
Defcon Capture the Flag:
Defending Vulnerable Code from Intense Attack

Crispin Cowan, Seth Arnold, Steve Beattie, and Chris Wright

WireX Communications, Inc. http://wirex.com/

John Viega

Secure Software Inc. http://securesoftware.com/

Abstract

Defcon’s Capture the Flag (CtF) game is the largest
open computer security hacking game. This year’s CtF
hat rules that made it particularly difficult to be a suc-
cessful defender. We entered an Immunix server, com-
prised of five years of IA&S, OASIS, FTN, and CHATS
technologies, to see whether this system could survive
sustained attack from determined experts. We describe
our experience surviving Defcon CtF.

1 Introduction
Defcon bills itself as “the largest underground Internet
security gathering on the planet.” Defcon also provides
a “Capture the Flag” (CtF) contest; a weekend-long con-
test of computer security attack and defense skills. As a
large-scale legal opportunity for attackers to demon-
strate their “eleet skilz” in a public forum, Defcon CtF
attracts a large pool of talented attackers. We entered an
Immunix server into this contest to test the efficacy of
five years of accumulated DARPA survivability R&D
against this rich pool of adversaries.

“Capture the Flag” is a poor metaphor for the structure
of the Defcon CtF game, as there is no single flag to
capture. Rather, each team has to defend its own flag,
while trying to corrupt the flags of as many of the other
teams as possible as shown in Figure 1. A “flag” is a
data file on a server; each flag identifies a team. Ini-
tially, each team’s server has their own flag on it.
Throughout the game, attackers seek to replace the flag
on someone else’s server with their own flag, while
defenders try to preserve their own flag on their own
server. A score server periodically polls the player serv-
ers to detect the identity of the flag on each, and score
the game accordingly.

It should be noted that, in contrast to traditional DARPA
“red teaming” exercises, this game is symmetric, in that
each team has both attackers and defenders. Asymmetric
red team exercises have the advantage of allowing the
modeling of asymmetric threats, reflecting the asym-
metric threat in the real world. However, asymmetric
testing has led to problems with interpretation of the
rules of engagement, leading to disputes about whether
a given attack was “fair” or “within scope.” Symmetric
gaming obviates the rules of engagement problem,
because all players are subject to the same rules.

Another effect of symmetric gaming is that all teams
must have attackers, which would be problematic if
symmetric gaming were adopted to evaluate DARPA
defensive technologies, because not all defensive tech-
nology developers have attack skills. The solution to
this problem is to take whatever attacker resources are
available, and apportion them among defending teams.1

The rest of this paper is organized as follows. Section 2
describes the details of the 2002 CtF game, including
major upgrades from recent years. Section 3 describes
the Immunix server that we entered in the game. Section
4 recounts the play-by-play action as the game pro-
gressed. Section 5 presents strategic analysis of how we
approached the game. Section 6 describes tactical analy-
sis of attacks deployed against us, and attacks we
deployed. Section 7 outlines future work. Section 8 pre-
sents our conclusions. Section 9 presents acknowledg-

1. It should be noted that WireX does not have significant
attack capabilities. Attack capabilities were provided
by recruiting friends & associates, as well as ad hoc
interested parties at the conference. Our co-author John
Viega was instrumental in bringing significant attack
capabilities to our team. See Section 9 for the full list of
acknowledgments.

This work supported in part by DARPA contract N66001-00-C-8032.

ment to the very large group of people who helped with
this effort.

2 The Contest
In recent years, the Defcon CtF game had ossified:
teams were permitted to bring well-prepared servers to
the game, with no specific requirements as to the func-
tionality that the server must provide. The result was
very low scoring games, in which few successful pene-
trations occurred, resulting in boring, low-scoring “soc-
cer matches.” The game was further undermined by
subjective judgements like “style points” for particu-
larly creative ways to penetrate systems. To address this
problem, a new team of game organizers called the
“Ghettohackers” [13] designed an improved CtF game
to provide a more interesting challenge to the players,
and a more interesting spectacle to the audience.

The new game attempts to test a security administrator’s
ability to secure a complex system with unknown-but-
required functionality. While this task seems rather odd,
the Ghettohackers defend it as being similar to a mem-
ber’s day job as a consultant: a customer has a large
dot.com site, they don’t know what it does (the IT staff
have all left), and they want it to be secure. And don’t
turn it off, there is live traffic running on it. The Ghet-
tohackers CtF game models this situation as follows:

• Players are provided with a table, one power outlet,
and one ethernet connection.

• Players get a class-C network address space, and all
traffic coming to the player’s connection is reverse-
NAT’d so that the source of traffic cannot be identi-
fied. This eliminates the obvious defense of filter-
ing all traffic from other teams using a simple
firewall.

• Players are handed a reference system at the begin-
ning of the game. The reference system is guaran-
teed to provide all the services required by the score
server.

• The actual services required by the score server are
secret, and subject to change throughout game play.

• The reference system is riddled with security vul-
nerabilities, and (as it turned out) included inher-
ently insecure services, such as telnet and FTP.

• To score a “home” point, a team’s server must fully
satisfy the score server’s requested interactions, and
the team’s flag must be intact on their server.

• To score an “own3d” point, the score server must
be fully satisfied with the services on other team’s
server, the attacking team’s flag must be present on
other team’s server, and the attacking team’s server
must also be fully functional. This is to prevent a
team from deploying only attackers, and not bother-
ing to defend.

Figure 1 Defcon Capture the Flag (CtF)

Player Nodes

Score’bot
Polls player nodes,
Looking for req. services

If all services found,
Score one point for the
Flag currently on that
node

… while each team
tries to replace others’ flags

• To discourage DoS attacks and lazy bulk scanning,
each team is charged a penalty for bandwidth com-
ing from their connection.

Successfully defending such a system from attack, while
simultaneously providing the required services to the
score server, is a difficult challenge, resulting in a much
more high-scoring game with more action: servers are
frequently penetrated. In addition to making the game
more interesting, the difficulty also serves to compress
longer-term real-world security effects into a weekend
of game play. Apart from the security challenge, a major
problem presented by the secrecy of the score server’s
requirements is to intuitively guess which traffic appear-
ing at your server are requests from the score server, and
which are attacks.

This year’s game also included a significant upgrade to
the score display. A large, colorful display modeled
after a stock market ticker was used to indicate how

each team was doing lately, shown in Figure 2. This had
several effects:

Obfuscate actual performance: The display did not di-
rectly indicate how each team was doing in total,
only a vague relative performance indication. This
was intentional, so as to not discourage teams from
continuing to play, by not telling them how far be-
hind they might be.

Entertain the audience: The display was very effective
at keeping the audience (convention attendees) en-
gaged in the progress of the game. The display was
accompanied by music and punctuated by videos and
announcements with a “Blade Runner” futuristic
theme.

Overall, the Ghettohackers were successful. The CtF
game was widely praised by conference attendees as

Figure 2 Nasdaq-like Score Board

being a large step forward over previous years. The
game room was crowded, with many conference attend-
ees staying to watch as the game unfolded. The game
also garnered good press, both on TechTV and on the
web [14]. In Section 4 we recount the progress of the
game.

3 Our Entry: Immunix
Our entry in the CtF game was an Immunix server.
Immunix is a security-hardened version of Linux, pro-
tected with the following technologies:

StackGuard: A C compiler enhancement [8] that emits
programs resistant to buffer overflow attacks [16, 9].
This technology was developed under DARPA con-
tracts F30602-96-1-0331 (Immunix), F30602-96-1-
0302 (Heterodyne), and F30602-01-C-0172 (Sar-
donix).

FormatGuard: A similar C compilation technique [4]
that emits programs resistant to printf format string
vulnerabilities [18, 2, 15]. This technology was de-
veloped under DARPA contract N66001-00-C-8032
(Autonomix).

RaceGuard: A kernel enhancement [6] to detect and
stop temporary file race attacks [1]. This technology
was developed under DARPA contract N66001-00-
C-8032 (Autonomix).

SubDomain: A mandatory access control scheme [5]
that lets the kernel enforce the set of files that can be
accessed by each program. This technology was de-
veloped under DARPA contract F30602-96-1-0331
(Immunix) and commercially by WireX.

Openwall: A kernel enhancement to make the stack seg-
ment of program address spaces non-executable [10].
This technology is a popular open source result from
Russia.

The Immunix system, protected with these technologies,
offers a reasonably high degree of security, and a high
degree of compatibility with standard Red Hat Linux
systems. Our goals in entering Immunix in the Defcon
CtF were to show that Immunix was secure enough to
survive concerted attack from numerous expert attack-
ers, and show that it is feasible to rapidly port software
onto Immunix and expect it to work.

4 Play by Play
At 11 am Friday morning, all team captains were
handed a CD with the reference system on it, and given

an hour or so to get their server up before the score
server’s first poll. The reference system was actually a
VMWare 3.0 image. There were teething problems with
many teams involving VMWare, resulting in delays
starting the game, and play eventually started around 2
pm Friday.

The system itself was a modified Red Hat Linux 6.2, not
patched for assorted vulnerabilities, and provisioned
with Apache running as root and some “interesting”
CGIs which allowed anonymous CGI users to add and
delete arbitrary users, with arbitrary user-IDs including
zero (root). Nmap [12] of the reference server showed
nearly every common port open, and several uncommon
ones.

4.1 Friday: Configuration Problems
The popular strategy was to launch the reference sys-
tem, and use ad hoc human intrusion detection to detect
& halt intrusions, and patch things up as best as possi-
ble.

The Immunix strategy was to inspect the reference sys-
tem, and port the services to the pre-configured Immu-
nix server we brought to the game as quickly as
possible. In the first four hours of the game, our server
was down while we enabled what we guessed were
required network services and put SubDomain profiles
around them. By 6 pm, we had our Immunix server in a
state where we were at least confident that it would not
be compromised, and launched it. Unfortunately, it took
an additional six hours of work to refine the services we
offered to the point where the score server was satisfied
with our services.

The difficulty was in discovering that this was the
required set of services. Discovering the required set
was problematic because:

• There was no clear marker distinguishing score
server traffic from attacker traffic.

• If the score server was dissatisfied at any point, it
abruptly halted the poll sweep for that team. Thus
we learned at most one bit of information about
what the score server wanted on each pass.

We eventually despaired of ever getting the Immunix
server to make the score server happy, and launched the
reference system in desperation late Friday night. This
turns out to have been the key to our success:

• The attackers on other teams were sufficiently
accustomed to our server being difficult to pene-

trate that they did not immediately notice that we
had launched the vulnerable reference system.

• The score server was immediately satisfied with our
services, allowing us to score a few points and raise
our morale.

• Critically, observing a successful pass of the score
server gave us the information we needed: the
required services.

The services required by the score server were:

1. The score server adds a user to your server via the
adduser CGI script.

2. The score server fingers that user.

3. The score server logs in via FTP and deposits a file
on your server.

4. The score server reads the deposited file from your
server via HTTP.

5. The score server sends that user some e-mail via
SMTP.

6. The score server POP’s mail from that user.

7. The score server logs in to your server via telnet as
the created user, cats the file deposited in step 3, de-
letes the file deposited in step three, and then pauses.

8. The score server logs in via FTP and uploads a PERL
script.

9. The paused telnet session resumes, invoking the
PERL script uploaded in step 8. This script computes
the MD5 of flag on the server to award the score.

10. The score server deletes that user via the dele-
teuser CGI script.

Thus it was not until the beginning of Saturday morning
that the Immunix server satisfied the score server. We
were in 6th place of 8, with a lot of catching up to do.

4.2 Saturday: Immunix Works
A working Immunix server made a large difference. We
had a secure, unassailable base to work from. Our attack
team had been successfully penetrating other teams
throughout Friday’s play, but because of the rule that the
home server had to satisfy the score server to earn an
“own3d” point, they had been unable to score on Friday,
and could only deny other teams their “home” points.
Once the Immunix server was up, not only did we have
a near guaranteed stream of “home” points, but we also
enabled our attack team to score substantial additional
points. We had reasonable offense and near-perfect
defense.

Having a highly secure server changed the way we
defended our system. While other teams employed the
“massive human intrusion” defense of killing off hostile
intrusions (sometimes measured in intrusions per sec-
ond) we were able to contemplate issues as they came
up. We allowed attackers to log into our server, but
granted them only shells confined with the SubDomain
mechanism so they could not do very much. At some
points we even taunted the intruders by writing to their
tty. Issues could be dealt with in a considered manner.

Throughout the game, there were also “distraction
games” to be dealt with. These were various contests
aside from the CtF game itself, intended to draw
resources away from the teams. The distractions were
intended to model the real-world distractions that
defenders must deal with, while retaining a security
theme. The prize for winning a distraction game was to
get one technical question fully answered by the Ghet-
tohackers, so playing the distraction games was worth
while. Distraction games included:

Dumpster Diving/Steganography: The Ghettohackers
asked one representative from each team out into the
hallway, and then announced that there were two
prize boxes in a dumpster on the other side of the ho-
tel, and a foot race ensued. We recovered one of the
boxes1, which turned out to be a floppy disk filled
with soft-core pornography images and family pho-
tos, with other data steganographically encoded into
the photos. While we discovered that one of the im-
ages also appeared to be a DOS boot sector, we never
recovered any useful data from the floppy.

Defcon Shoots: On Saturday morning, a contingent of
firearms enthusiasts went out into the desert to de-
stroy an assortment of obsolete hard drives with var-
ious .30 to .50 calibre weapons. The hard drives were
color-coded to match the CtF teams, and the team
whose drive was most thoroughly wrecked won that
distraction game. We did not participate.

Lock Picking: Teams were handed small boxes with a
door lock on it, and told to recover the contents with-
out damaging the box. A race to recruit assorted lock-
picking experts (who were on site to give a talk on
lock picking) ensued. We recruited one of the better
lock pickers, and recovered the contents (a color-cod-
ed pen). Unfortunately, we were second to recover

1. Resulting in a brief visit to an emergency ward for
Crispin Cowan for respiratory distress. Running in
Nevada in August when you are not used to it is not
recommended.

the contents, and so did not get the prize of a techni-
cal question answered. We did get a 2nd prize, which
was that our bandwidth penalty was waived if we
used a particular source port. However, our attackers
were sufficiently skillful and subtle that this perk was
not useful to us.

BSA (Business Software Alliance) Audit: Mid-day on
Saturday, the Ghettohackers donned “BSA” t-shirts
and conducted a surprise audit for “pirated” software.
The main impact of this “inspection” was that all
players were required to step away from their key-
boards while the inspectors did their work. This cost
us one score point, as we were in the middle of fixing
a configuration issue when the BSA audit hit, and the
score server polled our (temporarily broken) server
while we were away from the keyboard.

These issues aside, the security of our Immunix defense
and the strength of our attack team caused our score to
advance rapidly from 7 th to 1st place.

4.3 Sunday: Enter Webmin and PERL
Fork Bombs
Late Saturday night, the Ghettohackers announced that a
change was being implemented, and now the score
server was going to be imposing new requirements. That
new requirement was Webmin [3] the open source web
management interface.1

Webmin presented a challenge to the defenders in gen-
eral because it is famously vulnerable. Webmin pre-

sented a challenge to Immunix in particular, because as
a far-reaching management interface, it requires permis-
sion to do a great many dangerous operations. Confining
such a complex system with SubDomain is problematic,
and not feasible in a very short period of time.

We spent some time overnight to produce a nominal
SubDomain configuration for Webmin, but we failed.
Our Webmin configuration was good enough to make
the score server happy, but post hoc analysis revealed
that all the score server wanted from Webmin was the
ability log in to the Webmin interface; the score server
never actually manipulated anything with Webmin.
Conversely, we failed to protect the system from Web-
min’s ability to reboot the server, allowing attackers to
re-boot our server at will.

A second problem emerged on Sunday: PERL fork
bombs. We had effectively confined the CGI scripts
such that they could run the PERL interpreter, but could
not do damage to the server. However, PERL has the
capability to fork itself, allowing the attacker to upload a
PERL script that forks endlessly, consuming all of sys-
tem memory and swap space, rendering the system
inoperative. Worse, the only way to regain control of
our server is to cut power, forcing a fsck upon reboot,
resulting in substantial downtime.

These problems caused us to lose ground to our compet-
itors in the 4 hours of play on Sunday. In the final analy-
sis shown in Table 1, we placed second, 3.5 points out
of 54 behind the Orange team.

However, we emphasize that at no time did attackers
compromise the Immunix server: they could log in, but
could not access files we did not want them to access.

1. Which, incidentally, competes with one of WireX’s
commercial products.

Table 1: Final CtF Score

Team Score Points Penalties

Orange (Digital Revelation) 54.3764 64 9.6236

White (Immunix) 51.1160 55 3.8840

Brown 48.2203 90 42.7797

Green (oxooffoo) 40.1943 46 5.8057

Yellow (ChaosComputerCoderZ) 22.1865 43 20.8135

Red (CRMP/Naval Postgraduate School) 6.1215 17 10.8785

Blue (unix-monkey.org) -22.7039 30 52.7039

Purple (The Network Idiots) -24.5107 5 29.5107

Table 2 shows the blow by blow “own3d” scores
throughout the game. Of the 178 total score rounds in
the game, only the 13 rounds shown in Table 2 were
recorded with a flag other than the defender’s on the
machine. The entries marked “own3d” are cases where
the attacker was awarded a point. Repeated entries indi-
cate repeated successful attacks. The cases marked
“almost own3d” are where the attacker’s flag was
recorded as being on the victim’s server, but that the
victim’s server was not fully satisfying the score server,
and so no point was awarded.

We have no data for cases where the victim’s server was
own3d, but no point was awarded because the attacker’s
server was not satisfying the score server. We believe
there are many cases of the latter due to Immunix being
down all of Friday. The one instance where white
(Immunix) was own3d was during the time on Sunday
when we were running the reference server while wait-
ing for the Immunix server to fsck.

5 Strategic Analysis
Here we analyze how our strategy succeeded Section
5.1, and failed in Section 5.2.

5.1 Success
Our primary goal in playing the Defcon CtF game was
to validate the survivability properties of the Immunix
system, comprised of technology components devel-
oped under various DARPA programs over the last five
years. We made the strategic decision to never place an
Immunix server on the play network that was not robust
against attack. This strategy succeeded, in that the
Immunix server was exposed to substantial attacks, but
was never compromised.

A secondary, unanticipated success was demonstrating
the relative ease with which fairly complex and
unknown software can be ported to Immunix and con-
tained by SubDomain. While it took 12 hours to port
and profile the reference system’s applications to Immu-
nix, and those hours were frustrating and expensive in
terms of CtF points, it is also an accomplishment that it
only took 12 hours to reproduce an unknown set of ser-
vices with no specification to work from and con-
founded feedback on whether the services are correct.

5.2 Failure
Our strategy failed, in that we could have made some
decisions differently, without compromising our pri-
mary objective (validate Immunix):

• We lost many “home” points during the delay of the
first day when we were not operational.

• We lost more “own3d” points, because we success-
fully penetrated other servers, planted our flag, but
did not score a point because our server was not
operational.

• It took us an excessive amount of time to get our
server fully interoperating with the score server,
because the score server would abort its run on the
first failure.

What we should have done was launch the reference
system immediately (like everyone else did) and sniffed
the network to more quickly learn what the score server
wanted. This is in fact what the Ghettohackers recom-
mended that we do, but we resisted for several hours for
fear that the Immunix server would never get to play,
invalidating the experiment. It is only in hindsight that
we realized that launching the reference server acceler-
ated the Immunix server into play. This is a direct result
of the lack of any specification for the required score
server functions, requiring the use of a working example
to successfully determine what the score server needed.

Table 2: Blow by Blow “own3d” Results

Round Result

89 blue almost own3d red

91 white own3d brown

99 white almost own3d red

103 white own3d red

104 white own3d red

105 white own3d red

109 brown own3d red

130 green own3d blue

134 green almost own3d blue

134 orange own3d red

136 orange own3d red

137 green almost own3d blue

157 green own3d white

6 Tactical Analysis
Here we analyze the tactical play: attacks that we
deployed in Section 6.1, and attacks that were deployed
against us in Section 6.2.

6.1 Attacks We Deployed
We successfully deployed buffer overflow attacks
against ftpd (early on) and sendmail, race attacks
against at, and configuration attacks against Webmin
(toward the end). Once we had penetrated a system, we
had a broad arsenal of malicious code and actions to
deploy:

• Change the shell for the root account to
/bin/halt preventing the victim from logging in
to their own server.

• Remove “kill”, “killall”, “shutdown”,
“reboot”, etc., frustrating the human intrusion
detection & response approach.

• Create administrative accounts with names like
‘bin, ‘adm’, and ‘bind’, which the human intrusion
detectors tended not to notice.

• Trojaned ps to not see our login names.
• Make setuid root copies of sh and hide them

in unusual places in the file system, such as /dev.
• Killed syslogd.
• Replaced their flag, with a script set to repeatedly

copy our flag to the reference location with an offi-
cial-sounding name such as /sbin/pklogd.

• Spam‘bot: a particularly creative attack program.
Because there is a penalty attached to bandwidth,
we would infect victim A with a spam’bot that
would send e-mail to all of the other teams.
Because the bandwidth cost was per connection, the
spam’bot would send 1-byte e-mails. Because the
spam’bot imposed very little load and did not dis-
rupt either the flag or the required services, teams
would often not notice it was there. There was also
a spam’bot variant that implemented a similar
attack using telnet instead of e-mail.

6.2 Attacks Deployed Against Us
Attackers often got login shells on our server, but these
shells were ineffective. We had changed the adduser
CGI to create accounts with a default shell of
/bin/fubush which was in turn a link to /bin/bash, but
with a tight profile around /bin/fubush so that it could
only execute the commands needed by the score server.
Login shells were so harmless to us that we are consid-
ering printing our root password on a large sign and
hanging it from our team table at next year’s game.

An attacker did successfully hack our telnetd. There
was a public vulnerability in telnetd announced in sum-
mer 2001 [17]. WireX did not bother to patch this vul-
nerability, because we did not anticipate anyone seeking
a secure operating system installing telnetd. How-
ever, the score server required telnet, so we installed
telnetd, and provided it with a SubDomain profile.
The result was that the attacker was able to compromise
our telnet service, but not get any farther than that, pre-
vented by the SubDomain profile. Patching our tel-
netd restored our telnet service.

As described in Section 4.3, attackers eventually discov-
ered that they could fork-bomb PERL scripts on our
server, resulting in a denial-of-service.

We suffered some self-inflicted attacks. In the zeal to
ward off attackers, defenders would sometimes kill
login shells started by the score server, resulting in the
loss of a point for that round.

We observed numerous ill-advised attacks, such as
repeated nessus [11] scans, and bulk exploit scripts
that included Microsoft IIS exploits. In light of the CtF
game’s bandwidth penalty, this kind of shotgun attack is
ill-advised, as it does more damage to the attacker than
the victim.

7 Future Work
Here we present our philosophical conclusions from this
experience. Section 7.1 describes potential improve-
ments for Immunix. Section 7.2 describes how to
improve our game-playing strategy. Section 7.3 sug-
gests how the Ghettohackers (or others) might improve
upon this game.

7.1 Improving Immunix
While it is impossible, in principle, to completely
defend against denial-of-service attacks, the successful
DoS attacks against Immunix suggest that more should
be done:

Continue *Guard Development: Unlike access control
schemes like SubDomain, the *Guard tools (Stack-
Guard, FormatGuard, and RaceGuard) halt exploits
in their tracks. This substantially reduces the poten-
tial DoS that an attacker can deploy against a vulner-
able service.

Resource Management: The PERL fork bomb showed
that some kind of resource management should be
built into SubDomain. We are still working on what

the semantics of this resource management should
be.

7.2 Improving Our Gaming Strategy
To improve our game playing strategy:

Launch the Reference System Immediately: So long
as the CtF game is characterized by having to guess
the difference between “good” (score server) and
“bad” (attacker) traffic, there is a lot of value in
launching the provided reference system early to
learn from its interactions with the score server, even
if this does cost some “own3d” points.

VMWare Proficiency: The CtF game is likely to contin-
ue using VMWare to distribute the reference sys-
tems, so greater proficiency with VMWare is called
for. We lost some points due to simple delay in con-
figuring VMWare networking correctly.

Replicas: Replication is a problematic approach to sys-
tem survivability, because it is very difficult to pre-
vent the attacker from deploying the same attack
across the replicated systems [7]. However, replicas
do appear to be useful in the CtF context, because of
the simultaneous presence of these factors:

Low-latency scoring: time is of the essence to re-
cover the team’s server if it crashes, or you will
miss a score round.

Massive human response: When the attacker cracks
the first replica, the humans can jump into action
to ensure that the same attack is not deployed
against other replicas. This is only feasible with
substantial manpower watching the servers being
attacked. It is not amenable to automated re-
sponse, because it is impossible to anticipate what
the attackers will have done. If attacker action
could be effectively anticipated, then it could be
prevented outright.

Better Logging: As a product design strategy, Immunix
has focussed on intrusion prevention, and has rela-
tively little in the way of event logging. But in the
CtF setting, where you have ample manpower avail-
able but not very much time, better forensic tools
would help to recover quickly.

Bring More Hardware: We thought we had brought
enough hardware, in that we brought 100% redun-
dant systems (duplicate laptop servers and duplicate
hubs). In practice, we needed multiple servers just to

play. We will bring at least three playing servers next
time.

7.3 Improving CtF
This year’s CtF game was outstanding, so these sugges-
tions are not to be taken as criticisms. However, they
might result in an interesting different game, if not nec-
essarily a better game:

Use cryptographic protocols:, If the score server is au-
thenticated using cryptographic means (so that at-
tackers cannot replay the authentication) then the
teams can be required to support much more sophis-
ticated (and even stateful) services for the score serv-
er. With plain text authentication as in this year’s
game, the players depend on the predictable behavior
of the score server to guess the difference between
score server traffic and attacks. If score server behav-
ior remains static, then it becomes feasible to build a
satisfactory playing server using an expect script, and
not actually have to provide any services at all.

8 Conclusions
Prior to the game, our expectation was that keeping
Immunix from being compromised would be difficult,
and we had no expectation to place high in the score.
We are delighted at keeping attackers from compromis-
ing our server, and surprised to have come within a nose
of winning the game. This experience has raised our
confidence in the security of our platform, as well as
showing us where it needs to be improved.

9 Acknowledgments
The Immunix team comprised 4 WireX staff (Seth
Arnold, Steve Beattie, Crispin Cowan, and Chris
Wright) with a great deal of help from John Viega. An
additional 20 volunteers joined the Immunix team at the
conference. Those who have agreed to be listed here are
Jay Beale, Pravir Chandra, “cubes”, Bob Fleck,
“hey_man”, Cliff Jolly, Toby Kohlenberg, “minion”,
Adam Shand, Ed Skoudis, Paolo Soto, and Kathy Wang.
Chandra and Fleck in particular did excellent work
attacking.

References

[1] M.Bishop and M. Digler. Checking for Race
Conditions in File Accesses. Computing Systems,
9(2):131–152, Spring 1996. Also available at url
http://olympus.cs.ucdavis.edu/ bishop/scriv/index.
html.

[2] Kalou/Pascal Bouchareine. Format String

Vulnerability. url
http://plan9.hert.org/papers/format.html, July 18
2000.

[3] Jamie Cameron. Webmin. url
http://www.webmin.com/, September 2002.

[4] Crispin Cowan, Matt Barringer, Steve Beattie,
Greg Kroah-Hartman, Mike Frantzen, and Jamie
Lokier. FormatGuard: Automatic Protection From
printf Format String Vulnerabilities. In USENIX
Security Symposium, Washington, DC, August
2001.

[5] Crispin Cowan, Steve Beattie, Calton Pu, Perry
Wagle, and Virgil Gligor. SubDomain:
Parsimonious Server Security. In USENIX 14th
Systems Administration Conference (LISA), New
Orleans, LA, December 2000.

[6] Crispin Cowan, Steve Beattie, Chris Wright, and
Greg Kroah-Hartman. RaceGuard: Kernel
Protection From Temporary File Race
Vulnerabilities. In USENIX Security Symposium ,
Washington, DC, August 2001.

[7] Crispin Cowan, Heather Hinton, Calton Pu, and
Jonathan Walpole. The Cracker Patch Choice: An
Analysis of Post Hoc Security Techniques. In
Proceedings of the 19th National Information
Systems Security Conference (NISSC 2000),
Baltimore, MD, October 2000.

[8] Crispin Cowan, Calton Pu, Dave Maier, Heather
Hinton, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, and Qian Zhang. StackGuard:
Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. In 7th USENIX Security
Conference, pages 63–77, San Antonio, TX,
January 1998.

[9] Crispin Cowan, Perry Wagle, Calton Pu, Steve
Beattie, and Jonathan Walpole. Buffer Overflows:
Attacks and Defenses for the Vulnerability of the
Decade. In DARPA Information Survivability
Conference and Expo (DISCEX), January 2000.
Also presented as an invited talk at SANS 2000,
March 23-26, 2000, Orlando, FL, url
http://schafercorp-ballston.com/discex.

[10] “Solar Designer”. Non-Executable User Stack. url
http://www.openwall.com/linux/.

[11] Renaud Deraison et al. Nessus. url
http://www.nessus.org/, August 2002.

[12] Fyodor. Nmap: Network Mapper. url
http://www.insecure.org/nmap/, August 2002.

[13] “Ghettohackers”. The Ghettohackers. url
http://ghettohackers.net/.

[14] Robert Lemos. Putting Fun Back Into Hacking.
CNet news.com, url http://news.com.com/2100-

1001-948404.html, August 5 2002.

[15] Tim Newsham. Format String Attacks. Bugtraq
mailing list, url
http://www.securityfocus.com/archive/1/81565,
September 9 2000.

[16] “Aleph One”. Smashing The Stack For Fun And
Profit. Phrack, 7(49), November 1996.

[17] Scut. Multiple Vendor Telnet Daemon
Vulnerability. url
http://online.securityfocus.com/archive/1/197804,
July 18 2001. Bugtraq.

[18] “tf8”. Wu-Ftpd Remote Format String Stack
Overwrite Vulnerability. url
http://www.securityfocus.com/bid/1387, June 22
2000.

