0, w2 );
|
|
di = min( di, dot(q, q) );
|
|
}
|
|
|
|
// === sign ===
|
|
|
|
float si = 1.0;
|
|
float z = l - p.x;
|
|
if( min(p.x, z) > 0.0 ) { //if( p.x>0.0 && z>0.0 )
|
|
float h = (pz.x < 0.0) ? w1 : z / k;
|
|
if( p.y < h ) si = -1.0;
|
|
}
|
|
|
|
return si * sqrt(di);
|
|
}
|
|
|
|
float sdHalf(vec2 p, vec2 point, float angle) {
|
|
p -= point;
|
|
p = mat2(cos(angle), -sin(angle), sin(angle), cos(angle)) * p;
|
|
return -p.y;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void main() {
|
|
vec2 coord = (v_vTexcoord - center) * mat2(cos(rotation), -sin(rotation), sin(rotation), cos(rotation)) / scale;
|
|
vec2 ratio = dimension / dimension.y;
|
|
float d;
|
|
|
|
vec2 p1 = point1 / dimension;
|
|
vec2 p2 = point2 / dimension;
|
|
|
|
if(tile == 1) coord = mod(coord + 1., 2.) - 1.;
|
|
|
|
if(shape == 0) {
|
|
d = sdBox( (v_vTexcoord - center) * mat2(cos(rotation), -sin(rotation), sin(rotation), cos(rotation)) * ratio, (scale * ratio - corner));
|
|
d -= corner;
|
|
|
|
} else if(shape == 1) {
|
|
d = length(coord) - 1.;
|
|
|
|
} else if(shape == 2) {
|
|
d = sdRegularPolygon( coord, 0.9 - corner, sides, angle );
|
|
d -= corner;
|
|
|
|
} else if(shape == 3) {
|
|
d = sdStar( coord, 0.9 - corner, sides, 2. + inner * (float(sides) - 2.), angle );
|
|
d -= corner;
|
|
|
|
}
|
|
else if(shape == 4) { d = sdArc( coord, vec2(sin(angle), cos(angle)), angle_range, 1. - inner, inner ); }
|
|
else if(shape == 5) { d = sdTearDrop( coord + vec2(0., 0.5), stRad, edRad, 1. ); }
|
|
else if(shape == 6) { d = sdCross( coord, vec2(1. + corner, outer), corner ); }
|
|
else if(shape == 7) { d = sdVesica( coord, inner, outer ); }
|
|
else if(shape == 8) { d = sdCrescent( coord, inner, outer, angle ); }
|
|
else if(shape == 9) { d = sdDonut( coord, inner ); }
|
|
else if(shape == 10) { d = sdRhombus( coord, vec2(1. - corner) ) - corner; }
|
|
else if(shape == 11) { d = sdTrapezoid( coord, trep.x - corner, trep.y - corner, 1. - corner ) - corner; }
|
|
else if(shape == 12) { d = sdParallelogram( coord, 1. - corner - parall, 1. - corner, parall) - corner; }
|
|
else if(shape == 13) { d = sdHeart( coord ); }
|
|
else if(shape == 14) { d = sdCutDisk( coord, 1., inner ); }
|
|
else if(shape == 15) { d = sdPie( coord, vec2(sin(angle), cos(angle)), 1. ); }
|
|
else if(shape == 16) { d = sdRoundedCross( coord, 1. - corner ) - corner; }
|
|
else if(shape == 18) { d = sdGear( coord, inner, teeth, teethSize, teethAngle, corner); }
|
|
else if(shape == 19) { d = pow(pow(abs(coord.x), squircle_factor) + pow(abs(coord.y), squircle_factor), 1. / squircle_factor) - 1.; }
|
|
else if(shape == 17) { d = sdArrow( v_vTexcoord, p1, p2, thickness, arrow, arrow_head); }
|
|
else if(shape == 20) { d = sdSegment(v_vTexcoord, p1, p2) - thickness; }
|
|
else if(shape == 21) { d = sdHalf(v_vTexcoord, p1, -rotation); }
|
|
|
|
float cc, color = 0.;
|
|
|
|
if(aa == 0)
|
|
cc = step(d, 0.0);
|
|
else {
|
|
float _aa = 1. / max(dimension.x, dimension.y);
|
|
cc = smoothstep(_aa, -_aa, d);
|
|
}
|
|
|
|
color = cc;
|
|
if(drawDF == 1) {
|
|
color = -d;
|
|
color = clamp((color - dfLevel.x) / (dfLevel.y - dfLevel.x), 0., 1.);
|
|
color = curveEval(w_curve, w_amount, color);
|
|
|
|
color *= cc;
|
|
}
|
|
|
|
if(drawBG == 0) gl_FragColor = vec4(v_vColour.rgb, v_vColour.a * color);
|
|
else gl_FragColor = mix(bgColor, v_vColour, color);
|
|
}
|