mirror of
https://github.com/Ttanasart-pt/Pixel-Composer.git
synced 2024-12-25 22:46:19 +01:00
663 lines
16 KiB
Text
663 lines
16 KiB
Text
// feather ignore all
|
|
|
|
/// @func BBMOD_Quaternion([_x, _y, _z, _w])
|
|
///
|
|
/// @desc A quaternion.
|
|
///
|
|
/// @param {Real} [_x] The first component of the quaternion. Defaults to 0.
|
|
/// @param {Real} [_y] The second component of the quaternion. Defaults to 0.
|
|
/// @param {Real} [_z] The third component of the quaternion. Defaults to 0.
|
|
/// @param {Real} [_w] The fourth component of the quaternion. Defaults to 1.
|
|
///
|
|
/// @note If you leave the arguments to their default values, then an identity
|
|
/// quaternion is created.
|
|
function BBMOD_Quaternion(_x=0.0, _y=0.0, _z=0.0, _w=1.0) constructor
|
|
{
|
|
/// @var {Real} The first component of the quaternion.
|
|
X = _x;
|
|
|
|
/// @var {Real} The second component of the quaternion.
|
|
Y = _y;
|
|
|
|
/// @var {Real} The third component of the quaternion.
|
|
Z = _z;
|
|
|
|
/// @var {Real} The fourth component of the quaternion.
|
|
W = _w;
|
|
|
|
static set = function(x, y, z, w) {
|
|
gml_pragma("forceinline");
|
|
X = x;
|
|
Y = y;
|
|
Z = z;
|
|
W = w;
|
|
return self;
|
|
}
|
|
|
|
/// @func Add(_q)
|
|
///
|
|
/// @desc Adds quaternions and returns the result as a new quaternion.
|
|
///
|
|
/// @param {Struct.BBMOD_Quaternion} _q The other quaternion.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} The created quaternion.
|
|
static Add = function (_q) {
|
|
gml_pragma("forceinline");
|
|
return new BBMOD_Quaternion(
|
|
X + _q.X,
|
|
Y + _q.Y,
|
|
Z + _q.Z,
|
|
W + _q.W
|
|
);
|
|
};
|
|
|
|
/// @func Clone()
|
|
///
|
|
/// @desc Creates a clone of the quaternion.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} The created quaternion.
|
|
static Clone = function () {
|
|
gml_pragma("forceinline");
|
|
return new BBMOD_Quaternion(X, Y, Z, W);
|
|
};
|
|
|
|
/// @func Conjugate()
|
|
///
|
|
/// @desc Conjugates the quaternion and returns the result as a quaternion.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} The created quaternion.
|
|
static Conjugate = function () {
|
|
gml_pragma("forceinline");
|
|
return new BBMOD_Quaternion(-X, -Y, -Z, W);
|
|
};
|
|
|
|
/// @func Copy(_dest)
|
|
///
|
|
/// @desc Copies components of the quaternion into other quaternion.
|
|
///
|
|
/// @param {Struct.BBMOD_Quaternion} _dest The destination quaternion.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} Returns `self`.
|
|
static Copy = function (_dest) {
|
|
gml_pragma("forceinline");
|
|
_dest.X = X;
|
|
_dest.Y = Y;
|
|
_dest.Z = Z;
|
|
_dest.W = W;
|
|
return self;
|
|
};
|
|
|
|
/// @func Dot(_q)
|
|
///
|
|
/// @desc Computes a dot product of two dual quaternions.
|
|
///
|
|
/// @param {Struct.BBMOD_Quaternion} _q The other quaternion.
|
|
///
|
|
/// @return {Real} The dot product of the quaternions.
|
|
static Dot = function (_q) {
|
|
gml_pragma("forceinline");
|
|
return (
|
|
X * _q.X
|
|
+ Y * _q.Y
|
|
+ Z * _q.Z
|
|
+ W * _q.W
|
|
);
|
|
};
|
|
|
|
/// @func Exp()
|
|
///
|
|
/// @desc Computes an exponential map of the quaternion and returns
|
|
/// the result as a new quaternion.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} The created quaternion.
|
|
static Exp = function () {
|
|
gml_pragma("forceinline");
|
|
var _length = Length();
|
|
if (_length >= math_get_epsilon())
|
|
{
|
|
var _sinc = Sinc(_length);
|
|
return new BBMOD_Quaternion(
|
|
X * _sinc,
|
|
Y * _sinc,
|
|
Z * _sinc,
|
|
exp(W) * cos(_length)
|
|
);
|
|
}
|
|
return new BBMOD_Quaternion(0.0, 0.0, 0.0, exp(W));
|
|
};
|
|
|
|
/// @func FromArray(_array[, _index])
|
|
///
|
|
/// @desc Loads quaternion components `(x, y, z, w)` from an array.
|
|
///
|
|
/// @param {Array<Real>} _array The array to read the quaternion components
|
|
/// from.
|
|
/// @param {Real} [_index] The index to start reading the quaternion
|
|
/// components from. Defaults to 0.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} Returns `self`.
|
|
static FromArray = function (_array, _index=0) {
|
|
gml_pragma("forceinline");
|
|
X = _array[_index];
|
|
Y = _array[_index + 1];
|
|
Z = _array[_index + 2];
|
|
W = _array[_index + 3];
|
|
return self;
|
|
};
|
|
|
|
/// @func FromAxisAngle(_axis, _angle)
|
|
///
|
|
/// @desc Initializes the quaternion using an axis and an angle.
|
|
///
|
|
/// @param {Struct.BBMOD_Vec3} _axis The axis of rotaiton.
|
|
///
|
|
/// @param {Real} _angle The rotation angle.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} Returns `self`.
|
|
static FromAxisAngle = function (_axis, _angle) {
|
|
gml_pragma("forceinline");
|
|
_angle = -_angle;
|
|
var _sinHalfAngle = dsin(_angle * 0.5);
|
|
X = is_nan(_axis.X)? 0 : _axis.X * _sinHalfAngle;
|
|
Y = is_nan(_axis.Y)? 0 : _axis.Y * _sinHalfAngle;
|
|
Z = is_nan(_axis.Z)? 0 : _axis.Z * _sinHalfAngle;
|
|
W = dcos(_angle * 0.5);
|
|
return self;
|
|
};
|
|
|
|
/// @func FromBuffer(_buffer, _type)
|
|
///
|
|
/// @desc Loads quaternion components `(x, y, z, w)` from a buffer.
|
|
///
|
|
/// @param {Id.Buffer} _buffer The buffer to read the quaternion components
|
|
/// from.
|
|
///
|
|
/// @param {Constant.BufferDataType} [_type] The type of each component.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} Returns `self`.
|
|
static FromBuffer = function (_buffer, _type) {
|
|
gml_pragma("forceinline");
|
|
X = buffer_read(_buffer, _type);
|
|
Y = buffer_read(_buffer, _type);
|
|
Z = buffer_read(_buffer, _type);
|
|
W = buffer_read(_buffer, _type);
|
|
return self;
|
|
};
|
|
|
|
/// @func FromEuler(_x, _y, _z)
|
|
///
|
|
/// @desc Initializes the quaternion using euler angles.
|
|
///
|
|
/// @param {Real} _x The rotation around the X axis (in degrees).
|
|
/// @param {Real} _y The rotation around the Y axis (in degrees).
|
|
/// @param {Real} _z The rotation around the Z axis (in degrees).
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} Returns `self`.
|
|
///
|
|
/// @note The order of rotations is YXZ, same as in the `matrix_build`
|
|
/// function.
|
|
static FromEuler = function (_x, _y, _z) {
|
|
gml_pragma("forceinline");
|
|
|
|
_x = -_x * 0.5;
|
|
_y = -_y * 0.5;
|
|
_z = -_z * 0.5;
|
|
|
|
var _q1Sin, _q1Cos, _temp;
|
|
var _qX, _qY, _qZ, _qW;
|
|
|
|
_q1Sin = dsin(_z);
|
|
_q1Cos = dcos(_z);
|
|
|
|
_temp = dsin(_x);
|
|
|
|
_qX = _q1Cos * _temp;
|
|
_qY = _q1Sin * _temp;
|
|
|
|
_temp = dcos(_x);
|
|
|
|
_qZ = _q1Sin * _temp;
|
|
_qW = _q1Cos * _temp;
|
|
|
|
_q1Sin = dsin(_y);
|
|
_q1Cos = dcos(_y);
|
|
|
|
X = _qX * _q1Cos - _qZ * _q1Sin;
|
|
Y = _qW * _q1Sin + _qY * _q1Cos;
|
|
Z = _qZ * _q1Cos + _qX * _q1Sin;
|
|
W = _qW * _q1Cos - _qY * _q1Sin;
|
|
|
|
return self;
|
|
};
|
|
|
|
/// @func FromLookRotation(_forward, _up)
|
|
///
|
|
/// @desc Initializes the quaternion using a forward and an up vector. These
|
|
/// vectors must not be parallel! If they are, the quaternion will be set to an
|
|
/// identity.
|
|
///
|
|
/// @param {Struct.BBMOD_Vec3} _forward The vector facing forward.
|
|
/// @param {Struct.BBMOD_Vec3} _up The vector facing up.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} Returns `self`.
|
|
static FromLookRotation = function (_forward, _up) {
|
|
gml_pragma("forceinline");
|
|
|
|
_forward = new BBMOD_Vec3(_forward);
|
|
_up = new BBMOD_Vec3(_up);
|
|
|
|
if (!_forward.Orthonormalize(_up))
|
|
{
|
|
X = 0.0;
|
|
Y = 0.0;
|
|
Z = 0.0;
|
|
W = 1.0;
|
|
return self;
|
|
}
|
|
|
|
var _right = _up.Cross(_forward);
|
|
var _w = sqrt(abs(1.0 + _right.X + _up.Y + _forward.Z)) * 0.5;
|
|
var _w4Recip = 1.0 / (4.0 * _w);
|
|
|
|
X = (_up.Z - _forward.Y) * _w4Recip;
|
|
Y = (_forward.X - _right.Z) * _w4Recip;
|
|
Z = (_right.Y - _up.X) * _w4Recip;
|
|
W = _w;
|
|
return self;
|
|
};
|
|
|
|
static FromMatrix = function(rotMatrix) {
|
|
gml_pragma("forceinline");
|
|
|
|
W = sqrt(1 + rotMatrix[0] + rotMatrix[5] + rotMatrix[10]) / 2;
|
|
X = (rotMatrix[9] - rotMatrix[6]) / (4 * W);
|
|
Y = (rotMatrix[2] - rotMatrix[8]) / (4 * W);
|
|
Z = (rotMatrix[4] - rotMatrix[1]) / (4 * W);
|
|
return self;
|
|
}
|
|
|
|
/// @func GetAngle()
|
|
///
|
|
/// @desc Retrieves the rotation angle of the quaternion.
|
|
///
|
|
/// @return {Real} The rotation angle.
|
|
static GetAngle = function () {
|
|
gml_pragma("forceinline");
|
|
return radtodeg(arccos(W) * 2.0);
|
|
};
|
|
|
|
/// @func GetAxis()
|
|
///
|
|
/// @desc Retrieves the axis of rotation of the quaternion.
|
|
///
|
|
/// @return {Struct.BBMOD_Vec3} The axis of rotation.
|
|
static GetAxis = function () {
|
|
gml_pragma("forceinline");
|
|
var _sinThetaInv = 1.0 / sin(arccos(W));
|
|
return new BBMOD_Vec3(
|
|
X * _sinThetaInv,
|
|
Y * _sinThetaInv,
|
|
Z * _sinThetaInv
|
|
);
|
|
};
|
|
|
|
/// @func Inverse()
|
|
///
|
|
/// @desc Computes an inverse of the quaternion and returns the result
|
|
/// as a new quaternion.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} The created quaternion.
|
|
static Inverse = function () {
|
|
gml_pragma("forceinline");
|
|
return Conjugate().Scale(1.0 / Length());
|
|
};
|
|
|
|
/// @func Length()
|
|
///
|
|
/// @desc Computes the length of the quaternion.
|
|
///
|
|
/// @return {Real} The length of the quaternion.
|
|
static Length = function () {
|
|
gml_pragma("forceinline");
|
|
return sqrt(
|
|
X * X
|
|
+ Y * Y
|
|
+ Z * Z
|
|
+ W * W
|
|
);
|
|
};
|
|
|
|
/// @func LengthSqr()
|
|
///
|
|
/// @desc Computes a squared length of the quaternion.
|
|
///
|
|
/// @return {Real} The squared length of the quaternion.
|
|
static LengthSqr = function () {
|
|
gml_pragma("forceinline");
|
|
return (
|
|
X * X
|
|
+ Y * Y
|
|
+ Z * Z
|
|
+ W * W
|
|
);
|
|
};
|
|
|
|
/// @func Lerp(_q, _s)
|
|
///
|
|
/// @desc Computes a linear interpolation of two quaternions
|
|
/// and returns the result as a new quaternion.
|
|
///
|
|
/// @param {Struct.BBMOD_Quaternion} _q The other quaternion.
|
|
/// @param {Real} _s The interpolation factor.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} The created quaternion.
|
|
static Lerp = function (_q, _s) {
|
|
gml_pragma("forceinline");
|
|
return new BBMOD_Quaternion(
|
|
lerp(X, _q.X, _s),
|
|
lerp(Y, _q.Y, _s),
|
|
lerp(Z, _q.Z, _s),
|
|
lerp(W, _q.W, _s)
|
|
);
|
|
};
|
|
|
|
/// @func Log()
|
|
///
|
|
/// @desc Computes the logarithm map of the quaternion and returns the
|
|
/// result as a new quaternion.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} The created quaternion.
|
|
static Log = function () {
|
|
gml_pragma("forceinline");
|
|
var _length = Length();
|
|
var _w = logn(2.71828, _length);
|
|
var _a = arccos(W / _length);
|
|
if (_a >= math_get_epsilon())
|
|
{
|
|
var _mag = 1.0 / _length / Sinc(_a);
|
|
return new BBMOD_Quaternion(
|
|
X * _mag,
|
|
Y * _mag,
|
|
Z * _mag,
|
|
_w
|
|
);
|
|
}
|
|
return new BBMOD_Quaternion(0.0, 0.0, 0.0, _w);
|
|
};
|
|
|
|
/// @func Mul(_q)
|
|
///
|
|
/// @desc Multiplies two quaternions and returns the result as a new
|
|
/// quaternion.
|
|
///
|
|
/// @param {Struct.BBMOD_Quaternion} _q The other quaternion.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} The created quaternion.
|
|
static Mul = function (_q) {
|
|
gml_pragma("forceinline");
|
|
return new BBMOD_Quaternion(
|
|
W * _q.X + X * _q.W + Y * _q.Z - Z * _q.Y,
|
|
W * _q.Y + Y * _q.W + Z * _q.X - X * _q.Z,
|
|
W * _q.Z + Z * _q.W + X * _q.Y - Y * _q.X,
|
|
W * _q.W - X * _q.X - Y * _q.Y - Z * _q.Z
|
|
);
|
|
};
|
|
|
|
/// @func Normalize()
|
|
///
|
|
/// @desc Normalizes the quaternion and returns the result as a new
|
|
/// quaternion.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} The created quaternion.
|
|
static Normalize = function () {
|
|
gml_pragma("forceinline");
|
|
var _lengthSqr = LengthSqr();
|
|
if(_lengthSqr == 0)
|
|
return new BBMOD_Quaternion();
|
|
|
|
if (_lengthSqr >= math_get_epsilon())
|
|
return Scale(1.0 / sqrt(_lengthSqr));
|
|
return Clone();
|
|
};
|
|
|
|
/// @func Rotate(_v)
|
|
///
|
|
/// @desc Rotates a vector using the quaternion and returns the result
|
|
/// as a new vector.
|
|
///
|
|
/// @param {Struct.BBMOD_Vec3} _v The vector to rotate.
|
|
///
|
|
/// @return {Struct.BBMOD_Vec3} The created vector.
|
|
static Rotate = function (_v) {
|
|
gml_pragma("forceinline");
|
|
|
|
var _tovec = is_instanceof(_v, __vec3);
|
|
if(_tovec) _v = new BBMOD_Vec3(_v.x, _v.y, _v.z);
|
|
|
|
var _q = Normalize();
|
|
var _V = new BBMOD_Quaternion(_v.X, _v.Y, _v.Z, 0.0);
|
|
var _rot = _q.Mul(_V).Mul(_q.Conjugate());
|
|
|
|
var res;
|
|
if(_tovec) res = new __vec3(_rot.X, _rot.Y, _rot.Z);
|
|
else res = new BBMOD_Vec3(_rot.X, _rot.Y, _rot.Z);
|
|
|
|
return res;
|
|
};
|
|
|
|
/// @func Scale(_s)
|
|
///
|
|
/// @desc Scales each component of the quaternion by a real value and
|
|
/// returns the result as a new quaternion.
|
|
///
|
|
/// @param {Real} _s The value to scale the quaternion by.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} The created quaternion.
|
|
static Scale = function (_s) {
|
|
gml_pragma("forceinline");
|
|
return new BBMOD_Quaternion(
|
|
X * _s,
|
|
Y * _s,
|
|
Z * _s,
|
|
W * _s
|
|
);
|
|
};
|
|
|
|
static Sinc = function (_x) {
|
|
gml_pragma("forceinline");
|
|
return (_x >= math_get_epsilon()) ? (sin(_x) / _x) : 1.0;
|
|
};
|
|
|
|
/// @func Slerp(_q, _s)
|
|
///
|
|
/// @desc Computes a spherical linear interpolation of two quaternions
|
|
/// and returns the result as a new quaternion.
|
|
///
|
|
/// @param {Struct.BBMOD_Quaternion} _q The other quaternion.
|
|
/// @param {Real} _s The interpolation factor.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} The created quaternion.
|
|
static Slerp = function (_q, _s) {
|
|
gml_pragma("forceinline");
|
|
|
|
var _q10 = X;
|
|
var _q11 = Y;
|
|
var _q12 = Z;
|
|
var _q13 = W;
|
|
|
|
var _q20 = _q.X;
|
|
var _q21 = _q.Y;
|
|
var _q22 = _q.Z;
|
|
var _q23 = _q.W;
|
|
|
|
var _norm;
|
|
|
|
_norm = 1.0 / sqrt(_q10 * _q10
|
|
+ _q11 * _q11
|
|
+ _q12 * _q12
|
|
+ _q13 * _q13);
|
|
|
|
_q10 *= _norm;
|
|
_q11 *= _norm;
|
|
_q12 *= _norm;
|
|
_q13 *= _norm;
|
|
|
|
_norm = sqrt(_q20 * _q20
|
|
+ _q21 * _q21
|
|
+ _q22 * _q22
|
|
+ _q23 * _q23);
|
|
|
|
_q20 *= _norm;
|
|
_q21 *= _norm;
|
|
_q22 *= _norm;
|
|
_q23 *= _norm;
|
|
|
|
var _dot = _q10 * _q20
|
|
+ _q11 * _q21
|
|
+ _q12 * _q22
|
|
+ _q13 * _q23;
|
|
|
|
if (_dot < 0.0)
|
|
{
|
|
_dot = -_dot;
|
|
_q20 *= -1.0;
|
|
_q21 *= -1.0;
|
|
_q22 *= -1.0;
|
|
_q23 *= -1.0;
|
|
}
|
|
|
|
if (_dot > 0.9995)
|
|
{
|
|
return new BBMOD_Quaternion(
|
|
lerp(_q10, _q20, _s),
|
|
lerp(_q11, _q21, _s),
|
|
lerp(_q12, _q22, _s),
|
|
lerp(_q13, _q23, _s)
|
|
);
|
|
}
|
|
|
|
var _theta0 = arccos(_dot);
|
|
var _theta = _theta0 * _s;
|
|
var _sinTheta = sin(_theta);
|
|
var _sinTheta0 = sin(_theta0);
|
|
var _s2 = _sinTheta / _sinTheta0;
|
|
var _s1 = cos(_theta) - (_dot * _s2);
|
|
|
|
return new BBMOD_Quaternion(
|
|
(_q10 * _s1) + (_q20 * _s2),
|
|
(_q11 * _s1) + (_q21 * _s2),
|
|
(_q12 * _s1) + (_q22 * _s2),
|
|
(_q13 * _s1) + (_q23 * _s2)
|
|
);
|
|
};
|
|
|
|
/// @func ToArray([_array[, _index]])
|
|
///
|
|
/// @desc Writes components `(x, y, z, w)` of the quaternion into an array.
|
|
///
|
|
/// @param {Array<Real>} [_array] The destination array. If not defined, a
|
|
/// new one is created.
|
|
/// @param {Real} [_index] The index to start writing to. Defaults to 0.
|
|
///
|
|
/// @return {Array<Real>} Returns the destination array.
|
|
static ToArray = function (_array=undefined, _index=0) {
|
|
gml_pragma("forceinline");
|
|
_array ??= array_create(4, 0.0);
|
|
_array[@ _index] = X;
|
|
_array[@ _index + 1] = Y;
|
|
_array[@ _index + 2] = Z;
|
|
_array[@ _index + 3] = W;
|
|
return _array;
|
|
};
|
|
|
|
/// @func ToBuffer(_buffer, _type)
|
|
///
|
|
/// @desc Writes the quaternion into a buffer.
|
|
///
|
|
/// @param {Id.Buffer} _buffer The buffer to write the quaternion to.
|
|
/// @param {Constant.BufferDataType} _type The type of each component.
|
|
///
|
|
/// @return {Struct.BBMOD_Quaternion} Returns `self`.
|
|
static ToBuffer = function (_buffer, _type) {
|
|
gml_pragma("forceinline");
|
|
buffer_write(_buffer, _type, X);
|
|
buffer_write(_buffer, _type, Y);
|
|
buffer_write(_buffer, _type, Z);
|
|
buffer_write(_buffer, _type, W);
|
|
return self;
|
|
};
|
|
|
|
static ToEuler = function() {
|
|
var ysqr = Y * Y;
|
|
|
|
// roll (x-axis rotation)
|
|
var t0 = +2.0 * (W * X + Y * Z);
|
|
var t1 = +1.0 - 2.0 * (X * X + ysqr);
|
|
var roll = arctan2(t0, t1);
|
|
|
|
// pitch (y-axis rotation)
|
|
var t2 = +2.0 * (W * Y - Z * X);
|
|
t2 = clamp(t2, -1.0, 1.0); // Prevent numerical instability
|
|
var pitch = arcsin(t2);
|
|
|
|
// yaw (z-axis rotation)
|
|
var t3 = +2.0 * (W * Z + X * Y);
|
|
var t4 = +1.0 - 2.0 * (ysqr + Z * Z);
|
|
var yaw = arctan2(t3, t4);
|
|
|
|
// Convert radians to degrees
|
|
var _dx = roll * 180.0 / pi;
|
|
var _dy = pitch * 180.0 / pi;
|
|
var _dz = yaw * 180.0 / pi;
|
|
|
|
return new __rot3(_dx, _dy, _dz);
|
|
}
|
|
|
|
/// @func ToMatrix([_dest[, _index]])
|
|
///
|
|
/// @desc Converts quaternion into a matrix.
|
|
///
|
|
/// @param {Array<Real>} [_dest] The destination array. If not specified, a
|
|
/// new one is created.
|
|
/// @param {Real} [_index] The starting index in the destination array.
|
|
/// Defaults to 0.
|
|
///
|
|
/// @return {Array<Real>} Returns the destination array.
|
|
static ToMatrix = function (_dest=undefined, _index=0) {
|
|
gml_pragma("forceinline");
|
|
|
|
_dest ??= matrix_build_identity();
|
|
|
|
var _norm = Normalize();
|
|
|
|
var _temp0, _temp1, _temp2;
|
|
var _q0 = _norm.X;
|
|
var _q1 = _norm.Y;
|
|
var _q2 = _norm.Z;
|
|
var _q3 = _norm.W;
|
|
|
|
_temp0 = _q0 * _q0;
|
|
_temp1 = _q1 * _q1;
|
|
_temp2 = _q2 * _q2;
|
|
_dest[@ _index] = 1.0 - 2.0 * (_temp1 + _temp2);
|
|
_dest[@ _index + 5] = 1.0 - 2.0 * (_temp0 + _temp2);
|
|
_dest[@ _index + 10] = 1.0 - 2.0 * (_temp0 + _temp1);
|
|
|
|
_temp0 = _q0 * _q1;
|
|
_temp1 = _q3 * _q2;
|
|
_dest[@ _index + 1] = 2.0 * (_temp0 + _temp1);
|
|
_dest[@ _index + 4] = 2.0 * (_temp0 - _temp1);
|
|
|
|
_temp0 = _q0 * _q2
|
|
_temp1 = _q3 * _q1;
|
|
_dest[@ _index + 2] = 2.0 * (_temp0 - _temp1);
|
|
_dest[@ _index + 8] = 2.0 * (_temp0 + _temp1);
|
|
|
|
_temp0 = _q1 * _q2;
|
|
_temp1 = _q3 * _q0;
|
|
_dest[@ _index + 6] = 2.0 * (_temp0 + _temp1);
|
|
_dest[@ _index + 9] = 2.0 * (_temp0 - _temp1);
|
|
|
|
return _dest;
|
|
};
|
|
}
|