This conversion is nothing more than what is required to get it to
compile. Further improvements will come as the code is refactored.
Unfortunately due to C++ not supporting designated initializers, the auto
generation of af names needed to be reworked, and "netlink" and "unix"
domain socket keywords leaked in. Since these where going to be added in
separate patches I have not bothered to do the extra work to replace them
with a temporary place holder.
Signed-off-by: John Johansen <john.johansen@canonical.com>
[tyhicks: merged with dbus changes and memory leak fixes]
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Seth Arnold <seth.arnold@canonical.com>
Acked-by: Steve Beattie <steve@nxnw.org>
The removal of deny information is a one way operation, that can result
in a smaller dfa, but also results in a dfa that should not be used in
future operations because the deny rules from the precomputed dfa would
not get applied.
For now default filtering out of deny information to off, as it takes
extra time and seldom results in further state reduction.
Signed-off-by: John Johansen <john.johansen@canonical.com>
Acked-by: Kees Cook <kees@ubuntu.com>
Previously permission information was thrown away early and permissions
where packed to their CHFA form at the start of DFA construction. Because
of this permissions hashing to setup the initial DFA partitions was
required as x transition conflicts, etc. could not be resolved.
Move the mapping of permissions to CHFA construction, and track the full
permission set through DFA construction. This allows removal of the
perm_hashing hack, which prevented a full minimization from happening
in some DFAs. It also could result in x conflicts not being correctly
detected, and deny rules not being fully applied in some situations.
Eg.
pre full minimization
Created dfa: states 33451
Minimized dfa: final partitions 17033
with full minimization
Created dfa: states 33451
Minimized dfa: final partitions 9550
Dfa minimization no states removed: partitions 9550
The tracking of deny rules through to the completed DFA construction creates
a new class of states. That is states that are marked as being accepting
(carry permission information) but infact are non-accepting as they
only carry deny information. We add a second minimization pass where such
states have their permission information cleared and are thus moved into the
non-accepting partion.
Signed-off-by: John Johansen <john.johansen@canonical.com>
Acked-by: Kees Cook <kees@ubuntu.com>
Allow dumping out which states where dropped during partition minimization
and which state became the partitions representative state.
Signed-off-by: John Johansen <john.johansen@canonical.com>
Acked-By: Steve Beattie <sbeattie@ubuntu.com>
Split hfa into hfa and compressed_hfa files. The hfa portion focuses on
creating an manipulating hfas, while compressed_hfa is used for creating
compressed hfas that can be used/reused at run time with much less memory
usage than the full blown hfa.
Signed-off-by: John Johansen <john.johansen@canonical.com>
Acked-By: Steve Beattie <sbeattie@ubuntu.com>
Split out the aare_rule bits that encapsulate the convertion of apparmor
rules into the final compressed dfa.
This patch will not compile because of the it needs hfa to export an interface
but hfa is going to be split so just delay until hfa and transtable are
split and they can each export their own interface.
Signed-off-by: John Johansen <john.johansen@canonical.com>
Acked-By: Steve Beattie <sbeattie@ubuntu.com>
Start of splitting regexp.y into logical components instead of the mess
it is today. Split out the expr-tree and parsing components from regexp.y
int expr-tree.x and parse.y and since regexp.y no longer does parsing
rename it to hfa.cc
Some code cleanups snuck their way into this patch and since I am to
lazy to redo it, I have left them in.
Signed-off-by: John Johansen <john.johansen@canonical.com>
Acked-By: Steve Beattie <sbeattie@ubuntu.com>
first hash does hashing on state just state transitions, which always results
in a performance improvement.
The second does hashing based off of accept permissions, which can create
more initial states but can result in not being able to achieve a true
minimum dfa. This can also lead to slowing down total dfa creation because
while minimization, compression can take longer if the dfa isn't completely
minimized.
permission hashing is currently required, as minimization does not accumulate
redundant Node permissions.
tree. It is limited in that it doesn't currently handle the permissions of a rule.
conversion output presents an aare -> prce conversion followed by 1 or more expression
tree rules, governed by what the rule does.
eg.
aare: /** -> /[^/\x00][^\x00]*
rule: /[^/\x00][^\x00]* -> /[^\0000/]([^\0000])*
eg.
echo "/foo { /** rwlkmix, } " | ./apparmor_parser -QT -D rule-exprs -D expr-tree
aare: /foo -> /foo
aare: /** -> /[^/\x00][^\x00]*
rule: /[^/\x00][^\x00]* -> /[^\0000/]([^\0000])*
rule: /[^/\x00][^\x00]*\x00/[^/].* -> /[^\0000/]([^\0000])*\0000/[^/](.)*
DFA: Expression Tree
(/[^\0000/]([^\0000])*(((((((((((((<513>|<2>)|<4>)|<8>)|<16>)|<32>)|<64>)|<8404992>)|<32768>)|<65536>)|<131072>)|<262144>)|<524288>)|<1048576>)|/[^\0000/]([^\0000])*\0000/[^/](.)*((<16>|<32>)|<262144>))
This simple example shows many things
1. The profile name under goes pcre conversion. But since no regular expressions where found
it doesn't generate any expr rules
2. /** is converted into the pcre expression /[^\0000/]([^\0000])*
3. The pcre expression /[^\0000/]([^\0000])* is converted into two rules that are then
converted into expression trees.
The reason for this can not be seen by the output as this is actually triggered by
permissions separation for the rule. In this case the link permission is separated
into what is shown as the second rule: statement.
4. DFA: Expression Tree dump shows how these rules are combined together
You will notice that the rule conversion statement is fairly redundant currently as it just
show pcre to expression tree pcre. This will change when direct aare parsing occurs,
but currently serves to verify the pcre conversion step.
It is not the prettiest patch, as its touching some ugly code that is schedule to be cleaned
up/replaced. eg. convert_aaregex_to_pcre is going to replaced with native parse conversion
from an aare straight to the expression tree, and dfaflag passing will become part of the
rule set.
not an algorithmic improvement. It does the same basic algorithm of
test until it can insert the data, but instead of only tracking the
first free entry (and recomputing it each pass). It tracks all
free entries reducing the number of comparisons done and the table
grows in size.
This may actually result in a small loss on small tables, but is a win
for larger tables.
Add basic Hopcroft based dfa minimization. It currently does a simple
straight state comparison that can be quadratic in time to split partitions.
This is offset however by using hashing to setup the initial partitions so
that the number of states within a partition are relative few.
The hashing of states for initial partition setup is linear in time. This
means the closer the initial partition set is to the final set, the closer
the algorithm is to completing in a linear time. The hashing works as
follows: For each state we know the number of transitions that are not
the default transition. For each of of these we hash the set of letters
it can transition on using a simple djb2 hash algorithm. This creates
a unique hash based on the number of transitions and the input it can
transition on. If a state does not have the same hash we know it can not
the same as another because it either has a different number of transitions
or or transitions on a different set.
To further distiguish states, the number of transitions of each transitions
target state are added into the hash. This serves to further distiguish
states as a transition to a state with a different number of transitions
can not possibly be reduced to an equivalent state.
A further distinction of states is made for accepting states in that
we know each state with a unique set of accept permissions must be in
its own partition to ensure the unique accept permissions are in the
final dfa.
The unreachable state removal is a basic walk of the dfa from the start
state marking all states that are reached. It then sweeps any state not
reached away. This does not do dead state removal where a non accepting
state gets into a loop that will never result in an accepting state.
This will allow turning on and off various debug dumps as needed.
Multiple dump options can be specified as needed by using multiple
options.
eg. apparmor_parser -D variables
apparmor_parser -D dfa-tree -D dfa-simple-tree
The help option has also been updated to take an optional argument
to display help about give parameters, currently only dump is supported.
eg. apparmor_parser -h # standard help
apparmor_parser -h=dump # dump info about --dump options
Also Enable the dfa expression tree dumps